1 | /*
|
---|
2 | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <openssl/opensslconf.h>
|
---|
11 | #include <openssl/crypto.h>
|
---|
12 | #include <openssl/evp.h>
|
---|
13 | #include <openssl/err.h>
|
---|
14 | #include <string.h>
|
---|
15 | #include <assert.h>
|
---|
16 | #include <openssl/aes.h>
|
---|
17 | #include "crypto/evp.h"
|
---|
18 | #include "modes_local.h"
|
---|
19 | #include <openssl/rand.h>
|
---|
20 | #include "evp_local.h"
|
---|
21 |
|
---|
22 | typedef struct {
|
---|
23 | union {
|
---|
24 | double align;
|
---|
25 | AES_KEY ks;
|
---|
26 | } ks;
|
---|
27 | block128_f block;
|
---|
28 | union {
|
---|
29 | cbc128_f cbc;
|
---|
30 | ctr128_f ctr;
|
---|
31 | } stream;
|
---|
32 | } EVP_AES_KEY;
|
---|
33 |
|
---|
34 | typedef struct {
|
---|
35 | union {
|
---|
36 | double align;
|
---|
37 | AES_KEY ks;
|
---|
38 | } ks; /* AES key schedule to use */
|
---|
39 | int key_set; /* Set if key initialised */
|
---|
40 | int iv_set; /* Set if an iv is set */
|
---|
41 | GCM128_CONTEXT gcm;
|
---|
42 | unsigned char *iv; /* Temporary IV store */
|
---|
43 | int ivlen; /* IV length */
|
---|
44 | int taglen;
|
---|
45 | int iv_gen; /* It is OK to generate IVs */
|
---|
46 | int tls_aad_len; /* TLS AAD length */
|
---|
47 | ctr128_f ctr;
|
---|
48 | } EVP_AES_GCM_CTX;
|
---|
49 |
|
---|
50 | typedef struct {
|
---|
51 | union {
|
---|
52 | double align;
|
---|
53 | AES_KEY ks;
|
---|
54 | } ks1, ks2; /* AES key schedules to use */
|
---|
55 | XTS128_CONTEXT xts;
|
---|
56 | void (*stream) (const unsigned char *in,
|
---|
57 | unsigned char *out, size_t length,
|
---|
58 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
59 | const unsigned char iv[16]);
|
---|
60 | } EVP_AES_XTS_CTX;
|
---|
61 |
|
---|
62 | typedef struct {
|
---|
63 | union {
|
---|
64 | double align;
|
---|
65 | AES_KEY ks;
|
---|
66 | } ks; /* AES key schedule to use */
|
---|
67 | int key_set; /* Set if key initialised */
|
---|
68 | int iv_set; /* Set if an iv is set */
|
---|
69 | int tag_set; /* Set if tag is valid */
|
---|
70 | int len_set; /* Set if message length set */
|
---|
71 | int L, M; /* L and M parameters from RFC3610 */
|
---|
72 | int tls_aad_len; /* TLS AAD length */
|
---|
73 | CCM128_CONTEXT ccm;
|
---|
74 | ccm128_f str;
|
---|
75 | } EVP_AES_CCM_CTX;
|
---|
76 |
|
---|
77 | #ifndef OPENSSL_NO_OCB
|
---|
78 | typedef struct {
|
---|
79 | union {
|
---|
80 | double align;
|
---|
81 | AES_KEY ks;
|
---|
82 | } ksenc; /* AES key schedule to use for encryption */
|
---|
83 | union {
|
---|
84 | double align;
|
---|
85 | AES_KEY ks;
|
---|
86 | } ksdec; /* AES key schedule to use for decryption */
|
---|
87 | int key_set; /* Set if key initialised */
|
---|
88 | int iv_set; /* Set if an iv is set */
|
---|
89 | OCB128_CONTEXT ocb;
|
---|
90 | unsigned char *iv; /* Temporary IV store */
|
---|
91 | unsigned char tag[16];
|
---|
92 | unsigned char data_buf[16]; /* Store partial data blocks */
|
---|
93 | unsigned char aad_buf[16]; /* Store partial AAD blocks */
|
---|
94 | int data_buf_len;
|
---|
95 | int aad_buf_len;
|
---|
96 | int ivlen; /* IV length */
|
---|
97 | int taglen;
|
---|
98 | } EVP_AES_OCB_CTX;
|
---|
99 | #endif
|
---|
100 |
|
---|
101 | #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
|
---|
102 |
|
---|
103 | #ifdef VPAES_ASM
|
---|
104 | int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
|
---|
105 | AES_KEY *key);
|
---|
106 | int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
|
---|
107 | AES_KEY *key);
|
---|
108 |
|
---|
109 | void vpaes_encrypt(const unsigned char *in, unsigned char *out,
|
---|
110 | const AES_KEY *key);
|
---|
111 | void vpaes_decrypt(const unsigned char *in, unsigned char *out,
|
---|
112 | const AES_KEY *key);
|
---|
113 |
|
---|
114 | void vpaes_cbc_encrypt(const unsigned char *in,
|
---|
115 | unsigned char *out,
|
---|
116 | size_t length,
|
---|
117 | const AES_KEY *key, unsigned char *ivec, int enc);
|
---|
118 | #endif
|
---|
119 | #ifdef BSAES_ASM
|
---|
120 | void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
---|
121 | size_t length, const AES_KEY *key,
|
---|
122 | unsigned char ivec[16], int enc);
|
---|
123 | void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
|
---|
124 | size_t len, const AES_KEY *key,
|
---|
125 | const unsigned char ivec[16]);
|
---|
126 | void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
|
---|
127 | size_t len, const AES_KEY *key1,
|
---|
128 | const AES_KEY *key2, const unsigned char iv[16]);
|
---|
129 | void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
|
---|
130 | size_t len, const AES_KEY *key1,
|
---|
131 | const AES_KEY *key2, const unsigned char iv[16]);
|
---|
132 | #endif
|
---|
133 | #ifdef AES_CTR_ASM
|
---|
134 | void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
|
---|
135 | size_t blocks, const AES_KEY *key,
|
---|
136 | const unsigned char ivec[AES_BLOCK_SIZE]);
|
---|
137 | #endif
|
---|
138 | #ifdef AES_XTS_ASM
|
---|
139 | void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
|
---|
140 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
141 | const unsigned char iv[16]);
|
---|
142 | void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
|
---|
143 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
144 | const unsigned char iv[16]);
|
---|
145 | #endif
|
---|
146 |
|
---|
147 | /* increment counter (64-bit int) by 1 */
|
---|
148 | static void ctr64_inc(unsigned char *counter)
|
---|
149 | {
|
---|
150 | int n = 8;
|
---|
151 | unsigned char c;
|
---|
152 |
|
---|
153 | do {
|
---|
154 | --n;
|
---|
155 | c = counter[n];
|
---|
156 | ++c;
|
---|
157 | counter[n] = c;
|
---|
158 | if (c)
|
---|
159 | return;
|
---|
160 | } while (n);
|
---|
161 | }
|
---|
162 |
|
---|
163 | #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
|
---|
164 | # include "ppc_arch.h"
|
---|
165 | # ifdef VPAES_ASM
|
---|
166 | # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
|
---|
167 | # endif
|
---|
168 | # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
|
---|
169 | # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
|
---|
170 | # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
|
---|
171 | # define HWAES_encrypt aes_p8_encrypt
|
---|
172 | # define HWAES_decrypt aes_p8_decrypt
|
---|
173 | # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
|
---|
174 | # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
|
---|
175 | # define HWAES_xts_encrypt aes_p8_xts_encrypt
|
---|
176 | # define HWAES_xts_decrypt aes_p8_xts_decrypt
|
---|
177 | #endif
|
---|
178 |
|
---|
179 | #if defined(OPENSSL_CPUID_OBJ) && ( \
|
---|
180 | ((defined(__i386) || defined(__i386__) || \
|
---|
181 | defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
|
---|
182 | defined(__x86_64) || defined(__x86_64__) || \
|
---|
183 | defined(_M_AMD64) || defined(_M_X64) )
|
---|
184 |
|
---|
185 | extern unsigned int OPENSSL_ia32cap_P[];
|
---|
186 |
|
---|
187 | # ifdef VPAES_ASM
|
---|
188 | # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
|
---|
189 | # endif
|
---|
190 | # ifdef BSAES_ASM
|
---|
191 | # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
|
---|
192 | # endif
|
---|
193 | /*
|
---|
194 | * AES-NI section
|
---|
195 | */
|
---|
196 | # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
|
---|
197 |
|
---|
198 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
|
---|
199 | AES_KEY *key);
|
---|
200 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
|
---|
201 | AES_KEY *key);
|
---|
202 |
|
---|
203 | void aesni_encrypt(const unsigned char *in, unsigned char *out,
|
---|
204 | const AES_KEY *key);
|
---|
205 | void aesni_decrypt(const unsigned char *in, unsigned char *out,
|
---|
206 | const AES_KEY *key);
|
---|
207 |
|
---|
208 | void aesni_ecb_encrypt(const unsigned char *in,
|
---|
209 | unsigned char *out,
|
---|
210 | size_t length, const AES_KEY *key, int enc);
|
---|
211 | void aesni_cbc_encrypt(const unsigned char *in,
|
---|
212 | unsigned char *out,
|
---|
213 | size_t length,
|
---|
214 | const AES_KEY *key, unsigned char *ivec, int enc);
|
---|
215 |
|
---|
216 | void aesni_ctr32_encrypt_blocks(const unsigned char *in,
|
---|
217 | unsigned char *out,
|
---|
218 | size_t blocks,
|
---|
219 | const void *key, const unsigned char *ivec);
|
---|
220 |
|
---|
221 | void aesni_xts_encrypt(const unsigned char *in,
|
---|
222 | unsigned char *out,
|
---|
223 | size_t length,
|
---|
224 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
225 | const unsigned char iv[16]);
|
---|
226 |
|
---|
227 | void aesni_xts_decrypt(const unsigned char *in,
|
---|
228 | unsigned char *out,
|
---|
229 | size_t length,
|
---|
230 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
231 | const unsigned char iv[16]);
|
---|
232 |
|
---|
233 | void aesni_ccm64_encrypt_blocks(const unsigned char *in,
|
---|
234 | unsigned char *out,
|
---|
235 | size_t blocks,
|
---|
236 | const void *key,
|
---|
237 | const unsigned char ivec[16],
|
---|
238 | unsigned char cmac[16]);
|
---|
239 |
|
---|
240 | void aesni_ccm64_decrypt_blocks(const unsigned char *in,
|
---|
241 | unsigned char *out,
|
---|
242 | size_t blocks,
|
---|
243 | const void *key,
|
---|
244 | const unsigned char ivec[16],
|
---|
245 | unsigned char cmac[16]);
|
---|
246 |
|
---|
247 | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
|
---|
248 | size_t aesni_gcm_encrypt(const unsigned char *in,
|
---|
249 | unsigned char *out,
|
---|
250 | size_t len,
|
---|
251 | const void *key, unsigned char ivec[16], u64 *Xi);
|
---|
252 | # define AES_gcm_encrypt aesni_gcm_encrypt
|
---|
253 | size_t aesni_gcm_decrypt(const unsigned char *in,
|
---|
254 | unsigned char *out,
|
---|
255 | size_t len,
|
---|
256 | const void *key, unsigned char ivec[16], u64 *Xi);
|
---|
257 | # define AES_gcm_decrypt aesni_gcm_decrypt
|
---|
258 | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
|
---|
259 | size_t len);
|
---|
260 | # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
|
---|
261 | gctx->gcm.ghash==gcm_ghash_avx)
|
---|
262 | # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
|
---|
263 | gctx->gcm.ghash==gcm_ghash_avx)
|
---|
264 | # undef AES_GCM_ASM2 /* minor size optimization */
|
---|
265 | # endif
|
---|
266 |
|
---|
267 | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
268 | const unsigned char *iv, int enc)
|
---|
269 | {
|
---|
270 | int ret, mode;
|
---|
271 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
272 |
|
---|
273 | mode = EVP_CIPHER_CTX_mode(ctx);
|
---|
274 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
275 | && !enc) {
|
---|
276 | ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
277 | &dat->ks.ks);
|
---|
278 | dat->block = (block128_f) aesni_decrypt;
|
---|
279 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
280 | (cbc128_f) aesni_cbc_encrypt : NULL;
|
---|
281 | } else {
|
---|
282 | ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
283 | &dat->ks.ks);
|
---|
284 | dat->block = (block128_f) aesni_encrypt;
|
---|
285 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
286 | dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
|
---|
287 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
288 | dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
289 | else
|
---|
290 | dat->stream.cbc = NULL;
|
---|
291 | }
|
---|
292 |
|
---|
293 | if (ret < 0) {
|
---|
294 | EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
295 | return 0;
|
---|
296 | }
|
---|
297 |
|
---|
298 | return 1;
|
---|
299 | }
|
---|
300 |
|
---|
301 | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
302 | const unsigned char *in, size_t len)
|
---|
303 | {
|
---|
304 | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
305 | EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
306 | EVP_CIPHER_CTX_encrypting(ctx));
|
---|
307 |
|
---|
308 | return 1;
|
---|
309 | }
|
---|
310 |
|
---|
311 | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
312 | const unsigned char *in, size_t len)
|
---|
313 | {
|
---|
314 | size_t bl = EVP_CIPHER_CTX_block_size(ctx);
|
---|
315 |
|
---|
316 | if (len < bl)
|
---|
317 | return 1;
|
---|
318 |
|
---|
319 | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
320 | EVP_CIPHER_CTX_encrypting(ctx));
|
---|
321 |
|
---|
322 | return 1;
|
---|
323 | }
|
---|
324 |
|
---|
325 | # define aesni_ofb_cipher aes_ofb_cipher
|
---|
326 | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
327 | const unsigned char *in, size_t len);
|
---|
328 |
|
---|
329 | # define aesni_cfb_cipher aes_cfb_cipher
|
---|
330 | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
331 | const unsigned char *in, size_t len);
|
---|
332 |
|
---|
333 | # define aesni_cfb8_cipher aes_cfb8_cipher
|
---|
334 | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
335 | const unsigned char *in, size_t len);
|
---|
336 |
|
---|
337 | # define aesni_cfb1_cipher aes_cfb1_cipher
|
---|
338 | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
339 | const unsigned char *in, size_t len);
|
---|
340 |
|
---|
341 | # define aesni_ctr_cipher aes_ctr_cipher
|
---|
342 | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
343 | const unsigned char *in, size_t len);
|
---|
344 |
|
---|
345 | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
346 | const unsigned char *iv, int enc)
|
---|
347 | {
|
---|
348 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
349 | if (!iv && !key)
|
---|
350 | return 1;
|
---|
351 | if (key) {
|
---|
352 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
353 | &gctx->ks.ks);
|
---|
354 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
|
---|
355 | gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
356 | /*
|
---|
357 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
358 | */
|
---|
359 | if (iv == NULL && gctx->iv_set)
|
---|
360 | iv = gctx->iv;
|
---|
361 | if (iv) {
|
---|
362 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
363 | gctx->iv_set = 1;
|
---|
364 | }
|
---|
365 | gctx->key_set = 1;
|
---|
366 | } else {
|
---|
367 | /* If key set use IV, otherwise copy */
|
---|
368 | if (gctx->key_set)
|
---|
369 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
370 | else
|
---|
371 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
372 | gctx->iv_set = 1;
|
---|
373 | gctx->iv_gen = 0;
|
---|
374 | }
|
---|
375 | return 1;
|
---|
376 | }
|
---|
377 |
|
---|
378 | # define aesni_gcm_cipher aes_gcm_cipher
|
---|
379 | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
380 | const unsigned char *in, size_t len);
|
---|
381 |
|
---|
382 | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
383 | const unsigned char *iv, int enc)
|
---|
384 | {
|
---|
385 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
386 |
|
---|
387 | if (!iv && !key)
|
---|
388 | return 1;
|
---|
389 |
|
---|
390 | if (key) {
|
---|
391 | /* The key is two half length keys in reality */
|
---|
392 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
|
---|
393 |
|
---|
394 | /*
|
---|
395 | * Verify that the two keys are different.
|
---|
396 | *
|
---|
397 | * This addresses Rogaway's vulnerability.
|
---|
398 | * See comment in aes_xts_init_key() below.
|
---|
399 | */
|
---|
400 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
401 | EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
402 | return 0;
|
---|
403 | }
|
---|
404 |
|
---|
405 | /* key_len is two AES keys */
|
---|
406 | if (enc) {
|
---|
407 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
408 | &xctx->ks1.ks);
|
---|
409 | xctx->xts.block1 = (block128_f) aesni_encrypt;
|
---|
410 | xctx->stream = aesni_xts_encrypt;
|
---|
411 | } else {
|
---|
412 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
413 | &xctx->ks1.ks);
|
---|
414 | xctx->xts.block1 = (block128_f) aesni_decrypt;
|
---|
415 | xctx->stream = aesni_xts_decrypt;
|
---|
416 | }
|
---|
417 |
|
---|
418 | aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
|
---|
419 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
420 | &xctx->ks2.ks);
|
---|
421 | xctx->xts.block2 = (block128_f) aesni_encrypt;
|
---|
422 |
|
---|
423 | xctx->xts.key1 = &xctx->ks1;
|
---|
424 | }
|
---|
425 |
|
---|
426 | if (iv) {
|
---|
427 | xctx->xts.key2 = &xctx->ks2;
|
---|
428 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
|
---|
429 | }
|
---|
430 |
|
---|
431 | return 1;
|
---|
432 | }
|
---|
433 |
|
---|
434 | # define aesni_xts_cipher aes_xts_cipher
|
---|
435 | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
436 | const unsigned char *in, size_t len);
|
---|
437 |
|
---|
438 | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
439 | const unsigned char *iv, int enc)
|
---|
440 | {
|
---|
441 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
442 | if (!iv && !key)
|
---|
443 | return 1;
|
---|
444 | if (key) {
|
---|
445 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
446 | &cctx->ks.ks);
|
---|
447 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
448 | &cctx->ks, (block128_f) aesni_encrypt);
|
---|
449 | cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
|
---|
450 | (ccm128_f) aesni_ccm64_decrypt_blocks;
|
---|
451 | cctx->key_set = 1;
|
---|
452 | }
|
---|
453 | if (iv) {
|
---|
454 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
|
---|
455 | cctx->iv_set = 1;
|
---|
456 | }
|
---|
457 | return 1;
|
---|
458 | }
|
---|
459 |
|
---|
460 | # define aesni_ccm_cipher aes_ccm_cipher
|
---|
461 | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
462 | const unsigned char *in, size_t len);
|
---|
463 |
|
---|
464 | # ifndef OPENSSL_NO_OCB
|
---|
465 | void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
|
---|
466 | size_t blocks, const void *key,
|
---|
467 | size_t start_block_num,
|
---|
468 | unsigned char offset_i[16],
|
---|
469 | const unsigned char L_[][16],
|
---|
470 | unsigned char checksum[16]);
|
---|
471 | void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
|
---|
472 | size_t blocks, const void *key,
|
---|
473 | size_t start_block_num,
|
---|
474 | unsigned char offset_i[16],
|
---|
475 | const unsigned char L_[][16],
|
---|
476 | unsigned char checksum[16]);
|
---|
477 |
|
---|
478 | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
479 | const unsigned char *iv, int enc)
|
---|
480 | {
|
---|
481 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
482 | if (!iv && !key)
|
---|
483 | return 1;
|
---|
484 | if (key) {
|
---|
485 | do {
|
---|
486 | /*
|
---|
487 | * We set both the encrypt and decrypt key here because decrypt
|
---|
488 | * needs both. We could possibly optimise to remove setting the
|
---|
489 | * decrypt for an encryption operation.
|
---|
490 | */
|
---|
491 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
492 | &octx->ksenc.ks);
|
---|
493 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
494 | &octx->ksdec.ks);
|
---|
495 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
496 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
497 | (block128_f) aesni_encrypt,
|
---|
498 | (block128_f) aesni_decrypt,
|
---|
499 | enc ? aesni_ocb_encrypt
|
---|
500 | : aesni_ocb_decrypt))
|
---|
501 | return 0;
|
---|
502 | }
|
---|
503 | while (0);
|
---|
504 |
|
---|
505 | /*
|
---|
506 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
507 | */
|
---|
508 | if (iv == NULL && octx->iv_set)
|
---|
509 | iv = octx->iv;
|
---|
510 | if (iv) {
|
---|
511 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
512 | != 1)
|
---|
513 | return 0;
|
---|
514 | octx->iv_set = 1;
|
---|
515 | }
|
---|
516 | octx->key_set = 1;
|
---|
517 | } else {
|
---|
518 | /* If key set use IV, otherwise copy */
|
---|
519 | if (octx->key_set)
|
---|
520 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
521 | else
|
---|
522 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
523 | octx->iv_set = 1;
|
---|
524 | }
|
---|
525 | return 1;
|
---|
526 | }
|
---|
527 |
|
---|
528 | # define aesni_ocb_cipher aes_ocb_cipher
|
---|
529 | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
530 | const unsigned char *in, size_t len);
|
---|
531 | # endif /* OPENSSL_NO_OCB */
|
---|
532 |
|
---|
533 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
534 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
535 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
536 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
537 | aesni_init_key, \
|
---|
538 | aesni_##mode##_cipher, \
|
---|
539 | NULL, \
|
---|
540 | sizeof(EVP_AES_KEY), \
|
---|
541 | NULL,NULL,NULL,NULL }; \
|
---|
542 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
543 | nid##_##keylen##_##nmode,blocksize, \
|
---|
544 | keylen/8,ivlen, \
|
---|
545 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
546 | aes_init_key, \
|
---|
547 | aes_##mode##_cipher, \
|
---|
548 | NULL, \
|
---|
549 | sizeof(EVP_AES_KEY), \
|
---|
550 | NULL,NULL,NULL,NULL }; \
|
---|
551 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
552 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
553 |
|
---|
554 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
555 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
556 | nid##_##keylen##_##mode,blocksize, \
|
---|
557 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
|
---|
558 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
559 | aesni_##mode##_init_key, \
|
---|
560 | aesni_##mode##_cipher, \
|
---|
561 | aes_##mode##_cleanup, \
|
---|
562 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
563 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
564 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
565 | nid##_##keylen##_##mode,blocksize, \
|
---|
566 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
|
---|
567 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
568 | aes_##mode##_init_key, \
|
---|
569 | aes_##mode##_cipher, \
|
---|
570 | aes_##mode##_cleanup, \
|
---|
571 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
572 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
573 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
574 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
575 |
|
---|
576 | #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
|
---|
577 |
|
---|
578 | # include "sparc_arch.h"
|
---|
579 |
|
---|
580 | extern unsigned int OPENSSL_sparcv9cap_P[];
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * Initial Fujitsu SPARC64 X support
|
---|
584 | */
|
---|
585 | # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
|
---|
586 | # define HWAES_set_encrypt_key aes_fx_set_encrypt_key
|
---|
587 | # define HWAES_set_decrypt_key aes_fx_set_decrypt_key
|
---|
588 | # define HWAES_encrypt aes_fx_encrypt
|
---|
589 | # define HWAES_decrypt aes_fx_decrypt
|
---|
590 | # define HWAES_cbc_encrypt aes_fx_cbc_encrypt
|
---|
591 | # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
|
---|
592 |
|
---|
593 | # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
|
---|
594 |
|
---|
595 | void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
|
---|
596 | void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
|
---|
597 | void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
|
---|
598 | const AES_KEY *key);
|
---|
599 | void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
|
---|
600 | const AES_KEY *key);
|
---|
601 | /*
|
---|
602 | * Key-length specific subroutines were chosen for following reason.
|
---|
603 | * Each SPARC T4 core can execute up to 8 threads which share core's
|
---|
604 | * resources. Loading as much key material to registers allows to
|
---|
605 | * minimize references to shared memory interface, as well as amount
|
---|
606 | * of instructions in inner loops [much needed on T4]. But then having
|
---|
607 | * non-key-length specific routines would require conditional branches
|
---|
608 | * either in inner loops or on subroutines' entries. Former is hardly
|
---|
609 | * acceptable, while latter means code size increase to size occupied
|
---|
610 | * by multiple key-length specific subroutines, so why fight?
|
---|
611 | */
|
---|
612 | void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
---|
613 | size_t len, const AES_KEY *key,
|
---|
614 | unsigned char *ivec);
|
---|
615 | void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
|
---|
616 | size_t len, const AES_KEY *key,
|
---|
617 | unsigned char *ivec);
|
---|
618 | void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
---|
619 | size_t len, const AES_KEY *key,
|
---|
620 | unsigned char *ivec);
|
---|
621 | void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
|
---|
622 | size_t len, const AES_KEY *key,
|
---|
623 | unsigned char *ivec);
|
---|
624 | void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
---|
625 | size_t len, const AES_KEY *key,
|
---|
626 | unsigned char *ivec);
|
---|
627 | void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
|
---|
628 | size_t len, const AES_KEY *key,
|
---|
629 | unsigned char *ivec);
|
---|
630 | void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
|
---|
631 | size_t blocks, const AES_KEY *key,
|
---|
632 | unsigned char *ivec);
|
---|
633 | void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
|
---|
634 | size_t blocks, const AES_KEY *key,
|
---|
635 | unsigned char *ivec);
|
---|
636 | void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
|
---|
637 | size_t blocks, const AES_KEY *key,
|
---|
638 | unsigned char *ivec);
|
---|
639 | void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
|
---|
640 | size_t blocks, const AES_KEY *key1,
|
---|
641 | const AES_KEY *key2, const unsigned char *ivec);
|
---|
642 | void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
|
---|
643 | size_t blocks, const AES_KEY *key1,
|
---|
644 | const AES_KEY *key2, const unsigned char *ivec);
|
---|
645 | void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
|
---|
646 | size_t blocks, const AES_KEY *key1,
|
---|
647 | const AES_KEY *key2, const unsigned char *ivec);
|
---|
648 | void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
|
---|
649 | size_t blocks, const AES_KEY *key1,
|
---|
650 | const AES_KEY *key2, const unsigned char *ivec);
|
---|
651 |
|
---|
652 | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
653 | const unsigned char *iv, int enc)
|
---|
654 | {
|
---|
655 | int ret, mode, bits;
|
---|
656 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
657 |
|
---|
658 | mode = EVP_CIPHER_CTX_mode(ctx);
|
---|
659 | bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
---|
660 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
661 | && !enc) {
|
---|
662 | ret = 0;
|
---|
663 | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
|
---|
664 | dat->block = (block128_f) aes_t4_decrypt;
|
---|
665 | switch (bits) {
|
---|
666 | case 128:
|
---|
667 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
668 | (cbc128_f) aes128_t4_cbc_decrypt : NULL;
|
---|
669 | break;
|
---|
670 | case 192:
|
---|
671 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
672 | (cbc128_f) aes192_t4_cbc_decrypt : NULL;
|
---|
673 | break;
|
---|
674 | case 256:
|
---|
675 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
676 | (cbc128_f) aes256_t4_cbc_decrypt : NULL;
|
---|
677 | break;
|
---|
678 | default:
|
---|
679 | ret = -1;
|
---|
680 | }
|
---|
681 | } else {
|
---|
682 | ret = 0;
|
---|
683 | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
|
---|
684 | dat->block = (block128_f) aes_t4_encrypt;
|
---|
685 | switch (bits) {
|
---|
686 | case 128:
|
---|
687 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
688 | dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
|
---|
689 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
690 | dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
691 | else
|
---|
692 | dat->stream.cbc = NULL;
|
---|
693 | break;
|
---|
694 | case 192:
|
---|
695 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
696 | dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
|
---|
697 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
698 | dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
699 | else
|
---|
700 | dat->stream.cbc = NULL;
|
---|
701 | break;
|
---|
702 | case 256:
|
---|
703 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
704 | dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
|
---|
705 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
706 | dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
707 | else
|
---|
708 | dat->stream.cbc = NULL;
|
---|
709 | break;
|
---|
710 | default:
|
---|
711 | ret = -1;
|
---|
712 | }
|
---|
713 | }
|
---|
714 |
|
---|
715 | if (ret < 0) {
|
---|
716 | EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
717 | return 0;
|
---|
718 | }
|
---|
719 |
|
---|
720 | return 1;
|
---|
721 | }
|
---|
722 |
|
---|
723 | # define aes_t4_cbc_cipher aes_cbc_cipher
|
---|
724 | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
725 | const unsigned char *in, size_t len);
|
---|
726 |
|
---|
727 | # define aes_t4_ecb_cipher aes_ecb_cipher
|
---|
728 | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
729 | const unsigned char *in, size_t len);
|
---|
730 |
|
---|
731 | # define aes_t4_ofb_cipher aes_ofb_cipher
|
---|
732 | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
733 | const unsigned char *in, size_t len);
|
---|
734 |
|
---|
735 | # define aes_t4_cfb_cipher aes_cfb_cipher
|
---|
736 | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
737 | const unsigned char *in, size_t len);
|
---|
738 |
|
---|
739 | # define aes_t4_cfb8_cipher aes_cfb8_cipher
|
---|
740 | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
741 | const unsigned char *in, size_t len);
|
---|
742 |
|
---|
743 | # define aes_t4_cfb1_cipher aes_cfb1_cipher
|
---|
744 | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
745 | const unsigned char *in, size_t len);
|
---|
746 |
|
---|
747 | # define aes_t4_ctr_cipher aes_ctr_cipher
|
---|
748 | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
749 | const unsigned char *in, size_t len);
|
---|
750 |
|
---|
751 | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
752 | const unsigned char *iv, int enc)
|
---|
753 | {
|
---|
754 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
755 | if (!iv && !key)
|
---|
756 | return 1;
|
---|
757 | if (key) {
|
---|
758 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
---|
759 | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
|
---|
760 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
761 | (block128_f) aes_t4_encrypt);
|
---|
762 | switch (bits) {
|
---|
763 | case 128:
|
---|
764 | gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
765 | break;
|
---|
766 | case 192:
|
---|
767 | gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
768 | break;
|
---|
769 | case 256:
|
---|
770 | gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
771 | break;
|
---|
772 | default:
|
---|
773 | return 0;
|
---|
774 | }
|
---|
775 | /*
|
---|
776 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
777 | */
|
---|
778 | if (iv == NULL && gctx->iv_set)
|
---|
779 | iv = gctx->iv;
|
---|
780 | if (iv) {
|
---|
781 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
782 | gctx->iv_set = 1;
|
---|
783 | }
|
---|
784 | gctx->key_set = 1;
|
---|
785 | } else {
|
---|
786 | /* If key set use IV, otherwise copy */
|
---|
787 | if (gctx->key_set)
|
---|
788 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
789 | else
|
---|
790 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
791 | gctx->iv_set = 1;
|
---|
792 | gctx->iv_gen = 0;
|
---|
793 | }
|
---|
794 | return 1;
|
---|
795 | }
|
---|
796 |
|
---|
797 | # define aes_t4_gcm_cipher aes_gcm_cipher
|
---|
798 | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
799 | const unsigned char *in, size_t len);
|
---|
800 |
|
---|
801 | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
802 | const unsigned char *iv, int enc)
|
---|
803 | {
|
---|
804 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
805 |
|
---|
806 | if (!iv && !key)
|
---|
807 | return 1;
|
---|
808 |
|
---|
809 | if (key) {
|
---|
810 | /* The key is two half length keys in reality */
|
---|
811 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
|
---|
812 | const int bits = bytes * 8;
|
---|
813 |
|
---|
814 | /*
|
---|
815 | * Verify that the two keys are different.
|
---|
816 | *
|
---|
817 | * This addresses Rogaway's vulnerability.
|
---|
818 | * See comment in aes_xts_init_key() below.
|
---|
819 | */
|
---|
820 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
821 | EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
822 | return 0;
|
---|
823 | }
|
---|
824 |
|
---|
825 | xctx->stream = NULL;
|
---|
826 | /* key_len is two AES keys */
|
---|
827 | if (enc) {
|
---|
828 | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
829 | xctx->xts.block1 = (block128_f) aes_t4_encrypt;
|
---|
830 | switch (bits) {
|
---|
831 | case 128:
|
---|
832 | xctx->stream = aes128_t4_xts_encrypt;
|
---|
833 | break;
|
---|
834 | case 256:
|
---|
835 | xctx->stream = aes256_t4_xts_encrypt;
|
---|
836 | break;
|
---|
837 | default:
|
---|
838 | return 0;
|
---|
839 | }
|
---|
840 | } else {
|
---|
841 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
842 | &xctx->ks1.ks);
|
---|
843 | xctx->xts.block1 = (block128_f) aes_t4_decrypt;
|
---|
844 | switch (bits) {
|
---|
845 | case 128:
|
---|
846 | xctx->stream = aes128_t4_xts_decrypt;
|
---|
847 | break;
|
---|
848 | case 256:
|
---|
849 | xctx->stream = aes256_t4_xts_decrypt;
|
---|
850 | break;
|
---|
851 | default:
|
---|
852 | return 0;
|
---|
853 | }
|
---|
854 | }
|
---|
855 |
|
---|
856 | aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
|
---|
857 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
858 | &xctx->ks2.ks);
|
---|
859 | xctx->xts.block2 = (block128_f) aes_t4_encrypt;
|
---|
860 |
|
---|
861 | xctx->xts.key1 = &xctx->ks1;
|
---|
862 | }
|
---|
863 |
|
---|
864 | if (iv) {
|
---|
865 | xctx->xts.key2 = &xctx->ks2;
|
---|
866 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
|
---|
867 | }
|
---|
868 |
|
---|
869 | return 1;
|
---|
870 | }
|
---|
871 |
|
---|
872 | # define aes_t4_xts_cipher aes_xts_cipher
|
---|
873 | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
874 | const unsigned char *in, size_t len);
|
---|
875 |
|
---|
876 | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
877 | const unsigned char *iv, int enc)
|
---|
878 | {
|
---|
879 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
880 | if (!iv && !key)
|
---|
881 | return 1;
|
---|
882 | if (key) {
|
---|
883 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
---|
884 | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
|
---|
885 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
886 | &cctx->ks, (block128_f) aes_t4_encrypt);
|
---|
887 | cctx->str = NULL;
|
---|
888 | cctx->key_set = 1;
|
---|
889 | }
|
---|
890 | if (iv) {
|
---|
891 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
|
---|
892 | cctx->iv_set = 1;
|
---|
893 | }
|
---|
894 | return 1;
|
---|
895 | }
|
---|
896 |
|
---|
897 | # define aes_t4_ccm_cipher aes_ccm_cipher
|
---|
898 | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
899 | const unsigned char *in, size_t len);
|
---|
900 |
|
---|
901 | # ifndef OPENSSL_NO_OCB
|
---|
902 | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
903 | const unsigned char *iv, int enc)
|
---|
904 | {
|
---|
905 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
906 | if (!iv && !key)
|
---|
907 | return 1;
|
---|
908 | if (key) {
|
---|
909 | do {
|
---|
910 | /*
|
---|
911 | * We set both the encrypt and decrypt key here because decrypt
|
---|
912 | * needs both. We could possibly optimise to remove setting the
|
---|
913 | * decrypt for an encryption operation.
|
---|
914 | */
|
---|
915 | aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
916 | &octx->ksenc.ks);
|
---|
917 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
918 | &octx->ksdec.ks);
|
---|
919 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
920 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
921 | (block128_f) aes_t4_encrypt,
|
---|
922 | (block128_f) aes_t4_decrypt,
|
---|
923 | NULL))
|
---|
924 | return 0;
|
---|
925 | }
|
---|
926 | while (0);
|
---|
927 |
|
---|
928 | /*
|
---|
929 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
930 | */
|
---|
931 | if (iv == NULL && octx->iv_set)
|
---|
932 | iv = octx->iv;
|
---|
933 | if (iv) {
|
---|
934 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
935 | != 1)
|
---|
936 | return 0;
|
---|
937 | octx->iv_set = 1;
|
---|
938 | }
|
---|
939 | octx->key_set = 1;
|
---|
940 | } else {
|
---|
941 | /* If key set use IV, otherwise copy */
|
---|
942 | if (octx->key_set)
|
---|
943 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
944 | else
|
---|
945 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
946 | octx->iv_set = 1;
|
---|
947 | }
|
---|
948 | return 1;
|
---|
949 | }
|
---|
950 |
|
---|
951 | # define aes_t4_ocb_cipher aes_ocb_cipher
|
---|
952 | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
953 | const unsigned char *in, size_t len);
|
---|
954 | # endif /* OPENSSL_NO_OCB */
|
---|
955 |
|
---|
956 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
957 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
958 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
959 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
960 | aes_t4_init_key, \
|
---|
961 | aes_t4_##mode##_cipher, \
|
---|
962 | NULL, \
|
---|
963 | sizeof(EVP_AES_KEY), \
|
---|
964 | NULL,NULL,NULL,NULL }; \
|
---|
965 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
966 | nid##_##keylen##_##nmode,blocksize, \
|
---|
967 | keylen/8,ivlen, \
|
---|
968 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
969 | aes_init_key, \
|
---|
970 | aes_##mode##_cipher, \
|
---|
971 | NULL, \
|
---|
972 | sizeof(EVP_AES_KEY), \
|
---|
973 | NULL,NULL,NULL,NULL }; \
|
---|
974 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
975 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
976 |
|
---|
977 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
978 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
979 | nid##_##keylen##_##mode,blocksize, \
|
---|
980 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
|
---|
981 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
982 | aes_t4_##mode##_init_key, \
|
---|
983 | aes_t4_##mode##_cipher, \
|
---|
984 | aes_##mode##_cleanup, \
|
---|
985 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
986 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
987 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
988 | nid##_##keylen##_##mode,blocksize, \
|
---|
989 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
|
---|
990 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
991 | aes_##mode##_init_key, \
|
---|
992 | aes_##mode##_cipher, \
|
---|
993 | aes_##mode##_cleanup, \
|
---|
994 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
995 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
996 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
997 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
998 |
|
---|
999 | #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
|
---|
1000 | /*
|
---|
1001 | * IBM S390X support
|
---|
1002 | */
|
---|
1003 | # include "s390x_arch.h"
|
---|
1004 |
|
---|
1005 | typedef struct {
|
---|
1006 | union {
|
---|
1007 | double align;
|
---|
1008 | /*-
|
---|
1009 | * KM-AES parameter block - begin
|
---|
1010 | * (see z/Architecture Principles of Operation >= SA22-7832-06)
|
---|
1011 | */
|
---|
1012 | struct {
|
---|
1013 | unsigned char k[32];
|
---|
1014 | } param;
|
---|
1015 | /* KM-AES parameter block - end */
|
---|
1016 | } km;
|
---|
1017 | unsigned int fc;
|
---|
1018 | } S390X_AES_ECB_CTX;
|
---|
1019 |
|
---|
1020 | typedef struct {
|
---|
1021 | union {
|
---|
1022 | double align;
|
---|
1023 | /*-
|
---|
1024 | * KMO-AES parameter block - begin
|
---|
1025 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
1026 | */
|
---|
1027 | struct {
|
---|
1028 | unsigned char cv[16];
|
---|
1029 | unsigned char k[32];
|
---|
1030 | } param;
|
---|
1031 | /* KMO-AES parameter block - end */
|
---|
1032 | } kmo;
|
---|
1033 | unsigned int fc;
|
---|
1034 |
|
---|
1035 | int res;
|
---|
1036 | } S390X_AES_OFB_CTX;
|
---|
1037 |
|
---|
1038 | typedef struct {
|
---|
1039 | union {
|
---|
1040 | double align;
|
---|
1041 | /*-
|
---|
1042 | * KMF-AES parameter block - begin
|
---|
1043 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
1044 | */
|
---|
1045 | struct {
|
---|
1046 | unsigned char cv[16];
|
---|
1047 | unsigned char k[32];
|
---|
1048 | } param;
|
---|
1049 | /* KMF-AES parameter block - end */
|
---|
1050 | } kmf;
|
---|
1051 | unsigned int fc;
|
---|
1052 |
|
---|
1053 | int res;
|
---|
1054 | } S390X_AES_CFB_CTX;
|
---|
1055 |
|
---|
1056 | typedef struct {
|
---|
1057 | union {
|
---|
1058 | double align;
|
---|
1059 | /*-
|
---|
1060 | * KMA-GCM-AES parameter block - begin
|
---|
1061 | * (see z/Architecture Principles of Operation >= SA22-7832-11)
|
---|
1062 | */
|
---|
1063 | struct {
|
---|
1064 | unsigned char reserved[12];
|
---|
1065 | union {
|
---|
1066 | unsigned int w;
|
---|
1067 | unsigned char b[4];
|
---|
1068 | } cv;
|
---|
1069 | union {
|
---|
1070 | unsigned long long g[2];
|
---|
1071 | unsigned char b[16];
|
---|
1072 | } t;
|
---|
1073 | unsigned char h[16];
|
---|
1074 | unsigned long long taadl;
|
---|
1075 | unsigned long long tpcl;
|
---|
1076 | union {
|
---|
1077 | unsigned long long g[2];
|
---|
1078 | unsigned int w[4];
|
---|
1079 | } j0;
|
---|
1080 | unsigned char k[32];
|
---|
1081 | } param;
|
---|
1082 | /* KMA-GCM-AES parameter block - end */
|
---|
1083 | } kma;
|
---|
1084 | unsigned int fc;
|
---|
1085 | int key_set;
|
---|
1086 |
|
---|
1087 | unsigned char *iv;
|
---|
1088 | int ivlen;
|
---|
1089 | int iv_set;
|
---|
1090 | int iv_gen;
|
---|
1091 |
|
---|
1092 | int taglen;
|
---|
1093 |
|
---|
1094 | unsigned char ares[16];
|
---|
1095 | unsigned char mres[16];
|
---|
1096 | unsigned char kres[16];
|
---|
1097 | int areslen;
|
---|
1098 | int mreslen;
|
---|
1099 | int kreslen;
|
---|
1100 |
|
---|
1101 | int tls_aad_len;
|
---|
1102 | } S390X_AES_GCM_CTX;
|
---|
1103 |
|
---|
1104 | typedef struct {
|
---|
1105 | union {
|
---|
1106 | double align;
|
---|
1107 | /*-
|
---|
1108 | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
|
---|
1109 | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
|
---|
1110 | * rounds field is used to store the function code and that the key
|
---|
1111 | * schedule is not stored (if aes hardware support is detected).
|
---|
1112 | */
|
---|
1113 | struct {
|
---|
1114 | unsigned char pad[16];
|
---|
1115 | AES_KEY k;
|
---|
1116 | } key;
|
---|
1117 |
|
---|
1118 | struct {
|
---|
1119 | /*-
|
---|
1120 | * KMAC-AES parameter block - begin
|
---|
1121 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
1122 | */
|
---|
1123 | struct {
|
---|
1124 | union {
|
---|
1125 | unsigned long long g[2];
|
---|
1126 | unsigned char b[16];
|
---|
1127 | } icv;
|
---|
1128 | unsigned char k[32];
|
---|
1129 | } kmac_param;
|
---|
1130 | /* KMAC-AES parameter block - end */
|
---|
1131 |
|
---|
1132 | union {
|
---|
1133 | unsigned long long g[2];
|
---|
1134 | unsigned char b[16];
|
---|
1135 | } nonce;
|
---|
1136 | union {
|
---|
1137 | unsigned long long g[2];
|
---|
1138 | unsigned char b[16];
|
---|
1139 | } buf;
|
---|
1140 |
|
---|
1141 | unsigned long long blocks;
|
---|
1142 | int l;
|
---|
1143 | int m;
|
---|
1144 | int tls_aad_len;
|
---|
1145 | int iv_set;
|
---|
1146 | int tag_set;
|
---|
1147 | int len_set;
|
---|
1148 | int key_set;
|
---|
1149 |
|
---|
1150 | unsigned char pad[140];
|
---|
1151 | unsigned int fc;
|
---|
1152 | } ccm;
|
---|
1153 | } aes;
|
---|
1154 | } S390X_AES_CCM_CTX;
|
---|
1155 |
|
---|
1156 | /* Convert key size to function code: [16,24,32] -> [18,19,20]. */
|
---|
1157 | # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
|
---|
1158 |
|
---|
1159 | /* Most modes of operation need km for partial block processing. */
|
---|
1160 | # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
|
---|
1161 | S390X_CAPBIT(S390X_AES_128))
|
---|
1162 | # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
|
---|
1163 | S390X_CAPBIT(S390X_AES_192))
|
---|
1164 | # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
|
---|
1165 | S390X_CAPBIT(S390X_AES_256))
|
---|
1166 |
|
---|
1167 | # define s390x_aes_init_key aes_init_key
|
---|
1168 | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
1169 | const unsigned char *iv, int enc);
|
---|
1170 |
|
---|
1171 | # define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
|
---|
1172 | # define S390X_aes_192_cbc_CAPABLE 1
|
---|
1173 | # define S390X_aes_256_cbc_CAPABLE 1
|
---|
1174 | # define S390X_AES_CBC_CTX EVP_AES_KEY
|
---|
1175 |
|
---|
1176 | # define s390x_aes_cbc_init_key aes_init_key
|
---|
1177 |
|
---|
1178 | # define s390x_aes_cbc_cipher aes_cbc_cipher
|
---|
1179 | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1180 | const unsigned char *in, size_t len);
|
---|
1181 |
|
---|
1182 | # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
|
---|
1183 | # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
|
---|
1184 | # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
|
---|
1185 |
|
---|
1186 | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1187 | const unsigned char *key,
|
---|
1188 | const unsigned char *iv, int enc)
|
---|
1189 | {
|
---|
1190 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
1191 | const int keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1192 |
|
---|
1193 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1194 | if (!enc)
|
---|
1195 | cctx->fc |= S390X_DECRYPT;
|
---|
1196 |
|
---|
1197 | memcpy(cctx->km.param.k, key, keylen);
|
---|
1198 | return 1;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1202 | const unsigned char *in, size_t len)
|
---|
1203 | {
|
---|
1204 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
1205 |
|
---|
1206 | s390x_km(in, len, out, cctx->fc, &cctx->km.param);
|
---|
1207 | return 1;
|
---|
1208 | }
|
---|
1209 |
|
---|
1210 | # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
|
---|
1211 | (OPENSSL_s390xcap_P.kmo[0] & \
|
---|
1212 | S390X_CAPBIT(S390X_AES_128)))
|
---|
1213 | # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
|
---|
1214 | (OPENSSL_s390xcap_P.kmo[0] & \
|
---|
1215 | S390X_CAPBIT(S390X_AES_192)))
|
---|
1216 | # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
|
---|
1217 | (OPENSSL_s390xcap_P.kmo[0] & \
|
---|
1218 | S390X_CAPBIT(S390X_AES_256)))
|
---|
1219 |
|
---|
1220 | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1221 | const unsigned char *key,
|
---|
1222 | const unsigned char *ivec, int enc)
|
---|
1223 | {
|
---|
1224 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
1225 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
|
---|
1226 | const int keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1227 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
|
---|
1228 |
|
---|
1229 | memcpy(cctx->kmo.param.cv, iv, ivlen);
|
---|
1230 | memcpy(cctx->kmo.param.k, key, keylen);
|
---|
1231 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1232 | cctx->res = 0;
|
---|
1233 | return 1;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1237 | const unsigned char *in, size_t len)
|
---|
1238 | {
|
---|
1239 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
1240 | int n = cctx->res;
|
---|
1241 | int rem;
|
---|
1242 |
|
---|
1243 | while (n && len) {
|
---|
1244 | *out = *in ^ cctx->kmo.param.cv[n];
|
---|
1245 | n = (n + 1) & 0xf;
|
---|
1246 | --len;
|
---|
1247 | ++in;
|
---|
1248 | ++out;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | rem = len & 0xf;
|
---|
1252 |
|
---|
1253 | len &= ~(size_t)0xf;
|
---|
1254 | if (len) {
|
---|
1255 | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
|
---|
1256 |
|
---|
1257 | out += len;
|
---|
1258 | in += len;
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | if (rem) {
|
---|
1262 | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
|
---|
1263 | cctx->kmo.param.k);
|
---|
1264 |
|
---|
1265 | while (rem--) {
|
---|
1266 | out[n] = in[n] ^ cctx->kmo.param.cv[n];
|
---|
1267 | ++n;
|
---|
1268 | }
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | cctx->res = n;
|
---|
1272 | return 1;
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
|
---|
1276 | (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1277 | S390X_CAPBIT(S390X_AES_128)))
|
---|
1278 | # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
|
---|
1279 | (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1280 | S390X_CAPBIT(S390X_AES_192)))
|
---|
1281 | # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
|
---|
1282 | (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1283 | S390X_CAPBIT(S390X_AES_256)))
|
---|
1284 |
|
---|
1285 | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1286 | const unsigned char *key,
|
---|
1287 | const unsigned char *ivec, int enc)
|
---|
1288 | {
|
---|
1289 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1290 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
|
---|
1291 | const int keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1292 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
|
---|
1293 |
|
---|
1294 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1295 | cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
|
---|
1296 | if (!enc)
|
---|
1297 | cctx->fc |= S390X_DECRYPT;
|
---|
1298 |
|
---|
1299 | cctx->res = 0;
|
---|
1300 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1301 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1302 | return 1;
|
---|
1303 | }
|
---|
1304 |
|
---|
1305 | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1306 | const unsigned char *in, size_t len)
|
---|
1307 | {
|
---|
1308 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1309 | const int keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1310 | const int enc = EVP_CIPHER_CTX_encrypting(ctx);
|
---|
1311 | int n = cctx->res;
|
---|
1312 | int rem;
|
---|
1313 | unsigned char tmp;
|
---|
1314 |
|
---|
1315 | while (n && len) {
|
---|
1316 | tmp = *in;
|
---|
1317 | *out = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1318 | cctx->kmf.param.cv[n] = enc ? *out : tmp;
|
---|
1319 | n = (n + 1) & 0xf;
|
---|
1320 | --len;
|
---|
1321 | ++in;
|
---|
1322 | ++out;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | rem = len & 0xf;
|
---|
1326 |
|
---|
1327 | len &= ~(size_t)0xf;
|
---|
1328 | if (len) {
|
---|
1329 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1330 |
|
---|
1331 | out += len;
|
---|
1332 | in += len;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | if (rem) {
|
---|
1336 | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
|
---|
1337 | S390X_AES_FC(keylen), cctx->kmf.param.k);
|
---|
1338 |
|
---|
1339 | while (rem--) {
|
---|
1340 | tmp = in[n];
|
---|
1341 | out[n] = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1342 | cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
|
---|
1343 | ++n;
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | cctx->res = n;
|
---|
1348 | return 1;
|
---|
1349 | }
|
---|
1350 |
|
---|
1351 | # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1352 | S390X_CAPBIT(S390X_AES_128))
|
---|
1353 | # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1354 | S390X_CAPBIT(S390X_AES_192))
|
---|
1355 | # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
|
---|
1356 | S390X_CAPBIT(S390X_AES_256))
|
---|
1357 |
|
---|
1358 | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1359 | const unsigned char *key,
|
---|
1360 | const unsigned char *ivec, int enc)
|
---|
1361 | {
|
---|
1362 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1363 | const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
|
---|
1364 | const int keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1365 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
|
---|
1366 |
|
---|
1367 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1368 | cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
|
---|
1369 | if (!enc)
|
---|
1370 | cctx->fc |= S390X_DECRYPT;
|
---|
1371 |
|
---|
1372 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1373 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1374 | return 1;
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1378 | const unsigned char *in, size_t len)
|
---|
1379 | {
|
---|
1380 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1381 |
|
---|
1382 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1383 | return 1;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | # define S390X_aes_128_cfb1_CAPABLE 0
|
---|
1387 | # define S390X_aes_192_cfb1_CAPABLE 0
|
---|
1388 | # define S390X_aes_256_cfb1_CAPABLE 0
|
---|
1389 |
|
---|
1390 | # define s390x_aes_cfb1_init_key aes_init_key
|
---|
1391 |
|
---|
1392 | # define s390x_aes_cfb1_cipher aes_cfb1_cipher
|
---|
1393 | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1394 | const unsigned char *in, size_t len);
|
---|
1395 |
|
---|
1396 | # define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
|
---|
1397 | # define S390X_aes_192_ctr_CAPABLE 1
|
---|
1398 | # define S390X_aes_256_ctr_CAPABLE 1
|
---|
1399 | # define S390X_AES_CTR_CTX EVP_AES_KEY
|
---|
1400 |
|
---|
1401 | # define s390x_aes_ctr_init_key aes_init_key
|
---|
1402 |
|
---|
1403 | # define s390x_aes_ctr_cipher aes_ctr_cipher
|
---|
1404 | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1405 | const unsigned char *in, size_t len);
|
---|
1406 |
|
---|
1407 | # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
|
---|
1408 | (OPENSSL_s390xcap_P.kma[0] & \
|
---|
1409 | S390X_CAPBIT(S390X_AES_128)))
|
---|
1410 | # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
|
---|
1411 | (OPENSSL_s390xcap_P.kma[0] & \
|
---|
1412 | S390X_CAPBIT(S390X_AES_192)))
|
---|
1413 | # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
|
---|
1414 | (OPENSSL_s390xcap_P.kma[0] & \
|
---|
1415 | S390X_CAPBIT(S390X_AES_256)))
|
---|
1416 |
|
---|
1417 | /* iv + padding length for iv lengths != 12 */
|
---|
1418 | # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
|
---|
1419 |
|
---|
1420 | /*-
|
---|
1421 | * Process additional authenticated data. Returns 0 on success. Code is
|
---|
1422 | * big-endian.
|
---|
1423 | */
|
---|
1424 | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
|
---|
1425 | size_t len)
|
---|
1426 | {
|
---|
1427 | unsigned long long alen;
|
---|
1428 | int n, rem;
|
---|
1429 |
|
---|
1430 | if (ctx->kma.param.tpcl)
|
---|
1431 | return -2;
|
---|
1432 |
|
---|
1433 | alen = ctx->kma.param.taadl + len;
|
---|
1434 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
---|
1435 | return -1;
|
---|
1436 | ctx->kma.param.taadl = alen;
|
---|
1437 |
|
---|
1438 | n = ctx->areslen;
|
---|
1439 | if (n) {
|
---|
1440 | while (n && len) {
|
---|
1441 | ctx->ares[n] = *aad;
|
---|
1442 | n = (n + 1) & 0xf;
|
---|
1443 | ++aad;
|
---|
1444 | --len;
|
---|
1445 | }
|
---|
1446 | /* ctx->ares contains a complete block if offset has wrapped around */
|
---|
1447 | if (!n) {
|
---|
1448 | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1449 | ctx->fc |= S390X_KMA_HS;
|
---|
1450 | }
|
---|
1451 | ctx->areslen = n;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | rem = len & 0xf;
|
---|
1455 |
|
---|
1456 | len &= ~(size_t)0xf;
|
---|
1457 | if (len) {
|
---|
1458 | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1459 | aad += len;
|
---|
1460 | ctx->fc |= S390X_KMA_HS;
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | if (rem) {
|
---|
1464 | ctx->areslen = rem;
|
---|
1465 |
|
---|
1466 | do {
|
---|
1467 | --rem;
|
---|
1468 | ctx->ares[rem] = aad[rem];
|
---|
1469 | } while (rem);
|
---|
1470 | }
|
---|
1471 | return 0;
|
---|
1472 | }
|
---|
1473 |
|
---|
1474 | /*-
|
---|
1475 | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
|
---|
1476 | * success. Code is big-endian.
|
---|
1477 | */
|
---|
1478 | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
|
---|
1479 | unsigned char *out, size_t len)
|
---|
1480 | {
|
---|
1481 | const unsigned char *inptr;
|
---|
1482 | unsigned long long mlen;
|
---|
1483 | union {
|
---|
1484 | unsigned int w[4];
|
---|
1485 | unsigned char b[16];
|
---|
1486 | } buf;
|
---|
1487 | size_t inlen;
|
---|
1488 | int n, rem, i;
|
---|
1489 |
|
---|
1490 | mlen = ctx->kma.param.tpcl + len;
|
---|
1491 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
---|
1492 | return -1;
|
---|
1493 | ctx->kma.param.tpcl = mlen;
|
---|
1494 |
|
---|
1495 | n = ctx->mreslen;
|
---|
1496 | if (n) {
|
---|
1497 | inptr = in;
|
---|
1498 | inlen = len;
|
---|
1499 | while (n && inlen) {
|
---|
1500 | ctx->mres[n] = *inptr;
|
---|
1501 | n = (n + 1) & 0xf;
|
---|
1502 | ++inptr;
|
---|
1503 | --inlen;
|
---|
1504 | }
|
---|
1505 | /* ctx->mres contains a complete block if offset has wrapped around */
|
---|
1506 | if (!n) {
|
---|
1507 | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
|
---|
1508 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1509 | ctx->fc |= S390X_KMA_HS;
|
---|
1510 | ctx->areslen = 0;
|
---|
1511 |
|
---|
1512 | /* previous call already encrypted/decrypted its remainder,
|
---|
1513 | * see comment below */
|
---|
1514 | n = ctx->mreslen;
|
---|
1515 | while (n) {
|
---|
1516 | *out = buf.b[n];
|
---|
1517 | n = (n + 1) & 0xf;
|
---|
1518 | ++out;
|
---|
1519 | ++in;
|
---|
1520 | --len;
|
---|
1521 | }
|
---|
1522 | ctx->mreslen = 0;
|
---|
1523 | }
|
---|
1524 | }
|
---|
1525 |
|
---|
1526 | rem = len & 0xf;
|
---|
1527 |
|
---|
1528 | len &= ~(size_t)0xf;
|
---|
1529 | if (len) {
|
---|
1530 | s390x_kma(ctx->ares, ctx->areslen, in, len, out,
|
---|
1531 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1532 | in += len;
|
---|
1533 | out += len;
|
---|
1534 | ctx->fc |= S390X_KMA_HS;
|
---|
1535 | ctx->areslen = 0;
|
---|
1536 | }
|
---|
1537 |
|
---|
1538 | /*-
|
---|
1539 | * If there is a remainder, it has to be saved such that it can be
|
---|
1540 | * processed by kma later. However, we also have to do the for-now
|
---|
1541 | * unauthenticated encryption/decryption part here and now...
|
---|
1542 | */
|
---|
1543 | if (rem) {
|
---|
1544 | if (!ctx->mreslen) {
|
---|
1545 | buf.w[0] = ctx->kma.param.j0.w[0];
|
---|
1546 | buf.w[1] = ctx->kma.param.j0.w[1];
|
---|
1547 | buf.w[2] = ctx->kma.param.j0.w[2];
|
---|
1548 | buf.w[3] = ctx->kma.param.cv.w + 1;
|
---|
1549 | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | n = ctx->mreslen;
|
---|
1553 | for (i = 0; i < rem; i++) {
|
---|
1554 | ctx->mres[n + i] = in[i];
|
---|
1555 | out[i] = in[i] ^ ctx->kres[n + i];
|
---|
1556 | }
|
---|
1557 |
|
---|
1558 | ctx->mreslen += rem;
|
---|
1559 | }
|
---|
1560 | return 0;
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | /*-
|
---|
1564 | * Initialize context structure. Code is big-endian.
|
---|
1565 | */
|
---|
1566 | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
|
---|
1567 | const unsigned char *iv)
|
---|
1568 | {
|
---|
1569 | ctx->kma.param.t.g[0] = 0;
|
---|
1570 | ctx->kma.param.t.g[1] = 0;
|
---|
1571 | ctx->kma.param.tpcl = 0;
|
---|
1572 | ctx->kma.param.taadl = 0;
|
---|
1573 | ctx->mreslen = 0;
|
---|
1574 | ctx->areslen = 0;
|
---|
1575 | ctx->kreslen = 0;
|
---|
1576 |
|
---|
1577 | if (ctx->ivlen == 12) {
|
---|
1578 | memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
|
---|
1579 | ctx->kma.param.j0.w[3] = 1;
|
---|
1580 | ctx->kma.param.cv.w = 1;
|
---|
1581 | } else {
|
---|
1582 | /* ctx->iv has the right size and is already padded. */
|
---|
1583 | memcpy(ctx->iv, iv, ctx->ivlen);
|
---|
1584 | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
|
---|
1585 | ctx->fc, &ctx->kma.param);
|
---|
1586 | ctx->fc |= S390X_KMA_HS;
|
---|
1587 |
|
---|
1588 | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
|
---|
1589 | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
|
---|
1590 | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
|
---|
1591 | ctx->kma.param.t.g[0] = 0;
|
---|
1592 | ctx->kma.param.t.g[1] = 0;
|
---|
1593 | }
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | /*-
|
---|
1597 | * Performs various operations on the context structure depending on control
|
---|
1598 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
1599 | * Code is big-endian.
|
---|
1600 | */
|
---|
1601 | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
1602 | {
|
---|
1603 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1604 | S390X_AES_GCM_CTX *gctx_out;
|
---|
1605 | EVP_CIPHER_CTX *out;
|
---|
1606 | unsigned char *buf, *iv;
|
---|
1607 | int ivlen, enc, len;
|
---|
1608 |
|
---|
1609 | switch (type) {
|
---|
1610 | case EVP_CTRL_INIT:
|
---|
1611 | ivlen = EVP_CIPHER_iv_length(c->cipher);
|
---|
1612 | iv = EVP_CIPHER_CTX_iv_noconst(c);
|
---|
1613 | gctx->key_set = 0;
|
---|
1614 | gctx->iv_set = 0;
|
---|
1615 | gctx->ivlen = ivlen;
|
---|
1616 | gctx->iv = iv;
|
---|
1617 | gctx->taglen = -1;
|
---|
1618 | gctx->iv_gen = 0;
|
---|
1619 | gctx->tls_aad_len = -1;
|
---|
1620 | return 1;
|
---|
1621 |
|
---|
1622 | case EVP_CTRL_GET_IVLEN:
|
---|
1623 | *(int *)ptr = gctx->ivlen;
|
---|
1624 | return 1;
|
---|
1625 |
|
---|
1626 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
1627 | if (arg <= 0)
|
---|
1628 | return 0;
|
---|
1629 |
|
---|
1630 | if (arg != 12) {
|
---|
1631 | iv = EVP_CIPHER_CTX_iv_noconst(c);
|
---|
1632 | len = S390X_gcm_ivpadlen(arg);
|
---|
1633 |
|
---|
1634 | /* Allocate memory for iv if needed. */
|
---|
1635 | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
|
---|
1636 | if (gctx->iv != iv)
|
---|
1637 | OPENSSL_free(gctx->iv);
|
---|
1638 |
|
---|
1639 | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1640 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
|
---|
1641 | return 0;
|
---|
1642 | }
|
---|
1643 | }
|
---|
1644 | /* Add padding. */
|
---|
1645 | memset(gctx->iv + arg, 0, len - arg - 8);
|
---|
1646 | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
|
---|
1647 | }
|
---|
1648 | gctx->ivlen = arg;
|
---|
1649 | return 1;
|
---|
1650 |
|
---|
1651 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
1652 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1653 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
1654 | if (arg <= 0 || arg > 16 || enc)
|
---|
1655 | return 0;
|
---|
1656 |
|
---|
1657 | memcpy(buf, ptr, arg);
|
---|
1658 | gctx->taglen = arg;
|
---|
1659 | return 1;
|
---|
1660 |
|
---|
1661 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
1662 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
1663 | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
|
---|
1664 | return 0;
|
---|
1665 |
|
---|
1666 | memcpy(ptr, gctx->kma.param.t.b, arg);
|
---|
1667 | return 1;
|
---|
1668 |
|
---|
1669 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
1670 | /* Special case: -1 length restores whole iv */
|
---|
1671 | if (arg == -1) {
|
---|
1672 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
1673 | gctx->iv_gen = 1;
|
---|
1674 | return 1;
|
---|
1675 | }
|
---|
1676 | /*
|
---|
1677 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
1678 | * 8.
|
---|
1679 | */
|
---|
1680 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
1681 | return 0;
|
---|
1682 |
|
---|
1683 | if (arg)
|
---|
1684 | memcpy(gctx->iv, ptr, arg);
|
---|
1685 |
|
---|
1686 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
1687 | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
1688 | return 0;
|
---|
1689 |
|
---|
1690 | gctx->iv_gen = 1;
|
---|
1691 | return 1;
|
---|
1692 |
|
---|
1693 | case EVP_CTRL_GCM_IV_GEN:
|
---|
1694 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
1695 | return 0;
|
---|
1696 |
|
---|
1697 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1698 |
|
---|
1699 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
1700 | arg = gctx->ivlen;
|
---|
1701 |
|
---|
1702 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
1703 | /*
|
---|
1704 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
1705 | * to check wrap around or increment more than last 8 bytes.
|
---|
1706 | */
|
---|
1707 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
1708 | gctx->iv_set = 1;
|
---|
1709 | return 1;
|
---|
1710 |
|
---|
1711 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
1712 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
1713 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
|
---|
1714 | return 0;
|
---|
1715 |
|
---|
1716 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
1717 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1718 | gctx->iv_set = 1;
|
---|
1719 | return 1;
|
---|
1720 |
|
---|
1721 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
1722 | /* Save the aad for later use. */
|
---|
1723 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
1724 | return 0;
|
---|
1725 |
|
---|
1726 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1727 | memcpy(buf, ptr, arg);
|
---|
1728 | gctx->tls_aad_len = arg;
|
---|
1729 |
|
---|
1730 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
1731 | /* Correct length for explicit iv. */
|
---|
1732 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
1733 | return 0;
|
---|
1734 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1735 |
|
---|
1736 | /* If decrypting correct for tag too. */
|
---|
1737 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
1738 | if (!enc) {
|
---|
1739 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
1740 | return 0;
|
---|
1741 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
1742 | }
|
---|
1743 | buf[arg - 2] = len >> 8;
|
---|
1744 | buf[arg - 1] = len & 0xff;
|
---|
1745 | /* Extra padding: tag appended to record. */
|
---|
1746 | return EVP_GCM_TLS_TAG_LEN;
|
---|
1747 |
|
---|
1748 | case EVP_CTRL_COPY:
|
---|
1749 | out = ptr;
|
---|
1750 | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
|
---|
1751 | iv = EVP_CIPHER_CTX_iv_noconst(c);
|
---|
1752 |
|
---|
1753 | if (gctx->iv == iv) {
|
---|
1754 | gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
|
---|
1755 | } else {
|
---|
1756 | len = S390X_gcm_ivpadlen(gctx->ivlen);
|
---|
1757 |
|
---|
1758 | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1759 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
|
---|
1760 | return 0;
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 | memcpy(gctx_out->iv, gctx->iv, len);
|
---|
1764 | }
|
---|
1765 | return 1;
|
---|
1766 |
|
---|
1767 | default:
|
---|
1768 | return -1;
|
---|
1769 | }
|
---|
1770 | }
|
---|
1771 |
|
---|
1772 | /*-
|
---|
1773 | * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
|
---|
1774 | */
|
---|
1775 | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1776 | const unsigned char *key,
|
---|
1777 | const unsigned char *iv, int enc)
|
---|
1778 | {
|
---|
1779 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1780 | int keylen;
|
---|
1781 |
|
---|
1782 | if (iv == NULL && key == NULL)
|
---|
1783 | return 1;
|
---|
1784 |
|
---|
1785 | if (key != NULL) {
|
---|
1786 | keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
1787 | memcpy(&gctx->kma.param.k, key, keylen);
|
---|
1788 |
|
---|
1789 | gctx->fc = S390X_AES_FC(keylen);
|
---|
1790 | if (!enc)
|
---|
1791 | gctx->fc |= S390X_DECRYPT;
|
---|
1792 |
|
---|
1793 | if (iv == NULL && gctx->iv_set)
|
---|
1794 | iv = gctx->iv;
|
---|
1795 |
|
---|
1796 | if (iv != NULL) {
|
---|
1797 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1798 | gctx->iv_set = 1;
|
---|
1799 | }
|
---|
1800 | gctx->key_set = 1;
|
---|
1801 | } else {
|
---|
1802 | if (gctx->key_set)
|
---|
1803 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1804 | else
|
---|
1805 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
1806 |
|
---|
1807 | gctx->iv_set = 1;
|
---|
1808 | gctx->iv_gen = 0;
|
---|
1809 | }
|
---|
1810 | return 1;
|
---|
1811 | }
|
---|
1812 |
|
---|
1813 | /*-
|
---|
1814 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
1815 | * if successful. Otherwise -1 is returned. Code is big-endian.
|
---|
1816 | */
|
---|
1817 | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1818 | const unsigned char *in, size_t len)
|
---|
1819 | {
|
---|
1820 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1821 | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1822 | const int enc = EVP_CIPHER_CTX_encrypting(ctx);
|
---|
1823 | int rv = -1;
|
---|
1824 |
|
---|
1825 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
1826 | return -1;
|
---|
1827 |
|
---|
1828 | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
|
---|
1829 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
1830 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
1831 | goto err;
|
---|
1832 |
|
---|
1833 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1834 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1835 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1836 |
|
---|
1837 | gctx->kma.param.taadl = gctx->tls_aad_len << 3;
|
---|
1838 | gctx->kma.param.tpcl = len << 3;
|
---|
1839 | s390x_kma(buf, gctx->tls_aad_len, in, len, out,
|
---|
1840 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1841 |
|
---|
1842 | if (enc) {
|
---|
1843 | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
|
---|
1844 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1845 | } else {
|
---|
1846 | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
|
---|
1847 | EVP_GCM_TLS_TAG_LEN)) {
|
---|
1848 | OPENSSL_cleanse(out, len);
|
---|
1849 | goto err;
|
---|
1850 | }
|
---|
1851 | rv = len;
|
---|
1852 | }
|
---|
1853 | err:
|
---|
1854 | gctx->iv_set = 0;
|
---|
1855 | gctx->tls_aad_len = -1;
|
---|
1856 | return rv;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | /*-
|
---|
1860 | * Called from EVP layer to initialize context, process additional
|
---|
1861 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
1862 | * ciphertext or process a TLS packet, depending on context. Returns bytes
|
---|
1863 | * written on success. Otherwise -1 is returned. Code is big-endian.
|
---|
1864 | */
|
---|
1865 | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1866 | const unsigned char *in, size_t len)
|
---|
1867 | {
|
---|
1868 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1869 | unsigned char *buf, tmp[16];
|
---|
1870 | int enc;
|
---|
1871 |
|
---|
1872 | if (!gctx->key_set)
|
---|
1873 | return -1;
|
---|
1874 |
|
---|
1875 | if (gctx->tls_aad_len >= 0)
|
---|
1876 | return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
1877 |
|
---|
1878 | if (!gctx->iv_set)
|
---|
1879 | return -1;
|
---|
1880 |
|
---|
1881 | if (in != NULL) {
|
---|
1882 | if (out == NULL) {
|
---|
1883 | if (s390x_aes_gcm_aad(gctx, in, len))
|
---|
1884 | return -1;
|
---|
1885 | } else {
|
---|
1886 | if (s390x_aes_gcm(gctx, in, out, len))
|
---|
1887 | return -1;
|
---|
1888 | }
|
---|
1889 | return len;
|
---|
1890 | } else {
|
---|
1891 | gctx->kma.param.taadl <<= 3;
|
---|
1892 | gctx->kma.param.tpcl <<= 3;
|
---|
1893 | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
|
---|
1894 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1895 | /* recall that we already did en-/decrypt gctx->mres
|
---|
1896 | * and returned it to caller... */
|
---|
1897 | OPENSSL_cleanse(tmp, gctx->mreslen);
|
---|
1898 | gctx->iv_set = 0;
|
---|
1899 |
|
---|
1900 | enc = EVP_CIPHER_CTX_encrypting(ctx);
|
---|
1901 | if (enc) {
|
---|
1902 | gctx->taglen = 16;
|
---|
1903 | } else {
|
---|
1904 | if (gctx->taglen < 0)
|
---|
1905 | return -1;
|
---|
1906 |
|
---|
1907 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1908 | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
|
---|
1909 | return -1;
|
---|
1910 | }
|
---|
1911 | return 0;
|
---|
1912 | }
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
1916 | {
|
---|
1917 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1918 | const unsigned char *iv;
|
---|
1919 |
|
---|
1920 | if (gctx == NULL)
|
---|
1921 | return 0;
|
---|
1922 |
|
---|
1923 | iv = EVP_CIPHER_CTX_iv(c);
|
---|
1924 | if (iv != gctx->iv)
|
---|
1925 | OPENSSL_free(gctx->iv);
|
---|
1926 |
|
---|
1927 | OPENSSL_cleanse(gctx, sizeof(*gctx));
|
---|
1928 | return 1;
|
---|
1929 | }
|
---|
1930 |
|
---|
1931 | # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
|
---|
1932 | # define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
|
---|
1933 | # define S390X_aes_256_xts_CAPABLE 1
|
---|
1934 |
|
---|
1935 | # define s390x_aes_xts_init_key aes_xts_init_key
|
---|
1936 | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1937 | const unsigned char *key,
|
---|
1938 | const unsigned char *iv, int enc);
|
---|
1939 | # define s390x_aes_xts_cipher aes_xts_cipher
|
---|
1940 | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1941 | const unsigned char *in, size_t len);
|
---|
1942 | # define s390x_aes_xts_ctrl aes_xts_ctrl
|
---|
1943 | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
1944 | # define s390x_aes_xts_cleanup aes_xts_cleanup
|
---|
1945 |
|
---|
1946 | # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
|
---|
1947 | (OPENSSL_s390xcap_P.kmac[0] & \
|
---|
1948 | S390X_CAPBIT(S390X_AES_128)))
|
---|
1949 | # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
|
---|
1950 | (OPENSSL_s390xcap_P.kmac[0] & \
|
---|
1951 | S390X_CAPBIT(S390X_AES_192)))
|
---|
1952 | # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
|
---|
1953 | (OPENSSL_s390xcap_P.kmac[0] & \
|
---|
1954 | S390X_CAPBIT(S390X_AES_256)))
|
---|
1955 |
|
---|
1956 | # define S390X_CCM_AAD_FLAG 0x40
|
---|
1957 |
|
---|
1958 | /*-
|
---|
1959 | * Set nonce and length fields. Code is big-endian.
|
---|
1960 | */
|
---|
1961 | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
|
---|
1962 | const unsigned char *nonce,
|
---|
1963 | size_t mlen)
|
---|
1964 | {
|
---|
1965 | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
|
---|
1966 | ctx->aes.ccm.nonce.g[1] = mlen;
|
---|
1967 | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
|
---|
1968 | }
|
---|
1969 |
|
---|
1970 | /*-
|
---|
1971 | * Process additional authenticated data. Code is big-endian.
|
---|
1972 | */
|
---|
1973 | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
|
---|
1974 | size_t alen)
|
---|
1975 | {
|
---|
1976 | unsigned char *ptr;
|
---|
1977 | int i, rem;
|
---|
1978 |
|
---|
1979 | if (!alen)
|
---|
1980 | return;
|
---|
1981 |
|
---|
1982 | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
|
---|
1983 |
|
---|
1984 | /* Suppress 'type-punned pointer dereference' warning. */
|
---|
1985 | ptr = ctx->aes.ccm.buf.b;
|
---|
1986 |
|
---|
1987 | if (alen < ((1 << 16) - (1 << 8))) {
|
---|
1988 | *(uint16_t *)ptr = alen;
|
---|
1989 | i = 2;
|
---|
1990 | } else if (sizeof(alen) == 8
|
---|
1991 | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
|
---|
1992 | *(uint16_t *)ptr = 0xffff;
|
---|
1993 | *(uint64_t *)(ptr + 2) = alen;
|
---|
1994 | i = 10;
|
---|
1995 | } else {
|
---|
1996 | *(uint16_t *)ptr = 0xfffe;
|
---|
1997 | *(uint32_t *)(ptr + 2) = alen;
|
---|
1998 | i = 6;
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | while (i < 16 && alen) {
|
---|
2002 | ctx->aes.ccm.buf.b[i] = *aad;
|
---|
2003 | ++aad;
|
---|
2004 | --alen;
|
---|
2005 | ++i;
|
---|
2006 | }
|
---|
2007 | while (i < 16) {
|
---|
2008 | ctx->aes.ccm.buf.b[i] = 0;
|
---|
2009 | ++i;
|
---|
2010 | }
|
---|
2011 |
|
---|
2012 | ctx->aes.ccm.kmac_param.icv.g[0] = 0;
|
---|
2013 | ctx->aes.ccm.kmac_param.icv.g[1] = 0;
|
---|
2014 | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
|
---|
2015 | &ctx->aes.ccm.kmac_param);
|
---|
2016 | ctx->aes.ccm.blocks += 2;
|
---|
2017 |
|
---|
2018 | rem = alen & 0xf;
|
---|
2019 | alen &= ~(size_t)0xf;
|
---|
2020 | if (alen) {
|
---|
2021 | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
2022 | ctx->aes.ccm.blocks += alen >> 4;
|
---|
2023 | aad += alen;
|
---|
2024 | }
|
---|
2025 | if (rem) {
|
---|
2026 | for (i = 0; i < rem; i++)
|
---|
2027 | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
|
---|
2028 |
|
---|
2029 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
2030 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
2031 | ctx->aes.ccm.kmac_param.k);
|
---|
2032 | ctx->aes.ccm.blocks++;
|
---|
2033 | }
|
---|
2034 | }
|
---|
2035 |
|
---|
2036 | /*-
|
---|
2037 | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
|
---|
2038 | * success.
|
---|
2039 | */
|
---|
2040 | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
|
---|
2041 | unsigned char *out, size_t len, int enc)
|
---|
2042 | {
|
---|
2043 | size_t n, rem;
|
---|
2044 | unsigned int i, l, num;
|
---|
2045 | unsigned char flags;
|
---|
2046 |
|
---|
2047 | flags = ctx->aes.ccm.nonce.b[0];
|
---|
2048 | if (!(flags & S390X_CCM_AAD_FLAG)) {
|
---|
2049 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
|
---|
2050 | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
|
---|
2051 | ctx->aes.ccm.blocks++;
|
---|
2052 | }
|
---|
2053 | l = flags & 0x7;
|
---|
2054 | ctx->aes.ccm.nonce.b[0] = l;
|
---|
2055 |
|
---|
2056 | /*-
|
---|
2057 | * Reconstruct length from encoded length field
|
---|
2058 | * and initialize it with counter value.
|
---|
2059 | */
|
---|
2060 | n = 0;
|
---|
2061 | for (i = 15 - l; i < 15; i++) {
|
---|
2062 | n |= ctx->aes.ccm.nonce.b[i];
|
---|
2063 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
2064 | n <<= 8;
|
---|
2065 | }
|
---|
2066 | n |= ctx->aes.ccm.nonce.b[15];
|
---|
2067 | ctx->aes.ccm.nonce.b[15] = 1;
|
---|
2068 |
|
---|
2069 | if (n != len)
|
---|
2070 | return -1; /* length mismatch */
|
---|
2071 |
|
---|
2072 | if (enc) {
|
---|
2073 | /* Two operations per block plus one for tag encryption */
|
---|
2074 | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
|
---|
2075 | if (ctx->aes.ccm.blocks > (1ULL << 61))
|
---|
2076 | return -2; /* too much data */
|
---|
2077 | }
|
---|
2078 |
|
---|
2079 | num = 0;
|
---|
2080 | rem = len & 0xf;
|
---|
2081 | len &= ~(size_t)0xf;
|
---|
2082 |
|
---|
2083 | if (enc) {
|
---|
2084 | /* mac-then-encrypt */
|
---|
2085 | if (len)
|
---|
2086 | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
2087 | if (rem) {
|
---|
2088 | for (i = 0; i < rem; i++)
|
---|
2089 | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
|
---|
2090 |
|
---|
2091 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
2092 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
2093 | ctx->aes.ccm.kmac_param.k);
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
2097 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
2098 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
2099 | } else {
|
---|
2100 | /* decrypt-then-mac */
|
---|
2101 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
2102 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
2103 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
2104 |
|
---|
2105 | if (len)
|
---|
2106 | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
2107 | if (rem) {
|
---|
2108 | for (i = 0; i < rem; i++)
|
---|
2109 | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
|
---|
2110 |
|
---|
2111 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
2112 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
2113 | ctx->aes.ccm.kmac_param.k);
|
---|
2114 | }
|
---|
2115 | }
|
---|
2116 | /* encrypt tag */
|
---|
2117 | for (i = 15 - l; i < 16; i++)
|
---|
2118 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
2119 |
|
---|
2120 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
|
---|
2121 | ctx->aes.ccm.kmac_param.k);
|
---|
2122 | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
|
---|
2123 | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
|
---|
2124 |
|
---|
2125 | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
|
---|
2126 | return 0;
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 | /*-
|
---|
2130 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
2131 | * if successful. Otherwise -1 is returned.
|
---|
2132 | */
|
---|
2133 | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2134 | const unsigned char *in, size_t len)
|
---|
2135 | {
|
---|
2136 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
2137 | unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
2138 | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
2139 | const int enc = EVP_CIPHER_CTX_encrypting(ctx);
|
---|
2140 |
|
---|
2141 | if (out != in
|
---|
2142 | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
|
---|
2143 | return -1;
|
---|
2144 |
|
---|
2145 | if (enc) {
|
---|
2146 | /* Set explicit iv (sequence number). */
|
---|
2147 | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
2151 | /*-
|
---|
2152 | * Get explicit iv (sequence number). We already have fixed iv
|
---|
2153 | * (server/client_write_iv) here.
|
---|
2154 | */
|
---|
2155 | memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
2156 | s390x_aes_ccm_setiv(cctx, ivec, len);
|
---|
2157 |
|
---|
2158 | /* Process aad (sequence number|type|version|length) */
|
---|
2159 | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
|
---|
2160 |
|
---|
2161 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2162 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2163 |
|
---|
2164 | if (enc) {
|
---|
2165 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
2166 | return -1;
|
---|
2167 |
|
---|
2168 | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
2169 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
2170 | } else {
|
---|
2171 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
2172 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
|
---|
2173 | cctx->aes.ccm.m))
|
---|
2174 | return len;
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 | OPENSSL_cleanse(out, len);
|
---|
2178 | return -1;
|
---|
2179 | }
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 | /*-
|
---|
2183 | * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
|
---|
2184 | * returned.
|
---|
2185 | */
|
---|
2186 | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
2187 | const unsigned char *key,
|
---|
2188 | const unsigned char *iv, int enc)
|
---|
2189 | {
|
---|
2190 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
2191 | unsigned char *ivec;
|
---|
2192 | int keylen;
|
---|
2193 |
|
---|
2194 | if (iv == NULL && key == NULL)
|
---|
2195 | return 1;
|
---|
2196 |
|
---|
2197 | if (key != NULL) {
|
---|
2198 | keylen = EVP_CIPHER_CTX_key_length(ctx);
|
---|
2199 | cctx->aes.ccm.fc = S390X_AES_FC(keylen);
|
---|
2200 | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
|
---|
2201 |
|
---|
2202 | /* Store encoded m and l. */
|
---|
2203 | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
|
---|
2204 | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
|
---|
2205 | memset(cctx->aes.ccm.nonce.b + 1, 0,
|
---|
2206 | sizeof(cctx->aes.ccm.nonce.b));
|
---|
2207 | cctx->aes.ccm.blocks = 0;
|
---|
2208 |
|
---|
2209 | cctx->aes.ccm.key_set = 1;
|
---|
2210 | }
|
---|
2211 |
|
---|
2212 | if (iv != NULL) {
|
---|
2213 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
2214 | memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
|
---|
2215 |
|
---|
2216 | cctx->aes.ccm.iv_set = 1;
|
---|
2217 | }
|
---|
2218 |
|
---|
2219 | return 1;
|
---|
2220 | }
|
---|
2221 |
|
---|
2222 | /*-
|
---|
2223 | * Called from EVP layer to initialize context, process additional
|
---|
2224 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
2225 | * plaintext or process a TLS packet, depending on context. Returns bytes
|
---|
2226 | * written on success. Otherwise -1 is returned.
|
---|
2227 | */
|
---|
2228 | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2229 | const unsigned char *in, size_t len)
|
---|
2230 | {
|
---|
2231 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
2232 | const int enc = EVP_CIPHER_CTX_encrypting(ctx);
|
---|
2233 | int rv;
|
---|
2234 | unsigned char *buf, *ivec;
|
---|
2235 |
|
---|
2236 | if (!cctx->aes.ccm.key_set)
|
---|
2237 | return -1;
|
---|
2238 |
|
---|
2239 | if (cctx->aes.ccm.tls_aad_len >= 0)
|
---|
2240 | return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
2241 |
|
---|
2242 | /*-
|
---|
2243 | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
|
---|
2244 | * so integrity must be checked already at Update() i.e., before
|
---|
2245 | * potentially corrupted data is output.
|
---|
2246 | */
|
---|
2247 | if (in == NULL && out != NULL)
|
---|
2248 | return 0;
|
---|
2249 |
|
---|
2250 | if (!cctx->aes.ccm.iv_set)
|
---|
2251 | return -1;
|
---|
2252 |
|
---|
2253 | if (out == NULL) {
|
---|
2254 | /* Update(): Pass message length. */
|
---|
2255 | if (in == NULL) {
|
---|
2256 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
2257 | s390x_aes_ccm_setiv(cctx, ivec, len);
|
---|
2258 |
|
---|
2259 | cctx->aes.ccm.len_set = 1;
|
---|
2260 | return len;
|
---|
2261 | }
|
---|
2262 |
|
---|
2263 | /* Update(): Process aad. */
|
---|
2264 | if (!cctx->aes.ccm.len_set && len)
|
---|
2265 | return -1;
|
---|
2266 |
|
---|
2267 | s390x_aes_ccm_aad(cctx, in, len);
|
---|
2268 | return len;
|
---|
2269 | }
|
---|
2270 |
|
---|
2271 | /* The tag must be set before actually decrypting data */
|
---|
2272 | if (!enc && !cctx->aes.ccm.tag_set)
|
---|
2273 | return -1;
|
---|
2274 |
|
---|
2275 | /* Update(): Process message. */
|
---|
2276 |
|
---|
2277 | if (!cctx->aes.ccm.len_set) {
|
---|
2278 | /*-
|
---|
2279 | * In case message length was not previously set explicitly via
|
---|
2280 | * Update(), set it now.
|
---|
2281 | */
|
---|
2282 | ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
2283 | s390x_aes_ccm_setiv(cctx, ivec, len);
|
---|
2284 |
|
---|
2285 | cctx->aes.ccm.len_set = 1;
|
---|
2286 | }
|
---|
2287 |
|
---|
2288 | if (enc) {
|
---|
2289 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
2290 | return -1;
|
---|
2291 |
|
---|
2292 | cctx->aes.ccm.tag_set = 1;
|
---|
2293 | return len;
|
---|
2294 | } else {
|
---|
2295 | rv = -1;
|
---|
2296 |
|
---|
2297 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
2298 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
2299 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
|
---|
2300 | cctx->aes.ccm.m))
|
---|
2301 | rv = len;
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 | if (rv == -1)
|
---|
2305 | OPENSSL_cleanse(out, len);
|
---|
2306 |
|
---|
2307 | cctx->aes.ccm.iv_set = 0;
|
---|
2308 | cctx->aes.ccm.tag_set = 0;
|
---|
2309 | cctx->aes.ccm.len_set = 0;
|
---|
2310 | return rv;
|
---|
2311 | }
|
---|
2312 | }
|
---|
2313 |
|
---|
2314 | /*-
|
---|
2315 | * Performs various operations on the context structure depending on control
|
---|
2316 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
2317 | * Code is big-endian.
|
---|
2318 | */
|
---|
2319 | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2320 | {
|
---|
2321 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
|
---|
2322 | unsigned char *buf, *iv;
|
---|
2323 | int enc, len;
|
---|
2324 |
|
---|
2325 | switch (type) {
|
---|
2326 | case EVP_CTRL_INIT:
|
---|
2327 | cctx->aes.ccm.key_set = 0;
|
---|
2328 | cctx->aes.ccm.iv_set = 0;
|
---|
2329 | cctx->aes.ccm.l = 8;
|
---|
2330 | cctx->aes.ccm.m = 12;
|
---|
2331 | cctx->aes.ccm.tag_set = 0;
|
---|
2332 | cctx->aes.ccm.len_set = 0;
|
---|
2333 | cctx->aes.ccm.tls_aad_len = -1;
|
---|
2334 | return 1;
|
---|
2335 |
|
---|
2336 | case EVP_CTRL_GET_IVLEN:
|
---|
2337 | *(int *)ptr = 15 - cctx->aes.ccm.l;
|
---|
2338 | return 1;
|
---|
2339 |
|
---|
2340 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2341 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2342 | return 0;
|
---|
2343 |
|
---|
2344 | /* Save the aad for later use. */
|
---|
2345 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2346 | memcpy(buf, ptr, arg);
|
---|
2347 | cctx->aes.ccm.tls_aad_len = arg;
|
---|
2348 |
|
---|
2349 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
2350 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
2351 | return 0;
|
---|
2352 |
|
---|
2353 | /* Correct length for explicit iv. */
|
---|
2354 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2355 |
|
---|
2356 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
2357 | if (!enc) {
|
---|
2358 | if (len < cctx->aes.ccm.m)
|
---|
2359 | return 0;
|
---|
2360 |
|
---|
2361 | /* Correct length for tag. */
|
---|
2362 | len -= cctx->aes.ccm.m;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | buf[arg - 2] = len >> 8;
|
---|
2366 | buf[arg - 1] = len & 0xff;
|
---|
2367 |
|
---|
2368 | /* Extra padding: tag appended to record. */
|
---|
2369 | return cctx->aes.ccm.m;
|
---|
2370 |
|
---|
2371 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
2372 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
2373 | return 0;
|
---|
2374 |
|
---|
2375 | /* Copy to first part of the iv. */
|
---|
2376 | iv = EVP_CIPHER_CTX_iv_noconst(c);
|
---|
2377 | memcpy(iv, ptr, arg);
|
---|
2378 | return 1;
|
---|
2379 |
|
---|
2380 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2381 | arg = 15 - arg;
|
---|
2382 | /* fall-through */
|
---|
2383 |
|
---|
2384 | case EVP_CTRL_CCM_SET_L:
|
---|
2385 | if (arg < 2 || arg > 8)
|
---|
2386 | return 0;
|
---|
2387 |
|
---|
2388 | cctx->aes.ccm.l = arg;
|
---|
2389 | return 1;
|
---|
2390 |
|
---|
2391 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2392 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
2393 | return 0;
|
---|
2394 |
|
---|
2395 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
2396 | if (enc && ptr)
|
---|
2397 | return 0;
|
---|
2398 |
|
---|
2399 | if (ptr) {
|
---|
2400 | cctx->aes.ccm.tag_set = 1;
|
---|
2401 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2402 | memcpy(buf, ptr, arg);
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 | cctx->aes.ccm.m = arg;
|
---|
2406 | return 1;
|
---|
2407 |
|
---|
2408 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2409 | enc = EVP_CIPHER_CTX_encrypting(c);
|
---|
2410 | if (!enc || !cctx->aes.ccm.tag_set)
|
---|
2411 | return 0;
|
---|
2412 |
|
---|
2413 | if(arg < cctx->aes.ccm.m)
|
---|
2414 | return 0;
|
---|
2415 |
|
---|
2416 | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
2417 | cctx->aes.ccm.tag_set = 0;
|
---|
2418 | cctx->aes.ccm.iv_set = 0;
|
---|
2419 | cctx->aes.ccm.len_set = 0;
|
---|
2420 | return 1;
|
---|
2421 |
|
---|
2422 | case EVP_CTRL_COPY:
|
---|
2423 | return 1;
|
---|
2424 |
|
---|
2425 | default:
|
---|
2426 | return -1;
|
---|
2427 | }
|
---|
2428 | }
|
---|
2429 |
|
---|
2430 | # define s390x_aes_ccm_cleanup aes_ccm_cleanup
|
---|
2431 |
|
---|
2432 | # ifndef OPENSSL_NO_OCB
|
---|
2433 | # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
|
---|
2434 | # define S390X_aes_128_ocb_CAPABLE 0
|
---|
2435 | # define S390X_aes_192_ocb_CAPABLE 0
|
---|
2436 | # define S390X_aes_256_ocb_CAPABLE 0
|
---|
2437 |
|
---|
2438 | # define s390x_aes_ocb_init_key aes_ocb_init_key
|
---|
2439 | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2440 | const unsigned char *iv, int enc);
|
---|
2441 | # define s390x_aes_ocb_cipher aes_ocb_cipher
|
---|
2442 | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2443 | const unsigned char *in, size_t len);
|
---|
2444 | # define s390x_aes_ocb_cleanup aes_ocb_cleanup
|
---|
2445 | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
|
---|
2446 | # define s390x_aes_ocb_ctrl aes_ocb_ctrl
|
---|
2447 | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
2448 | # endif
|
---|
2449 |
|
---|
2450 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
|
---|
2451 | MODE,flags) \
|
---|
2452 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2453 | nid##_##keylen##_##nmode,blocksize, \
|
---|
2454 | keylen / 8, \
|
---|
2455 | ivlen, \
|
---|
2456 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2457 | s390x_aes_##mode##_init_key, \
|
---|
2458 | s390x_aes_##mode##_cipher, \
|
---|
2459 | NULL, \
|
---|
2460 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2461 | NULL, \
|
---|
2462 | NULL, \
|
---|
2463 | NULL, \
|
---|
2464 | NULL \
|
---|
2465 | }; \
|
---|
2466 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2467 | nid##_##keylen##_##nmode, \
|
---|
2468 | blocksize, \
|
---|
2469 | keylen / 8, \
|
---|
2470 | ivlen, \
|
---|
2471 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2472 | aes_init_key, \
|
---|
2473 | aes_##mode##_cipher, \
|
---|
2474 | NULL, \
|
---|
2475 | sizeof(EVP_AES_KEY), \
|
---|
2476 | NULL, \
|
---|
2477 | NULL, \
|
---|
2478 | NULL, \
|
---|
2479 | NULL \
|
---|
2480 | }; \
|
---|
2481 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2482 | { \
|
---|
2483 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2484 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
|
---|
2488 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2489 | nid##_##keylen##_##mode, \
|
---|
2490 | blocksize, \
|
---|
2491 | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
|
---|
2492 | ivlen, \
|
---|
2493 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2494 | s390x_aes_##mode##_init_key, \
|
---|
2495 | s390x_aes_##mode##_cipher, \
|
---|
2496 | s390x_aes_##mode##_cleanup, \
|
---|
2497 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2498 | NULL, \
|
---|
2499 | NULL, \
|
---|
2500 | s390x_aes_##mode##_ctrl, \
|
---|
2501 | NULL \
|
---|
2502 | }; \
|
---|
2503 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2504 | nid##_##keylen##_##mode,blocksize, \
|
---|
2505 | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
|
---|
2506 | ivlen, \
|
---|
2507 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2508 | aes_##mode##_init_key, \
|
---|
2509 | aes_##mode##_cipher, \
|
---|
2510 | aes_##mode##_cleanup, \
|
---|
2511 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2512 | NULL, \
|
---|
2513 | NULL, \
|
---|
2514 | aes_##mode##_ctrl, \
|
---|
2515 | NULL \
|
---|
2516 | }; \
|
---|
2517 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2518 | { \
|
---|
2519 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2520 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2521 | }
|
---|
2522 |
|
---|
2523 | #else
|
---|
2524 |
|
---|
2525 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
2526 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2527 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
2528 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2529 | aes_init_key, \
|
---|
2530 | aes_##mode##_cipher, \
|
---|
2531 | NULL, \
|
---|
2532 | sizeof(EVP_AES_KEY), \
|
---|
2533 | NULL,NULL,NULL,NULL }; \
|
---|
2534 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2535 | { return &aes_##keylen##_##mode; }
|
---|
2536 |
|
---|
2537 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
2538 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2539 | nid##_##keylen##_##mode,blocksize, \
|
---|
2540 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
|
---|
2541 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2542 | aes_##mode##_init_key, \
|
---|
2543 | aes_##mode##_cipher, \
|
---|
2544 | aes_##mode##_cleanup, \
|
---|
2545 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2546 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
2547 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2548 | { return &aes_##keylen##_##mode; }
|
---|
2549 |
|
---|
2550 | #endif
|
---|
2551 |
|
---|
2552 | #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
|
---|
2553 | # include "arm_arch.h"
|
---|
2554 | # if __ARM_MAX_ARCH__>=7
|
---|
2555 | # if defined(BSAES_ASM)
|
---|
2556 | # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
|
---|
2557 | # endif
|
---|
2558 | # if defined(VPAES_ASM)
|
---|
2559 | # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
|
---|
2560 | # endif
|
---|
2561 | # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
|
---|
2562 | # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
|
---|
2563 | # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
|
---|
2564 | # define HWAES_encrypt aes_v8_encrypt
|
---|
2565 | # define HWAES_decrypt aes_v8_decrypt
|
---|
2566 | # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
|
---|
2567 | # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
|
---|
2568 | # endif
|
---|
2569 | #endif
|
---|
2570 |
|
---|
2571 | #if defined(HWAES_CAPABLE)
|
---|
2572 | int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
|
---|
2573 | AES_KEY *key);
|
---|
2574 | int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
|
---|
2575 | AES_KEY *key);
|
---|
2576 | void HWAES_encrypt(const unsigned char *in, unsigned char *out,
|
---|
2577 | const AES_KEY *key);
|
---|
2578 | void HWAES_decrypt(const unsigned char *in, unsigned char *out,
|
---|
2579 | const AES_KEY *key);
|
---|
2580 | void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
---|
2581 | size_t length, const AES_KEY *key,
|
---|
2582 | unsigned char *ivec, const int enc);
|
---|
2583 | void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
|
---|
2584 | size_t len, const AES_KEY *key,
|
---|
2585 | const unsigned char ivec[16]);
|
---|
2586 | void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
|
---|
2587 | size_t len, const AES_KEY *key1,
|
---|
2588 | const AES_KEY *key2, const unsigned char iv[16]);
|
---|
2589 | void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
|
---|
2590 | size_t len, const AES_KEY *key1,
|
---|
2591 | const AES_KEY *key2, const unsigned char iv[16]);
|
---|
2592 | #endif
|
---|
2593 |
|
---|
2594 | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
|
---|
2595 | BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2596 | BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2597 | BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2598 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2599 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
|
---|
2600 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
|
---|
2601 | BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
|
---|
2602 |
|
---|
2603 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2604 | const unsigned char *iv, int enc)
|
---|
2605 | {
|
---|
2606 | int ret, mode;
|
---|
2607 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2608 |
|
---|
2609 | mode = EVP_CIPHER_CTX_mode(ctx);
|
---|
2610 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
2611 | && !enc) {
|
---|
2612 | #ifdef HWAES_CAPABLE
|
---|
2613 | if (HWAES_CAPABLE) {
|
---|
2614 | ret = HWAES_set_decrypt_key(key,
|
---|
2615 | EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2616 | &dat->ks.ks);
|
---|
2617 | dat->block = (block128_f) HWAES_decrypt;
|
---|
2618 | dat->stream.cbc = NULL;
|
---|
2619 | # ifdef HWAES_cbc_encrypt
|
---|
2620 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2621 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2622 | # endif
|
---|
2623 | } else
|
---|
2624 | #endif
|
---|
2625 | #ifdef BSAES_CAPABLE
|
---|
2626 | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
|
---|
2627 | ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2628 | &dat->ks.ks);
|
---|
2629 | dat->block = (block128_f) AES_decrypt;
|
---|
2630 | dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
|
---|
2631 | } else
|
---|
2632 | #endif
|
---|
2633 | #ifdef VPAES_CAPABLE
|
---|
2634 | if (VPAES_CAPABLE) {
|
---|
2635 | ret = vpaes_set_decrypt_key(key,
|
---|
2636 | EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2637 | &dat->ks.ks);
|
---|
2638 | dat->block = (block128_f) vpaes_decrypt;
|
---|
2639 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2640 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2641 | } else
|
---|
2642 | #endif
|
---|
2643 | {
|
---|
2644 | ret = AES_set_decrypt_key(key,
|
---|
2645 | EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2646 | &dat->ks.ks);
|
---|
2647 | dat->block = (block128_f) AES_decrypt;
|
---|
2648 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2649 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2650 | }
|
---|
2651 | } else
|
---|
2652 | #ifdef HWAES_CAPABLE
|
---|
2653 | if (HWAES_CAPABLE) {
|
---|
2654 | ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2655 | &dat->ks.ks);
|
---|
2656 | dat->block = (block128_f) HWAES_encrypt;
|
---|
2657 | dat->stream.cbc = NULL;
|
---|
2658 | # ifdef HWAES_cbc_encrypt
|
---|
2659 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2660 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2661 | else
|
---|
2662 | # endif
|
---|
2663 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
2664 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2665 | dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
2666 | else
|
---|
2667 | # endif
|
---|
2668 | (void)0; /* terminate potentially open 'else' */
|
---|
2669 | } else
|
---|
2670 | #endif
|
---|
2671 | #ifdef BSAES_CAPABLE
|
---|
2672 | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
|
---|
2673 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2674 | &dat->ks.ks);
|
---|
2675 | dat->block = (block128_f) AES_encrypt;
|
---|
2676 | dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
|
---|
2677 | } else
|
---|
2678 | #endif
|
---|
2679 | #ifdef VPAES_CAPABLE
|
---|
2680 | if (VPAES_CAPABLE) {
|
---|
2681 | ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2682 | &dat->ks.ks);
|
---|
2683 | dat->block = (block128_f) vpaes_encrypt;
|
---|
2684 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2685 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2686 | } else
|
---|
2687 | #endif
|
---|
2688 | {
|
---|
2689 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
2690 | &dat->ks.ks);
|
---|
2691 | dat->block = (block128_f) AES_encrypt;
|
---|
2692 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2693 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2694 | #ifdef AES_CTR_ASM
|
---|
2695 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2696 | dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
2697 | #endif
|
---|
2698 | }
|
---|
2699 |
|
---|
2700 | if (ret < 0) {
|
---|
2701 | EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
2702 | return 0;
|
---|
2703 | }
|
---|
2704 |
|
---|
2705 | return 1;
|
---|
2706 | }
|
---|
2707 |
|
---|
2708 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2709 | const unsigned char *in, size_t len)
|
---|
2710 | {
|
---|
2711 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2712 |
|
---|
2713 | if (dat->stream.cbc)
|
---|
2714 | (*dat->stream.cbc) (in, out, len, &dat->ks,
|
---|
2715 | EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
2716 | EVP_CIPHER_CTX_encrypting(ctx));
|
---|
2717 | else if (EVP_CIPHER_CTX_encrypting(ctx))
|
---|
2718 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
|
---|
2719 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
|
---|
2720 | else
|
---|
2721 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
|
---|
2722 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
|
---|
2723 |
|
---|
2724 | return 1;
|
---|
2725 | }
|
---|
2726 |
|
---|
2727 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2728 | const unsigned char *in, size_t len)
|
---|
2729 | {
|
---|
2730 | size_t bl = EVP_CIPHER_CTX_block_size(ctx);
|
---|
2731 | size_t i;
|
---|
2732 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2733 |
|
---|
2734 | if (len < bl)
|
---|
2735 | return 1;
|
---|
2736 |
|
---|
2737 | for (i = 0, len -= bl; i <= len; i += bl)
|
---|
2738 | (*dat->block) (in + i, out + i, &dat->ks);
|
---|
2739 |
|
---|
2740 | return 1;
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2744 | const unsigned char *in, size_t len)
|
---|
2745 | {
|
---|
2746 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2747 |
|
---|
2748 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2749 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
|
---|
2750 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
|
---|
2751 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2752 | return 1;
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2756 | const unsigned char *in, size_t len)
|
---|
2757 | {
|
---|
2758 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2759 |
|
---|
2760 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2761 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
|
---|
2762 | EVP_CIPHER_CTX_iv_noconst(ctx), &num,
|
---|
2763 | EVP_CIPHER_CTX_encrypting(ctx), dat->block);
|
---|
2764 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2765 | return 1;
|
---|
2766 | }
|
---|
2767 |
|
---|
2768 | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2769 | const unsigned char *in, size_t len)
|
---|
2770 | {
|
---|
2771 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2772 |
|
---|
2773 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2774 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
|
---|
2775 | EVP_CIPHER_CTX_iv_noconst(ctx), &num,
|
---|
2776 | EVP_CIPHER_CTX_encrypting(ctx), dat->block);
|
---|
2777 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2778 | return 1;
|
---|
2779 | }
|
---|
2780 |
|
---|
2781 | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2782 | const unsigned char *in, size_t len)
|
---|
2783 | {
|
---|
2784 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2785 |
|
---|
2786 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
|
---|
2787 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2788 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
|
---|
2789 | EVP_CIPHER_CTX_iv_noconst(ctx), &num,
|
---|
2790 | EVP_CIPHER_CTX_encrypting(ctx), dat->block);
|
---|
2791 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2792 | return 1;
|
---|
2793 | }
|
---|
2794 |
|
---|
2795 | while (len >= MAXBITCHUNK) {
|
---|
2796 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2797 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
|
---|
2798 | EVP_CIPHER_CTX_iv_noconst(ctx), &num,
|
---|
2799 | EVP_CIPHER_CTX_encrypting(ctx), dat->block);
|
---|
2800 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2801 | len -= MAXBITCHUNK;
|
---|
2802 | out += MAXBITCHUNK;
|
---|
2803 | in += MAXBITCHUNK;
|
---|
2804 | }
|
---|
2805 | if (len) {
|
---|
2806 | int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2807 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
|
---|
2808 | EVP_CIPHER_CTX_iv_noconst(ctx), &num,
|
---|
2809 | EVP_CIPHER_CTX_encrypting(ctx), dat->block);
|
---|
2810 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2811 | }
|
---|
2812 |
|
---|
2813 | return 1;
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2817 | const unsigned char *in, size_t len)
|
---|
2818 | {
|
---|
2819 | unsigned int num = EVP_CIPHER_CTX_num(ctx);
|
---|
2820 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2821 |
|
---|
2822 | if (dat->stream.ctr)
|
---|
2823 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
|
---|
2824 | EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
2825 | EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
2826 | &num, dat->stream.ctr);
|
---|
2827 | else
|
---|
2828 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
|
---|
2829 | EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
2830 | EVP_CIPHER_CTX_buf_noconst(ctx), &num,
|
---|
2831 | dat->block);
|
---|
2832 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2833 | return 1;
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
|
---|
2837 | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
|
---|
2838 | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
|
---|
2839 |
|
---|
2840 | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
2841 | {
|
---|
2842 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2843 | if (gctx == NULL)
|
---|
2844 | return 0;
|
---|
2845 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
---|
2846 | if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
|
---|
2847 | OPENSSL_free(gctx->iv);
|
---|
2848 | return 1;
|
---|
2849 | }
|
---|
2850 |
|
---|
2851 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2852 | {
|
---|
2853 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2854 | switch (type) {
|
---|
2855 | case EVP_CTRL_INIT:
|
---|
2856 | gctx->key_set = 0;
|
---|
2857 | gctx->iv_set = 0;
|
---|
2858 | gctx->ivlen = EVP_CIPHER_iv_length(c->cipher);
|
---|
2859 | gctx->iv = c->iv;
|
---|
2860 | gctx->taglen = -1;
|
---|
2861 | gctx->iv_gen = 0;
|
---|
2862 | gctx->tls_aad_len = -1;
|
---|
2863 | return 1;
|
---|
2864 |
|
---|
2865 | case EVP_CTRL_GET_IVLEN:
|
---|
2866 | *(int *)ptr = gctx->ivlen;
|
---|
2867 | return 1;
|
---|
2868 |
|
---|
2869 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2870 | if (arg <= 0)
|
---|
2871 | return 0;
|
---|
2872 | /* Allocate memory for IV if needed */
|
---|
2873 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
|
---|
2874 | if (gctx->iv != c->iv)
|
---|
2875 | OPENSSL_free(gctx->iv);
|
---|
2876 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
|
---|
2877 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
|
---|
2878 | return 0;
|
---|
2879 | }
|
---|
2880 | }
|
---|
2881 | gctx->ivlen = arg;
|
---|
2882 | return 1;
|
---|
2883 |
|
---|
2884 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2885 | if (arg <= 0 || arg > 16 || c->encrypt)
|
---|
2886 | return 0;
|
---|
2887 | memcpy(c->buf, ptr, arg);
|
---|
2888 | gctx->taglen = arg;
|
---|
2889 | return 1;
|
---|
2890 |
|
---|
2891 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2892 | if (arg <= 0 || arg > 16 || !c->encrypt
|
---|
2893 | || gctx->taglen < 0)
|
---|
2894 | return 0;
|
---|
2895 | memcpy(ptr, c->buf, arg);
|
---|
2896 | return 1;
|
---|
2897 |
|
---|
2898 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
2899 | /* Special case: -1 length restores whole IV */
|
---|
2900 | if (arg == -1) {
|
---|
2901 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
2902 | gctx->iv_gen = 1;
|
---|
2903 | return 1;
|
---|
2904 | }
|
---|
2905 | /*
|
---|
2906 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
2907 | * 8.
|
---|
2908 | */
|
---|
2909 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
2910 | return 0;
|
---|
2911 | if (arg)
|
---|
2912 | memcpy(gctx->iv, ptr, arg);
|
---|
2913 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
2914 | return 0;
|
---|
2915 | gctx->iv_gen = 1;
|
---|
2916 | return 1;
|
---|
2917 |
|
---|
2918 | case EVP_CTRL_GCM_IV_GEN:
|
---|
2919 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
2920 | return 0;
|
---|
2921 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2922 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
2923 | arg = gctx->ivlen;
|
---|
2924 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
2925 | /*
|
---|
2926 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
2927 | * to check wrap around or increment more than last 8 bytes.
|
---|
2928 | */
|
---|
2929 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
2930 | gctx->iv_set = 1;
|
---|
2931 | return 1;
|
---|
2932 |
|
---|
2933 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
2934 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
|
---|
2935 | return 0;
|
---|
2936 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
2937 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2938 | gctx->iv_set = 1;
|
---|
2939 | return 1;
|
---|
2940 |
|
---|
2941 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2942 | /* Save the AAD for later use */
|
---|
2943 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2944 | return 0;
|
---|
2945 | memcpy(c->buf, ptr, arg);
|
---|
2946 | gctx->tls_aad_len = arg;
|
---|
2947 | {
|
---|
2948 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
|
---|
2949 | /* Correct length for explicit IV */
|
---|
2950 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
2951 | return 0;
|
---|
2952 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2953 | /* If decrypting correct for tag too */
|
---|
2954 | if (!c->encrypt) {
|
---|
2955 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
2956 | return 0;
|
---|
2957 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
2958 | }
|
---|
2959 | c->buf[arg - 2] = len >> 8;
|
---|
2960 | c->buf[arg - 1] = len & 0xff;
|
---|
2961 | }
|
---|
2962 | /* Extra padding: tag appended to record */
|
---|
2963 | return EVP_GCM_TLS_TAG_LEN;
|
---|
2964 |
|
---|
2965 | case EVP_CTRL_COPY:
|
---|
2966 | {
|
---|
2967 | EVP_CIPHER_CTX *out = ptr;
|
---|
2968 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
|
---|
2969 | if (gctx->gcm.key) {
|
---|
2970 | if (gctx->gcm.key != &gctx->ks)
|
---|
2971 | return 0;
|
---|
2972 | gctx_out->gcm.key = &gctx_out->ks;
|
---|
2973 | }
|
---|
2974 | if (gctx->iv == c->iv)
|
---|
2975 | gctx_out->iv = out->iv;
|
---|
2976 | else {
|
---|
2977 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
|
---|
2978 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
|
---|
2979 | return 0;
|
---|
2980 | }
|
---|
2981 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
---|
2982 | }
|
---|
2983 | return 1;
|
---|
2984 | }
|
---|
2985 |
|
---|
2986 | default:
|
---|
2987 | return -1;
|
---|
2988 |
|
---|
2989 | }
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2993 | const unsigned char *iv, int enc)
|
---|
2994 | {
|
---|
2995 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2996 | if (!iv && !key)
|
---|
2997 | return 1;
|
---|
2998 | if (key) {
|
---|
2999 | do {
|
---|
3000 | #ifdef HWAES_CAPABLE
|
---|
3001 | if (HWAES_CAPABLE) {
|
---|
3002 | HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
3003 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
3004 | (block128_f) HWAES_encrypt);
|
---|
3005 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
3006 | gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
3007 | # else
|
---|
3008 | gctx->ctr = NULL;
|
---|
3009 | # endif
|
---|
3010 | break;
|
---|
3011 | } else
|
---|
3012 | #endif
|
---|
3013 | #ifdef BSAES_CAPABLE
|
---|
3014 | if (BSAES_CAPABLE) {
|
---|
3015 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
3016 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
3017 | (block128_f) AES_encrypt);
|
---|
3018 | gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
|
---|
3019 | break;
|
---|
3020 | } else
|
---|
3021 | #endif
|
---|
3022 | #ifdef VPAES_CAPABLE
|
---|
3023 | if (VPAES_CAPABLE) {
|
---|
3024 | vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
3025 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
3026 | (block128_f) vpaes_encrypt);
|
---|
3027 | gctx->ctr = NULL;
|
---|
3028 | break;
|
---|
3029 | } else
|
---|
3030 | #endif
|
---|
3031 | (void)0; /* terminate potentially open 'else' */
|
---|
3032 |
|
---|
3033 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
3034 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
3035 | (block128_f) AES_encrypt);
|
---|
3036 | #ifdef AES_CTR_ASM
|
---|
3037 | gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
3038 | #else
|
---|
3039 | gctx->ctr = NULL;
|
---|
3040 | #endif
|
---|
3041 | } while (0);
|
---|
3042 |
|
---|
3043 | /*
|
---|
3044 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
3045 | */
|
---|
3046 | if (iv == NULL && gctx->iv_set)
|
---|
3047 | iv = gctx->iv;
|
---|
3048 | if (iv) {
|
---|
3049 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
3050 | gctx->iv_set = 1;
|
---|
3051 | }
|
---|
3052 | gctx->key_set = 1;
|
---|
3053 | } else {
|
---|
3054 | /* If key set use IV, otherwise copy */
|
---|
3055 | if (gctx->key_set)
|
---|
3056 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
3057 | else
|
---|
3058 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
3059 | gctx->iv_set = 1;
|
---|
3060 | gctx->iv_gen = 0;
|
---|
3061 | }
|
---|
3062 | return 1;
|
---|
3063 | }
|
---|
3064 |
|
---|
3065 | /*
|
---|
3066 | * Handle TLS GCM packet format. This consists of the last portion of the IV
|
---|
3067 | * followed by the payload and finally the tag. On encrypt generate IV,
|
---|
3068 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
|
---|
3069 | * and verify tag.
|
---|
3070 | */
|
---|
3071 |
|
---|
3072 | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3073 | const unsigned char *in, size_t len)
|
---|
3074 | {
|
---|
3075 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
3076 | int rv = -1;
|
---|
3077 | /* Encrypt/decrypt must be performed in place */
|
---|
3078 | if (out != in
|
---|
3079 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
3080 | return -1;
|
---|
3081 | /*
|
---|
3082 | * Set IV from start of buffer or generate IV and write to start of
|
---|
3083 | * buffer.
|
---|
3084 | */
|
---|
3085 | if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
|
---|
3086 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
3087 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
3088 | goto err;
|
---|
3089 | /* Use saved AAD */
|
---|
3090 | if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
|
---|
3091 | goto err;
|
---|
3092 | /* Fix buffer and length to point to payload */
|
---|
3093 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
3094 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
3095 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
3096 | if (ctx->encrypt) {
|
---|
3097 | /* Encrypt payload */
|
---|
3098 | if (gctx->ctr) {
|
---|
3099 | size_t bulk = 0;
|
---|
3100 | #if defined(AES_GCM_ASM)
|
---|
3101 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
3102 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
3103 | return -1;
|
---|
3104 |
|
---|
3105 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
3106 | gctx->gcm.key,
|
---|
3107 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3108 | gctx->gcm.len.u[1] += bulk;
|
---|
3109 | }
|
---|
3110 | #endif
|
---|
3111 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
3112 | in + bulk,
|
---|
3113 | out + bulk,
|
---|
3114 | len - bulk, gctx->ctr))
|
---|
3115 | goto err;
|
---|
3116 | } else {
|
---|
3117 | size_t bulk = 0;
|
---|
3118 | #if defined(AES_GCM_ASM2)
|
---|
3119 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
3120 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
3121 | return -1;
|
---|
3122 |
|
---|
3123 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
3124 | gctx->gcm.key,
|
---|
3125 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3126 | gctx->gcm.len.u[1] += bulk;
|
---|
3127 | }
|
---|
3128 | #endif
|
---|
3129 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
3130 | in + bulk, out + bulk, len - bulk))
|
---|
3131 | goto err;
|
---|
3132 | }
|
---|
3133 | out += len;
|
---|
3134 | /* Finally write tag */
|
---|
3135 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
|
---|
3136 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
3137 | } else {
|
---|
3138 | /* Decrypt */
|
---|
3139 | if (gctx->ctr) {
|
---|
3140 | size_t bulk = 0;
|
---|
3141 | #if defined(AES_GCM_ASM)
|
---|
3142 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
3143 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
3144 | return -1;
|
---|
3145 |
|
---|
3146 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
3147 | gctx->gcm.key,
|
---|
3148 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3149 | gctx->gcm.len.u[1] += bulk;
|
---|
3150 | }
|
---|
3151 | #endif
|
---|
3152 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
3153 | in + bulk,
|
---|
3154 | out + bulk,
|
---|
3155 | len - bulk, gctx->ctr))
|
---|
3156 | goto err;
|
---|
3157 | } else {
|
---|
3158 | size_t bulk = 0;
|
---|
3159 | #if defined(AES_GCM_ASM2)
|
---|
3160 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
3161 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
3162 | return -1;
|
---|
3163 |
|
---|
3164 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
3165 | gctx->gcm.key,
|
---|
3166 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3167 | gctx->gcm.len.u[1] += bulk;
|
---|
3168 | }
|
---|
3169 | #endif
|
---|
3170 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
3171 | in + bulk, out + bulk, len - bulk))
|
---|
3172 | goto err;
|
---|
3173 | }
|
---|
3174 | /* Retrieve tag */
|
---|
3175 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
|
---|
3176 | /* If tag mismatch wipe buffer */
|
---|
3177 | if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
|
---|
3178 | OPENSSL_cleanse(out, len);
|
---|
3179 | goto err;
|
---|
3180 | }
|
---|
3181 | rv = len;
|
---|
3182 | }
|
---|
3183 |
|
---|
3184 | err:
|
---|
3185 | gctx->iv_set = 0;
|
---|
3186 | gctx->tls_aad_len = -1;
|
---|
3187 | return rv;
|
---|
3188 | }
|
---|
3189 |
|
---|
3190 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3191 | const unsigned char *in, size_t len)
|
---|
3192 | {
|
---|
3193 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
3194 | /* If not set up, return error */
|
---|
3195 | if (!gctx->key_set)
|
---|
3196 | return -1;
|
---|
3197 |
|
---|
3198 | if (gctx->tls_aad_len >= 0)
|
---|
3199 | return aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
3200 |
|
---|
3201 | if (!gctx->iv_set)
|
---|
3202 | return -1;
|
---|
3203 | if (in) {
|
---|
3204 | if (out == NULL) {
|
---|
3205 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
|
---|
3206 | return -1;
|
---|
3207 | } else if (ctx->encrypt) {
|
---|
3208 | if (gctx->ctr) {
|
---|
3209 | size_t bulk = 0;
|
---|
3210 | #if defined(AES_GCM_ASM)
|
---|
3211 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
3212 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3213 |
|
---|
3214 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
3215 | return -1;
|
---|
3216 |
|
---|
3217 | bulk = AES_gcm_encrypt(in + res,
|
---|
3218 | out + res, len - res,
|
---|
3219 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
3220 | gctx->gcm.Xi.u);
|
---|
3221 | gctx->gcm.len.u[1] += bulk;
|
---|
3222 | bulk += res;
|
---|
3223 | }
|
---|
3224 | #endif
|
---|
3225 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
3226 | in + bulk,
|
---|
3227 | out + bulk,
|
---|
3228 | len - bulk, gctx->ctr))
|
---|
3229 | return -1;
|
---|
3230 | } else {
|
---|
3231 | size_t bulk = 0;
|
---|
3232 | #if defined(AES_GCM_ASM2)
|
---|
3233 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
3234 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3235 |
|
---|
3236 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
3237 | return -1;
|
---|
3238 |
|
---|
3239 | bulk = AES_gcm_encrypt(in + res,
|
---|
3240 | out + res, len - res,
|
---|
3241 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
3242 | gctx->gcm.Xi.u);
|
---|
3243 | gctx->gcm.len.u[1] += bulk;
|
---|
3244 | bulk += res;
|
---|
3245 | }
|
---|
3246 | #endif
|
---|
3247 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
3248 | in + bulk, out + bulk, len - bulk))
|
---|
3249 | return -1;
|
---|
3250 | }
|
---|
3251 | } else {
|
---|
3252 | if (gctx->ctr) {
|
---|
3253 | size_t bulk = 0;
|
---|
3254 | #if defined(AES_GCM_ASM)
|
---|
3255 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
3256 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3257 |
|
---|
3258 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3259 | return -1;
|
---|
3260 |
|
---|
3261 | bulk = AES_gcm_decrypt(in + res,
|
---|
3262 | out + res, len - res,
|
---|
3263 | gctx->gcm.key,
|
---|
3264 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3265 | gctx->gcm.len.u[1] += bulk;
|
---|
3266 | bulk += res;
|
---|
3267 | }
|
---|
3268 | #endif
|
---|
3269 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
3270 | in + bulk,
|
---|
3271 | out + bulk,
|
---|
3272 | len - bulk, gctx->ctr))
|
---|
3273 | return -1;
|
---|
3274 | } else {
|
---|
3275 | size_t bulk = 0;
|
---|
3276 | #if defined(AES_GCM_ASM2)
|
---|
3277 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
3278 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3279 |
|
---|
3280 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3281 | return -1;
|
---|
3282 |
|
---|
3283 | bulk = AES_gcm_decrypt(in + res,
|
---|
3284 | out + res, len - res,
|
---|
3285 | gctx->gcm.key,
|
---|
3286 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3287 | gctx->gcm.len.u[1] += bulk;
|
---|
3288 | bulk += res;
|
---|
3289 | }
|
---|
3290 | #endif
|
---|
3291 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
3292 | in + bulk, out + bulk, len - bulk))
|
---|
3293 | return -1;
|
---|
3294 | }
|
---|
3295 | }
|
---|
3296 | return len;
|
---|
3297 | } else {
|
---|
3298 | if (!ctx->encrypt) {
|
---|
3299 | if (gctx->taglen < 0)
|
---|
3300 | return -1;
|
---|
3301 | if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
|
---|
3302 | return -1;
|
---|
3303 | gctx->iv_set = 0;
|
---|
3304 | return 0;
|
---|
3305 | }
|
---|
3306 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
---|
3307 | gctx->taglen = 16;
|
---|
3308 | /* Don't reuse the IV */
|
---|
3309 | gctx->iv_set = 0;
|
---|
3310 | return 0;
|
---|
3311 | }
|
---|
3312 |
|
---|
3313 | }
|
---|
3314 |
|
---|
3315 | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
|
---|
3316 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3317 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3318 | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
|
---|
3319 |
|
---|
3320 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
|
---|
3321 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3322 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
|
---|
3323 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3324 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
|
---|
3325 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3326 |
|
---|
3327 | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3328 | {
|
---|
3329 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
|
---|
3330 |
|
---|
3331 | if (type == EVP_CTRL_COPY) {
|
---|
3332 | EVP_CIPHER_CTX *out = ptr;
|
---|
3333 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
|
---|
3334 |
|
---|
3335 | if (xctx->xts.key1) {
|
---|
3336 | if (xctx->xts.key1 != &xctx->ks1)
|
---|
3337 | return 0;
|
---|
3338 | xctx_out->xts.key1 = &xctx_out->ks1;
|
---|
3339 | }
|
---|
3340 | if (xctx->xts.key2) {
|
---|
3341 | if (xctx->xts.key2 != &xctx->ks2)
|
---|
3342 | return 0;
|
---|
3343 | xctx_out->xts.key2 = &xctx_out->ks2;
|
---|
3344 | }
|
---|
3345 | return 1;
|
---|
3346 | } else if (type != EVP_CTRL_INIT)
|
---|
3347 | return -1;
|
---|
3348 | /* key1 and key2 are used as an indicator both key and IV are set */
|
---|
3349 | xctx->xts.key1 = NULL;
|
---|
3350 | xctx->xts.key2 = NULL;
|
---|
3351 | return 1;
|
---|
3352 | }
|
---|
3353 |
|
---|
3354 | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3355 | const unsigned char *iv, int enc)
|
---|
3356 | {
|
---|
3357 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3358 |
|
---|
3359 | if (!iv && !key)
|
---|
3360 | return 1;
|
---|
3361 |
|
---|
3362 | if (key)
|
---|
3363 | do {
|
---|
3364 | /* The key is two half length keys in reality */
|
---|
3365 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
|
---|
3366 |
|
---|
3367 | /*
|
---|
3368 | * Verify that the two keys are different.
|
---|
3369 | *
|
---|
3370 | * This addresses the vulnerability described in Rogaway's
|
---|
3371 | * September 2004 paper:
|
---|
3372 | *
|
---|
3373 | * "Efficient Instantiations of Tweakable Blockciphers and
|
---|
3374 | * Refinements to Modes OCB and PMAC".
|
---|
3375 | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
|
---|
3376 | *
|
---|
3377 | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
|
---|
3378 | * that:
|
---|
3379 | * "The check for Key_1 != Key_2 shall be done at any place
|
---|
3380 | * BEFORE using the keys in the XTS-AES algorithm to process
|
---|
3381 | * data with them."
|
---|
3382 | */
|
---|
3383 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
3384 | EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
3385 | return 0;
|
---|
3386 | }
|
---|
3387 |
|
---|
3388 | #ifdef AES_XTS_ASM
|
---|
3389 | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
|
---|
3390 | #else
|
---|
3391 | xctx->stream = NULL;
|
---|
3392 | #endif
|
---|
3393 | /* key_len is two AES keys */
|
---|
3394 | #ifdef HWAES_CAPABLE
|
---|
3395 | if (HWAES_CAPABLE) {
|
---|
3396 | if (enc) {
|
---|
3397 | HWAES_set_encrypt_key(key,
|
---|
3398 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3399 | &xctx->ks1.ks);
|
---|
3400 | xctx->xts.block1 = (block128_f) HWAES_encrypt;
|
---|
3401 | # ifdef HWAES_xts_encrypt
|
---|
3402 | xctx->stream = HWAES_xts_encrypt;
|
---|
3403 | # endif
|
---|
3404 | } else {
|
---|
3405 | HWAES_set_decrypt_key(key,
|
---|
3406 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3407 | &xctx->ks1.ks);
|
---|
3408 | xctx->xts.block1 = (block128_f) HWAES_decrypt;
|
---|
3409 | # ifdef HWAES_xts_decrypt
|
---|
3410 | xctx->stream = HWAES_xts_decrypt;
|
---|
3411 | #endif
|
---|
3412 | }
|
---|
3413 |
|
---|
3414 | HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
|
---|
3415 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3416 | &xctx->ks2.ks);
|
---|
3417 | xctx->xts.block2 = (block128_f) HWAES_encrypt;
|
---|
3418 |
|
---|
3419 | xctx->xts.key1 = &xctx->ks1;
|
---|
3420 | break;
|
---|
3421 | } else
|
---|
3422 | #endif
|
---|
3423 | #ifdef BSAES_CAPABLE
|
---|
3424 | if (BSAES_CAPABLE)
|
---|
3425 | xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
|
---|
3426 | else
|
---|
3427 | #endif
|
---|
3428 | #ifdef VPAES_CAPABLE
|
---|
3429 | if (VPAES_CAPABLE) {
|
---|
3430 | if (enc) {
|
---|
3431 | vpaes_set_encrypt_key(key,
|
---|
3432 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3433 | &xctx->ks1.ks);
|
---|
3434 | xctx->xts.block1 = (block128_f) vpaes_encrypt;
|
---|
3435 | } else {
|
---|
3436 | vpaes_set_decrypt_key(key,
|
---|
3437 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3438 | &xctx->ks1.ks);
|
---|
3439 | xctx->xts.block1 = (block128_f) vpaes_decrypt;
|
---|
3440 | }
|
---|
3441 |
|
---|
3442 | vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
|
---|
3443 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3444 | &xctx->ks2.ks);
|
---|
3445 | xctx->xts.block2 = (block128_f) vpaes_encrypt;
|
---|
3446 |
|
---|
3447 | xctx->xts.key1 = &xctx->ks1;
|
---|
3448 | break;
|
---|
3449 | } else
|
---|
3450 | #endif
|
---|
3451 | (void)0; /* terminate potentially open 'else' */
|
---|
3452 |
|
---|
3453 | if (enc) {
|
---|
3454 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3455 | &xctx->ks1.ks);
|
---|
3456 | xctx->xts.block1 = (block128_f) AES_encrypt;
|
---|
3457 | } else {
|
---|
3458 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3459 | &xctx->ks1.ks);
|
---|
3460 | xctx->xts.block1 = (block128_f) AES_decrypt;
|
---|
3461 | }
|
---|
3462 |
|
---|
3463 | AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
|
---|
3464 | EVP_CIPHER_CTX_key_length(ctx) * 4,
|
---|
3465 | &xctx->ks2.ks);
|
---|
3466 | xctx->xts.block2 = (block128_f) AES_encrypt;
|
---|
3467 |
|
---|
3468 | xctx->xts.key1 = &xctx->ks1;
|
---|
3469 | } while (0);
|
---|
3470 |
|
---|
3471 | if (iv) {
|
---|
3472 | xctx->xts.key2 = &xctx->ks2;
|
---|
3473 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
|
---|
3474 | }
|
---|
3475 |
|
---|
3476 | return 1;
|
---|
3477 | }
|
---|
3478 |
|
---|
3479 | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3480 | const unsigned char *in, size_t len)
|
---|
3481 | {
|
---|
3482 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3483 | if (!xctx->xts.key1 || !xctx->xts.key2)
|
---|
3484 | return 0;
|
---|
3485 | if (!out || !in || len < AES_BLOCK_SIZE)
|
---|
3486 | return 0;
|
---|
3487 | if (xctx->stream)
|
---|
3488 | (*xctx->stream) (in, out, len,
|
---|
3489 | xctx->xts.key1, xctx->xts.key2,
|
---|
3490 | EVP_CIPHER_CTX_iv_noconst(ctx));
|
---|
3491 | else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
3492 | in, out, len,
|
---|
3493 | EVP_CIPHER_CTX_encrypting(ctx)))
|
---|
3494 | return 0;
|
---|
3495 | return 1;
|
---|
3496 | }
|
---|
3497 |
|
---|
3498 | #define aes_xts_cleanup NULL
|
---|
3499 |
|
---|
3500 | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
|
---|
3501 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3502 | | EVP_CIPH_CUSTOM_COPY)
|
---|
3503 |
|
---|
3504 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3505 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3506 |
|
---|
3507 | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3508 | {
|
---|
3509 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
|
---|
3510 | switch (type) {
|
---|
3511 | case EVP_CTRL_INIT:
|
---|
3512 | cctx->key_set = 0;
|
---|
3513 | cctx->iv_set = 0;
|
---|
3514 | cctx->L = 8;
|
---|
3515 | cctx->M = 12;
|
---|
3516 | cctx->tag_set = 0;
|
---|
3517 | cctx->len_set = 0;
|
---|
3518 | cctx->tls_aad_len = -1;
|
---|
3519 | return 1;
|
---|
3520 | case EVP_CTRL_GET_IVLEN:
|
---|
3521 | *(int *)ptr = 15 - cctx->L;
|
---|
3522 | return 1;
|
---|
3523 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
3524 | /* Save the AAD for later use */
|
---|
3525 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
3526 | return 0;
|
---|
3527 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3528 | cctx->tls_aad_len = arg;
|
---|
3529 | {
|
---|
3530 | uint16_t len =
|
---|
3531 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
|
---|
3532 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
|
---|
3533 | /* Correct length for explicit IV */
|
---|
3534 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
3535 | return 0;
|
---|
3536 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3537 | /* If decrypting correct for tag too */
|
---|
3538 | if (!EVP_CIPHER_CTX_encrypting(c)) {
|
---|
3539 | if (len < cctx->M)
|
---|
3540 | return 0;
|
---|
3541 | len -= cctx->M;
|
---|
3542 | }
|
---|
3543 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
|
---|
3544 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
|
---|
3545 | }
|
---|
3546 | /* Extra padding: tag appended to record */
|
---|
3547 | return cctx->M;
|
---|
3548 |
|
---|
3549 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
3550 | /* Sanity check length */
|
---|
3551 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
3552 | return 0;
|
---|
3553 | /* Just copy to first part of IV */
|
---|
3554 | memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
|
---|
3555 | return 1;
|
---|
3556 |
|
---|
3557 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3558 | arg = 15 - arg;
|
---|
3559 | /* fall thru */
|
---|
3560 | case EVP_CTRL_CCM_SET_L:
|
---|
3561 | if (arg < 2 || arg > 8)
|
---|
3562 | return 0;
|
---|
3563 | cctx->L = arg;
|
---|
3564 | return 1;
|
---|
3565 |
|
---|
3566 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3567 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
3568 | return 0;
|
---|
3569 | if (EVP_CIPHER_CTX_encrypting(c) && ptr)
|
---|
3570 | return 0;
|
---|
3571 | if (ptr) {
|
---|
3572 | cctx->tag_set = 1;
|
---|
3573 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3574 | }
|
---|
3575 | cctx->M = arg;
|
---|
3576 | return 1;
|
---|
3577 |
|
---|
3578 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
3579 | if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
|
---|
3580 | return 0;
|
---|
3581 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
|
---|
3582 | return 0;
|
---|
3583 | cctx->tag_set = 0;
|
---|
3584 | cctx->iv_set = 0;
|
---|
3585 | cctx->len_set = 0;
|
---|
3586 | return 1;
|
---|
3587 |
|
---|
3588 | case EVP_CTRL_COPY:
|
---|
3589 | {
|
---|
3590 | EVP_CIPHER_CTX *out = ptr;
|
---|
3591 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
|
---|
3592 | if (cctx->ccm.key) {
|
---|
3593 | if (cctx->ccm.key != &cctx->ks)
|
---|
3594 | return 0;
|
---|
3595 | cctx_out->ccm.key = &cctx_out->ks;
|
---|
3596 | }
|
---|
3597 | return 1;
|
---|
3598 | }
|
---|
3599 |
|
---|
3600 | default:
|
---|
3601 | return -1;
|
---|
3602 |
|
---|
3603 | }
|
---|
3604 | }
|
---|
3605 |
|
---|
3606 | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3607 | const unsigned char *iv, int enc)
|
---|
3608 | {
|
---|
3609 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3610 | if (!iv && !key)
|
---|
3611 | return 1;
|
---|
3612 | if (key)
|
---|
3613 | do {
|
---|
3614 | #ifdef HWAES_CAPABLE
|
---|
3615 | if (HWAES_CAPABLE) {
|
---|
3616 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
3617 | &cctx->ks.ks);
|
---|
3618 |
|
---|
3619 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3620 | &cctx->ks, (block128_f) HWAES_encrypt);
|
---|
3621 | cctx->str = NULL;
|
---|
3622 | cctx->key_set = 1;
|
---|
3623 | break;
|
---|
3624 | } else
|
---|
3625 | #endif
|
---|
3626 | #ifdef VPAES_CAPABLE
|
---|
3627 | if (VPAES_CAPABLE) {
|
---|
3628 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
3629 | &cctx->ks.ks);
|
---|
3630 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3631 | &cctx->ks, (block128_f) vpaes_encrypt);
|
---|
3632 | cctx->str = NULL;
|
---|
3633 | cctx->key_set = 1;
|
---|
3634 | break;
|
---|
3635 | }
|
---|
3636 | #endif
|
---|
3637 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
3638 | &cctx->ks.ks);
|
---|
3639 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3640 | &cctx->ks, (block128_f) AES_encrypt);
|
---|
3641 | cctx->str = NULL;
|
---|
3642 | cctx->key_set = 1;
|
---|
3643 | } while (0);
|
---|
3644 | if (iv) {
|
---|
3645 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
|
---|
3646 | cctx->iv_set = 1;
|
---|
3647 | }
|
---|
3648 | return 1;
|
---|
3649 | }
|
---|
3650 |
|
---|
3651 | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3652 | const unsigned char *in, size_t len)
|
---|
3653 | {
|
---|
3654 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3655 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3656 | /* Encrypt/decrypt must be performed in place */
|
---|
3657 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
|
---|
3658 | return -1;
|
---|
3659 | /* If encrypting set explicit IV from sequence number (start of AAD) */
|
---|
3660 | if (EVP_CIPHER_CTX_encrypting(ctx))
|
---|
3661 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3662 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3663 | /* Get rest of IV from explicit IV */
|
---|
3664 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
|
---|
3665 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3666 | /* Correct length value */
|
---|
3667 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3668 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
|
---|
3669 | len))
|
---|
3670 | return -1;
|
---|
3671 | /* Use saved AAD */
|
---|
3672 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
|
---|
3673 | /* Fix buffer to point to payload */
|
---|
3674 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3675 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3676 | if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
3677 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3678 | cctx->str) :
|
---|
3679 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3680 | return -1;
|
---|
3681 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
|
---|
3682 | return -1;
|
---|
3683 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3684 | } else {
|
---|
3685 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3686 | cctx->str) :
|
---|
3687 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3688 | unsigned char tag[16];
|
---|
3689 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3690 | if (!CRYPTO_memcmp(tag, in + len, cctx->M))
|
---|
3691 | return len;
|
---|
3692 | }
|
---|
3693 | }
|
---|
3694 | OPENSSL_cleanse(out, len);
|
---|
3695 | return -1;
|
---|
3696 | }
|
---|
3697 | }
|
---|
3698 |
|
---|
3699 | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3700 | const unsigned char *in, size_t len)
|
---|
3701 | {
|
---|
3702 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3703 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3704 | /* If not set up, return error */
|
---|
3705 | if (!cctx->key_set)
|
---|
3706 | return -1;
|
---|
3707 |
|
---|
3708 | if (cctx->tls_aad_len >= 0)
|
---|
3709 | return aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
3710 |
|
---|
3711 | /* EVP_*Final() doesn't return any data */
|
---|
3712 | if (in == NULL && out != NULL)
|
---|
3713 | return 0;
|
---|
3714 |
|
---|
3715 | if (!cctx->iv_set)
|
---|
3716 | return -1;
|
---|
3717 |
|
---|
3718 | if (!out) {
|
---|
3719 | if (!in) {
|
---|
3720 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
3721 | 15 - cctx->L, len))
|
---|
3722 | return -1;
|
---|
3723 | cctx->len_set = 1;
|
---|
3724 | return len;
|
---|
3725 | }
|
---|
3726 | /* If have AAD need message length */
|
---|
3727 | if (!cctx->len_set && len)
|
---|
3728 | return -1;
|
---|
3729 | CRYPTO_ccm128_aad(ccm, in, len);
|
---|
3730 | return len;
|
---|
3731 | }
|
---|
3732 |
|
---|
3733 | /* The tag must be set before actually decrypting data */
|
---|
3734 | if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
|
---|
3735 | return -1;
|
---|
3736 |
|
---|
3737 | /* If not set length yet do it */
|
---|
3738 | if (!cctx->len_set) {
|
---|
3739 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
|
---|
3740 | 15 - cctx->L, len))
|
---|
3741 | return -1;
|
---|
3742 | cctx->len_set = 1;
|
---|
3743 | }
|
---|
3744 | if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
3745 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3746 | cctx->str) :
|
---|
3747 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3748 | return -1;
|
---|
3749 | cctx->tag_set = 1;
|
---|
3750 | return len;
|
---|
3751 | } else {
|
---|
3752 | int rv = -1;
|
---|
3753 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3754 | cctx->str) :
|
---|
3755 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3756 | unsigned char tag[16];
|
---|
3757 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3758 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3759 | cctx->M))
|
---|
3760 | rv = len;
|
---|
3761 | }
|
---|
3762 | }
|
---|
3763 | if (rv == -1)
|
---|
3764 | OPENSSL_cleanse(out, len);
|
---|
3765 | cctx->iv_set = 0;
|
---|
3766 | cctx->tag_set = 0;
|
---|
3767 | cctx->len_set = 0;
|
---|
3768 | return rv;
|
---|
3769 | }
|
---|
3770 | }
|
---|
3771 |
|
---|
3772 | #define aes_ccm_cleanup NULL
|
---|
3773 |
|
---|
3774 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
|
---|
3775 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3776 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
|
---|
3777 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3778 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
|
---|
3779 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3780 |
|
---|
3781 | typedef struct {
|
---|
3782 | union {
|
---|
3783 | double align;
|
---|
3784 | AES_KEY ks;
|
---|
3785 | } ks;
|
---|
3786 | /* Indicates if IV has been set */
|
---|
3787 | unsigned char *iv;
|
---|
3788 | } EVP_AES_WRAP_CTX;
|
---|
3789 |
|
---|
3790 | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3791 | const unsigned char *iv, int enc)
|
---|
3792 | {
|
---|
3793 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3794 | if (!iv && !key)
|
---|
3795 | return 1;
|
---|
3796 | if (key) {
|
---|
3797 | if (EVP_CIPHER_CTX_encrypting(ctx))
|
---|
3798 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
3799 | &wctx->ks.ks);
|
---|
3800 | else
|
---|
3801 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
3802 | &wctx->ks.ks);
|
---|
3803 | if (!iv)
|
---|
3804 | wctx->iv = NULL;
|
---|
3805 | }
|
---|
3806 | if (iv) {
|
---|
3807 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
|
---|
3808 | wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
3809 | }
|
---|
3810 | return 1;
|
---|
3811 | }
|
---|
3812 |
|
---|
3813 | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3814 | const unsigned char *in, size_t inlen)
|
---|
3815 | {
|
---|
3816 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3817 | size_t rv;
|
---|
3818 | /* AES wrap with padding has IV length of 4, without padding 8 */
|
---|
3819 | int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
|
---|
3820 | /* No final operation so always return zero length */
|
---|
3821 | if (!in)
|
---|
3822 | return 0;
|
---|
3823 | /* Input length must always be non-zero */
|
---|
3824 | if (!inlen)
|
---|
3825 | return -1;
|
---|
3826 | /* If decrypting need at least 16 bytes and multiple of 8 */
|
---|
3827 | if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
|
---|
3828 | return -1;
|
---|
3829 | /* If not padding input must be multiple of 8 */
|
---|
3830 | if (!pad && inlen & 0x7)
|
---|
3831 | return -1;
|
---|
3832 | if (is_partially_overlapping(out, in, inlen)) {
|
---|
3833 | EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
3834 | return 0;
|
---|
3835 | }
|
---|
3836 | if (!out) {
|
---|
3837 | if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
3838 | /* If padding round up to multiple of 8 */
|
---|
3839 | if (pad)
|
---|
3840 | inlen = (inlen + 7) / 8 * 8;
|
---|
3841 | /* 8 byte prefix */
|
---|
3842 | return inlen + 8;
|
---|
3843 | } else {
|
---|
3844 | /*
|
---|
3845 | * If not padding output will be exactly 8 bytes smaller than
|
---|
3846 | * input. If padding it will be at least 8 bytes smaller but we
|
---|
3847 | * don't know how much.
|
---|
3848 | */
|
---|
3849 | return inlen - 8;
|
---|
3850 | }
|
---|
3851 | }
|
---|
3852 | if (pad) {
|
---|
3853 | if (EVP_CIPHER_CTX_encrypting(ctx))
|
---|
3854 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3855 | out, in, inlen,
|
---|
3856 | (block128_f) AES_encrypt);
|
---|
3857 | else
|
---|
3858 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3859 | out, in, inlen,
|
---|
3860 | (block128_f) AES_decrypt);
|
---|
3861 | } else {
|
---|
3862 | if (EVP_CIPHER_CTX_encrypting(ctx))
|
---|
3863 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
|
---|
3864 | out, in, inlen, (block128_f) AES_encrypt);
|
---|
3865 | else
|
---|
3866 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
|
---|
3867 | out, in, inlen, (block128_f) AES_decrypt);
|
---|
3868 | }
|
---|
3869 | return rv ? (int)rv : -1;
|
---|
3870 | }
|
---|
3871 |
|
---|
3872 | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
|
---|
3873 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3874 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
|
---|
3875 |
|
---|
3876 | static const EVP_CIPHER aes_128_wrap = {
|
---|
3877 | NID_id_aes128_wrap,
|
---|
3878 | 8, 16, 8, WRAP_FLAGS,
|
---|
3879 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3880 | NULL,
|
---|
3881 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3882 | NULL, NULL, NULL, NULL
|
---|
3883 | };
|
---|
3884 |
|
---|
3885 | const EVP_CIPHER *EVP_aes_128_wrap(void)
|
---|
3886 | {
|
---|
3887 | return &aes_128_wrap;
|
---|
3888 | }
|
---|
3889 |
|
---|
3890 | static const EVP_CIPHER aes_192_wrap = {
|
---|
3891 | NID_id_aes192_wrap,
|
---|
3892 | 8, 24, 8, WRAP_FLAGS,
|
---|
3893 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3894 | NULL,
|
---|
3895 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3896 | NULL, NULL, NULL, NULL
|
---|
3897 | };
|
---|
3898 |
|
---|
3899 | const EVP_CIPHER *EVP_aes_192_wrap(void)
|
---|
3900 | {
|
---|
3901 | return &aes_192_wrap;
|
---|
3902 | }
|
---|
3903 |
|
---|
3904 | static const EVP_CIPHER aes_256_wrap = {
|
---|
3905 | NID_id_aes256_wrap,
|
---|
3906 | 8, 32, 8, WRAP_FLAGS,
|
---|
3907 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3908 | NULL,
|
---|
3909 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3910 | NULL, NULL, NULL, NULL
|
---|
3911 | };
|
---|
3912 |
|
---|
3913 | const EVP_CIPHER *EVP_aes_256_wrap(void)
|
---|
3914 | {
|
---|
3915 | return &aes_256_wrap;
|
---|
3916 | }
|
---|
3917 |
|
---|
3918 | static const EVP_CIPHER aes_128_wrap_pad = {
|
---|
3919 | NID_id_aes128_wrap_pad,
|
---|
3920 | 8, 16, 4, WRAP_FLAGS,
|
---|
3921 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3922 | NULL,
|
---|
3923 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3924 | NULL, NULL, NULL, NULL
|
---|
3925 | };
|
---|
3926 |
|
---|
3927 | const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
|
---|
3928 | {
|
---|
3929 | return &aes_128_wrap_pad;
|
---|
3930 | }
|
---|
3931 |
|
---|
3932 | static const EVP_CIPHER aes_192_wrap_pad = {
|
---|
3933 | NID_id_aes192_wrap_pad,
|
---|
3934 | 8, 24, 4, WRAP_FLAGS,
|
---|
3935 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3936 | NULL,
|
---|
3937 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3938 | NULL, NULL, NULL, NULL
|
---|
3939 | };
|
---|
3940 |
|
---|
3941 | const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
|
---|
3942 | {
|
---|
3943 | return &aes_192_wrap_pad;
|
---|
3944 | }
|
---|
3945 |
|
---|
3946 | static const EVP_CIPHER aes_256_wrap_pad = {
|
---|
3947 | NID_id_aes256_wrap_pad,
|
---|
3948 | 8, 32, 4, WRAP_FLAGS,
|
---|
3949 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3950 | NULL,
|
---|
3951 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3952 | NULL, NULL, NULL, NULL
|
---|
3953 | };
|
---|
3954 |
|
---|
3955 | const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
|
---|
3956 | {
|
---|
3957 | return &aes_256_wrap_pad;
|
---|
3958 | }
|
---|
3959 |
|
---|
3960 | #ifndef OPENSSL_NO_OCB
|
---|
3961 | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3962 | {
|
---|
3963 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
3964 | EVP_CIPHER_CTX *newc;
|
---|
3965 | EVP_AES_OCB_CTX *new_octx;
|
---|
3966 |
|
---|
3967 | switch (type) {
|
---|
3968 | case EVP_CTRL_INIT:
|
---|
3969 | octx->key_set = 0;
|
---|
3970 | octx->iv_set = 0;
|
---|
3971 | octx->ivlen = EVP_CIPHER_iv_length(c->cipher);
|
---|
3972 | octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
|
---|
3973 | octx->taglen = 16;
|
---|
3974 | octx->data_buf_len = 0;
|
---|
3975 | octx->aad_buf_len = 0;
|
---|
3976 | return 1;
|
---|
3977 |
|
---|
3978 | case EVP_CTRL_GET_IVLEN:
|
---|
3979 | *(int *)ptr = octx->ivlen;
|
---|
3980 | return 1;
|
---|
3981 |
|
---|
3982 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3983 | /* IV len must be 1 to 15 */
|
---|
3984 | if (arg <= 0 || arg > 15)
|
---|
3985 | return 0;
|
---|
3986 |
|
---|
3987 | octx->ivlen = arg;
|
---|
3988 | return 1;
|
---|
3989 |
|
---|
3990 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3991 | if (!ptr) {
|
---|
3992 | /* Tag len must be 0 to 16 */
|
---|
3993 | if (arg < 0 || arg > 16)
|
---|
3994 | return 0;
|
---|
3995 |
|
---|
3996 | octx->taglen = arg;
|
---|
3997 | return 1;
|
---|
3998 | }
|
---|
3999 | if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
|
---|
4000 | return 0;
|
---|
4001 | memcpy(octx->tag, ptr, arg);
|
---|
4002 | return 1;
|
---|
4003 |
|
---|
4004 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
4005 | if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
|
---|
4006 | return 0;
|
---|
4007 |
|
---|
4008 | memcpy(ptr, octx->tag, arg);
|
---|
4009 | return 1;
|
---|
4010 |
|
---|
4011 | case EVP_CTRL_COPY:
|
---|
4012 | newc = (EVP_CIPHER_CTX *)ptr;
|
---|
4013 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
|
---|
4014 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
|
---|
4015 | &new_octx->ksenc.ks,
|
---|
4016 | &new_octx->ksdec.ks);
|
---|
4017 |
|
---|
4018 | default:
|
---|
4019 | return -1;
|
---|
4020 |
|
---|
4021 | }
|
---|
4022 | }
|
---|
4023 |
|
---|
4024 | # ifdef HWAES_CAPABLE
|
---|
4025 | # ifdef HWAES_ocb_encrypt
|
---|
4026 | void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
|
---|
4027 | size_t blocks, const void *key,
|
---|
4028 | size_t start_block_num,
|
---|
4029 | unsigned char offset_i[16],
|
---|
4030 | const unsigned char L_[][16],
|
---|
4031 | unsigned char checksum[16]);
|
---|
4032 | # else
|
---|
4033 | # define HWAES_ocb_encrypt ((ocb128_f)NULL)
|
---|
4034 | # endif
|
---|
4035 | # ifdef HWAES_ocb_decrypt
|
---|
4036 | void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
|
---|
4037 | size_t blocks, const void *key,
|
---|
4038 | size_t start_block_num,
|
---|
4039 | unsigned char offset_i[16],
|
---|
4040 | const unsigned char L_[][16],
|
---|
4041 | unsigned char checksum[16]);
|
---|
4042 | # else
|
---|
4043 | # define HWAES_ocb_decrypt ((ocb128_f)NULL)
|
---|
4044 | # endif
|
---|
4045 | # endif
|
---|
4046 |
|
---|
4047 | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
4048 | const unsigned char *iv, int enc)
|
---|
4049 | {
|
---|
4050 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
4051 | if (!iv && !key)
|
---|
4052 | return 1;
|
---|
4053 | if (key) {
|
---|
4054 | do {
|
---|
4055 | /*
|
---|
4056 | * We set both the encrypt and decrypt key here because decrypt
|
---|
4057 | * needs both. We could possibly optimise to remove setting the
|
---|
4058 | * decrypt for an encryption operation.
|
---|
4059 | */
|
---|
4060 | # ifdef HWAES_CAPABLE
|
---|
4061 | if (HWAES_CAPABLE) {
|
---|
4062 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4063 | &octx->ksenc.ks);
|
---|
4064 | HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4065 | &octx->ksdec.ks);
|
---|
4066 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
4067 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
4068 | (block128_f) HWAES_encrypt,
|
---|
4069 | (block128_f) HWAES_decrypt,
|
---|
4070 | enc ? HWAES_ocb_encrypt
|
---|
4071 | : HWAES_ocb_decrypt))
|
---|
4072 | return 0;
|
---|
4073 | break;
|
---|
4074 | }
|
---|
4075 | # endif
|
---|
4076 | # ifdef VPAES_CAPABLE
|
---|
4077 | if (VPAES_CAPABLE) {
|
---|
4078 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4079 | &octx->ksenc.ks);
|
---|
4080 | vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4081 | &octx->ksdec.ks);
|
---|
4082 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
4083 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
4084 | (block128_f) vpaes_encrypt,
|
---|
4085 | (block128_f) vpaes_decrypt,
|
---|
4086 | NULL))
|
---|
4087 | return 0;
|
---|
4088 | break;
|
---|
4089 | }
|
---|
4090 | # endif
|
---|
4091 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4092 | &octx->ksenc.ks);
|
---|
4093 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
|
---|
4094 | &octx->ksdec.ks);
|
---|
4095 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
4096 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
4097 | (block128_f) AES_encrypt,
|
---|
4098 | (block128_f) AES_decrypt,
|
---|
4099 | NULL))
|
---|
4100 | return 0;
|
---|
4101 | }
|
---|
4102 | while (0);
|
---|
4103 |
|
---|
4104 | /*
|
---|
4105 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
4106 | */
|
---|
4107 | if (iv == NULL && octx->iv_set)
|
---|
4108 | iv = octx->iv;
|
---|
4109 | if (iv) {
|
---|
4110 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
4111 | != 1)
|
---|
4112 | return 0;
|
---|
4113 | octx->iv_set = 1;
|
---|
4114 | }
|
---|
4115 | octx->key_set = 1;
|
---|
4116 | } else {
|
---|
4117 | /* If key set use IV, otherwise copy */
|
---|
4118 | if (octx->key_set)
|
---|
4119 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
4120 | else
|
---|
4121 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
4122 | octx->iv_set = 1;
|
---|
4123 | }
|
---|
4124 | return 1;
|
---|
4125 | }
|
---|
4126 |
|
---|
4127 | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
4128 | const unsigned char *in, size_t len)
|
---|
4129 | {
|
---|
4130 | unsigned char *buf;
|
---|
4131 | int *buf_len;
|
---|
4132 | int written_len = 0;
|
---|
4133 | size_t trailing_len;
|
---|
4134 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
4135 |
|
---|
4136 | /* If IV or Key not set then return error */
|
---|
4137 | if (!octx->iv_set)
|
---|
4138 | return -1;
|
---|
4139 |
|
---|
4140 | if (!octx->key_set)
|
---|
4141 | return -1;
|
---|
4142 |
|
---|
4143 | if (in != NULL) {
|
---|
4144 | /*
|
---|
4145 | * Need to ensure we are only passing full blocks to low level OCB
|
---|
4146 | * routines. We do it here rather than in EVP_EncryptUpdate/
|
---|
4147 | * EVP_DecryptUpdate because we need to pass full blocks of AAD too
|
---|
4148 | * and those routines don't support that
|
---|
4149 | */
|
---|
4150 |
|
---|
4151 | /* Are we dealing with AAD or normal data here? */
|
---|
4152 | if (out == NULL) {
|
---|
4153 | buf = octx->aad_buf;
|
---|
4154 | buf_len = &(octx->aad_buf_len);
|
---|
4155 | } else {
|
---|
4156 | buf = octx->data_buf;
|
---|
4157 | buf_len = &(octx->data_buf_len);
|
---|
4158 |
|
---|
4159 | if (is_partially_overlapping(out + *buf_len, in, len)) {
|
---|
4160 | EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
4161 | return 0;
|
---|
4162 | }
|
---|
4163 | }
|
---|
4164 |
|
---|
4165 | /*
|
---|
4166 | * If we've got a partially filled buffer from a previous call then
|
---|
4167 | * use that data first
|
---|
4168 | */
|
---|
4169 | if (*buf_len > 0) {
|
---|
4170 | unsigned int remaining;
|
---|
4171 |
|
---|
4172 | remaining = AES_BLOCK_SIZE - (*buf_len);
|
---|
4173 | if (remaining > len) {
|
---|
4174 | memcpy(buf + (*buf_len), in, len);
|
---|
4175 | *(buf_len) += len;
|
---|
4176 | return 0;
|
---|
4177 | }
|
---|
4178 | memcpy(buf + (*buf_len), in, remaining);
|
---|
4179 |
|
---|
4180 | /*
|
---|
4181 | * If we get here we've filled the buffer, so process it
|
---|
4182 | */
|
---|
4183 | len -= remaining;
|
---|
4184 | in += remaining;
|
---|
4185 | if (out == NULL) {
|
---|
4186 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
|
---|
4187 | return -1;
|
---|
4188 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
4189 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
|
---|
4190 | AES_BLOCK_SIZE))
|
---|
4191 | return -1;
|
---|
4192 | } else {
|
---|
4193 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
|
---|
4194 | AES_BLOCK_SIZE))
|
---|
4195 | return -1;
|
---|
4196 | }
|
---|
4197 | written_len = AES_BLOCK_SIZE;
|
---|
4198 | *buf_len = 0;
|
---|
4199 | if (out != NULL)
|
---|
4200 | out += AES_BLOCK_SIZE;
|
---|
4201 | }
|
---|
4202 |
|
---|
4203 | /* Do we have a partial block to handle at the end? */
|
---|
4204 | trailing_len = len % AES_BLOCK_SIZE;
|
---|
4205 |
|
---|
4206 | /*
|
---|
4207 | * If we've got some full blocks to handle, then process these first
|
---|
4208 | */
|
---|
4209 | if (len != trailing_len) {
|
---|
4210 | if (out == NULL) {
|
---|
4211 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
|
---|
4212 | return -1;
|
---|
4213 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
4214 | if (!CRYPTO_ocb128_encrypt
|
---|
4215 | (&octx->ocb, in, out, len - trailing_len))
|
---|
4216 | return -1;
|
---|
4217 | } else {
|
---|
4218 | if (!CRYPTO_ocb128_decrypt
|
---|
4219 | (&octx->ocb, in, out, len - trailing_len))
|
---|
4220 | return -1;
|
---|
4221 | }
|
---|
4222 | written_len += len - trailing_len;
|
---|
4223 | in += len - trailing_len;
|
---|
4224 | }
|
---|
4225 |
|
---|
4226 | /* Handle any trailing partial block */
|
---|
4227 | if (trailing_len > 0) {
|
---|
4228 | memcpy(buf, in, trailing_len);
|
---|
4229 | *buf_len = trailing_len;
|
---|
4230 | }
|
---|
4231 |
|
---|
4232 | return written_len;
|
---|
4233 | } else {
|
---|
4234 | /*
|
---|
4235 | * First of all empty the buffer of any partial block that we might
|
---|
4236 | * have been provided - both for data and AAD
|
---|
4237 | */
|
---|
4238 | if (octx->data_buf_len > 0) {
|
---|
4239 | if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
4240 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
|
---|
4241 | octx->data_buf_len))
|
---|
4242 | return -1;
|
---|
4243 | } else {
|
---|
4244 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
|
---|
4245 | octx->data_buf_len))
|
---|
4246 | return -1;
|
---|
4247 | }
|
---|
4248 | written_len = octx->data_buf_len;
|
---|
4249 | octx->data_buf_len = 0;
|
---|
4250 | }
|
---|
4251 | if (octx->aad_buf_len > 0) {
|
---|
4252 | if (!CRYPTO_ocb128_aad
|
---|
4253 | (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
|
---|
4254 | return -1;
|
---|
4255 | octx->aad_buf_len = 0;
|
---|
4256 | }
|
---|
4257 | /* If decrypting then verify */
|
---|
4258 | if (!EVP_CIPHER_CTX_encrypting(ctx)) {
|
---|
4259 | if (octx->taglen < 0)
|
---|
4260 | return -1;
|
---|
4261 | if (CRYPTO_ocb128_finish(&octx->ocb,
|
---|
4262 | octx->tag, octx->taglen) != 0)
|
---|
4263 | return -1;
|
---|
4264 | octx->iv_set = 0;
|
---|
4265 | return written_len;
|
---|
4266 | }
|
---|
4267 | /* If encrypting then just get the tag */
|
---|
4268 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
|
---|
4269 | return -1;
|
---|
4270 | /* Don't reuse the IV */
|
---|
4271 | octx->iv_set = 0;
|
---|
4272 | return written_len;
|
---|
4273 | }
|
---|
4274 | }
|
---|
4275 |
|
---|
4276 | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
|
---|
4277 | {
|
---|
4278 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
4279 | CRYPTO_ocb128_cleanup(&octx->ocb);
|
---|
4280 | return 1;
|
---|
4281 | }
|
---|
4282 |
|
---|
4283 | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
|
---|
4284 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4285 | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
|
---|
4286 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4287 | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
|
---|
4288 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4289 | #endif /* OPENSSL_NO_OCB */
|
---|