1 | /*
|
---|
2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * NB: these functions have been "upgraded", the deprecated versions (which
|
---|
12 | * are compatibility wrappers using these functions) are in rsa_depr.c. -
|
---|
13 | * Geoff
|
---|
14 | */
|
---|
15 |
|
---|
16 | #include <stdio.h>
|
---|
17 | #include <time.h>
|
---|
18 | #include "internal/cryptlib.h"
|
---|
19 | #include <openssl/bn.h>
|
---|
20 | #include "rsa_local.h"
|
---|
21 |
|
---|
22 | static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
---|
23 | BN_GENCB *cb);
|
---|
24 |
|
---|
25 | /*
|
---|
26 | * NB: this wrapper would normally be placed in rsa_lib.c and the static
|
---|
27 | * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
|
---|
28 | * so that we don't introduce a new linker dependency. Eg. any application
|
---|
29 | * that wasn't previously linking object code related to key-generation won't
|
---|
30 | * have to now just because key-generation is part of RSA_METHOD.
|
---|
31 | */
|
---|
32 | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
|
---|
33 | {
|
---|
34 | if (rsa->meth->rsa_keygen != NULL)
|
---|
35 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
---|
36 |
|
---|
37 | return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
|
---|
38 | e_value, cb);
|
---|
39 | }
|
---|
40 |
|
---|
41 | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
|
---|
42 | BIGNUM *e_value, BN_GENCB *cb)
|
---|
43 | {
|
---|
44 | /* multi-prime is only supported with the builtin key generation */
|
---|
45 | if (rsa->meth->rsa_multi_prime_keygen != NULL) {
|
---|
46 | return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
|
---|
47 | e_value, cb);
|
---|
48 | } else if (rsa->meth->rsa_keygen != NULL) {
|
---|
49 | /*
|
---|
50 | * However, if rsa->meth implements only rsa_keygen, then we
|
---|
51 | * have to honour it in 2-prime case and assume that it wouldn't
|
---|
52 | * know what to do with multi-prime key generated by builtin
|
---|
53 | * subroutine...
|
---|
54 | */
|
---|
55 | if (primes == 2)
|
---|
56 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
---|
57 | else
|
---|
58 | return 0;
|
---|
59 | }
|
---|
60 |
|
---|
61 | return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
|
---|
62 | }
|
---|
63 |
|
---|
64 | static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
---|
65 | BN_GENCB *cb)
|
---|
66 | {
|
---|
67 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
|
---|
68 | int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
|
---|
69 | int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
|
---|
70 | RSA_PRIME_INFO *pinfo = NULL;
|
---|
71 | STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
|
---|
72 | BN_CTX *ctx = NULL;
|
---|
73 | BN_ULONG bitst = 0;
|
---|
74 | unsigned long error = 0;
|
---|
75 |
|
---|
76 | if (bits < RSA_MIN_MODULUS_BITS) {
|
---|
77 | ok = 0; /* we set our own err */
|
---|
78 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
|
---|
79 | goto err;
|
---|
80 | }
|
---|
81 |
|
---|
82 | if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
|
---|
83 | ok = 0; /* we set our own err */
|
---|
84 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
|
---|
85 | goto err;
|
---|
86 | }
|
---|
87 |
|
---|
88 | ctx = BN_CTX_new();
|
---|
89 | if (ctx == NULL)
|
---|
90 | goto err;
|
---|
91 | BN_CTX_start(ctx);
|
---|
92 | r0 = BN_CTX_get(ctx);
|
---|
93 | r1 = BN_CTX_get(ctx);
|
---|
94 | r2 = BN_CTX_get(ctx);
|
---|
95 | if (r2 == NULL)
|
---|
96 | goto err;
|
---|
97 |
|
---|
98 | /* divide bits into 'primes' pieces evenly */
|
---|
99 | quo = bits / primes;
|
---|
100 | rmd = bits % primes;
|
---|
101 |
|
---|
102 | for (i = 0; i < primes; i++)
|
---|
103 | bitsr[i] = (i < rmd) ? quo + 1 : quo;
|
---|
104 |
|
---|
105 | /* We need the RSA components non-NULL */
|
---|
106 | if (!rsa->n && ((rsa->n = BN_new()) == NULL))
|
---|
107 | goto err;
|
---|
108 | if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
|
---|
109 | goto err;
|
---|
110 | if (!rsa->e && ((rsa->e = BN_new()) == NULL))
|
---|
111 | goto err;
|
---|
112 | if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
|
---|
113 | goto err;
|
---|
114 | if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
|
---|
115 | goto err;
|
---|
116 | if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
|
---|
117 | goto err;
|
---|
118 | if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
|
---|
119 | goto err;
|
---|
120 | if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
|
---|
121 | goto err;
|
---|
122 |
|
---|
123 | /* initialize multi-prime components */
|
---|
124 | if (primes > RSA_DEFAULT_PRIME_NUM) {
|
---|
125 | rsa->version = RSA_ASN1_VERSION_MULTI;
|
---|
126 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
|
---|
127 | if (prime_infos == NULL)
|
---|
128 | goto err;
|
---|
129 | if (rsa->prime_infos != NULL) {
|
---|
130 | /* could this happen? */
|
---|
131 | sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
|
---|
132 | }
|
---|
133 | rsa->prime_infos = prime_infos;
|
---|
134 |
|
---|
135 | /* prime_info from 2 to |primes| -1 */
|
---|
136 | for (i = 2; i < primes; i++) {
|
---|
137 | pinfo = rsa_multip_info_new();
|
---|
138 | if (pinfo == NULL)
|
---|
139 | goto err;
|
---|
140 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | if (BN_copy(rsa->e, e_value) == NULL)
|
---|
145 | goto err;
|
---|
146 |
|
---|
147 | /* generate p, q and other primes (if any) */
|
---|
148 | for (i = 0; i < primes; i++) {
|
---|
149 | adj = 0;
|
---|
150 | retries = 0;
|
---|
151 |
|
---|
152 | if (i == 0) {
|
---|
153 | prime = rsa->p;
|
---|
154 | } else if (i == 1) {
|
---|
155 | prime = rsa->q;
|
---|
156 | } else {
|
---|
157 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
158 | prime = pinfo->r;
|
---|
159 | }
|
---|
160 | BN_set_flags(prime, BN_FLG_CONSTTIME);
|
---|
161 |
|
---|
162 | for (;;) {
|
---|
163 | redo:
|
---|
164 | if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
|
---|
165 | goto err;
|
---|
166 | /*
|
---|
167 | * prime should not be equal to p, q, r_3...
|
---|
168 | * (those primes prior to this one)
|
---|
169 | */
|
---|
170 | {
|
---|
171 | int j;
|
---|
172 |
|
---|
173 | for (j = 0; j < i; j++) {
|
---|
174 | BIGNUM *prev_prime;
|
---|
175 |
|
---|
176 | if (j == 0)
|
---|
177 | prev_prime = rsa->p;
|
---|
178 | else if (j == 1)
|
---|
179 | prev_prime = rsa->q;
|
---|
180 | else
|
---|
181 | prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
|
---|
182 | j - 2)->r;
|
---|
183 |
|
---|
184 | if (!BN_cmp(prime, prev_prime)) {
|
---|
185 | goto redo;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|
189 | if (!BN_sub(r2, prime, BN_value_one()))
|
---|
190 | goto err;
|
---|
191 | ERR_set_mark();
|
---|
192 | BN_set_flags(r2, BN_FLG_CONSTTIME);
|
---|
193 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
|
---|
194 | /* GCD == 1 since inverse exists */
|
---|
195 | break;
|
---|
196 | }
|
---|
197 | error = ERR_peek_last_error();
|
---|
198 | if (ERR_GET_LIB(error) == ERR_LIB_BN
|
---|
199 | && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
|
---|
200 | /* GCD != 1 */
|
---|
201 | ERR_pop_to_mark();
|
---|
202 | } else {
|
---|
203 | goto err;
|
---|
204 | }
|
---|
205 | if (!BN_GENCB_call(cb, 2, n++))
|
---|
206 | goto err;
|
---|
207 | }
|
---|
208 |
|
---|
209 | bitse += bitsr[i];
|
---|
210 |
|
---|
211 | /* calculate n immediately to see if it's sufficient */
|
---|
212 | if (i == 1) {
|
---|
213 | /* we get at least 2 primes */
|
---|
214 | if (!BN_mul(r1, rsa->p, rsa->q, ctx))
|
---|
215 | goto err;
|
---|
216 | } else if (i != 0) {
|
---|
217 | /* modulus n = p * q * r_3 * r_4 ... */
|
---|
218 | if (!BN_mul(r1, rsa->n, prime, ctx))
|
---|
219 | goto err;
|
---|
220 | } else {
|
---|
221 | /* i == 0, do nothing */
|
---|
222 | if (!BN_GENCB_call(cb, 3, i))
|
---|
223 | goto err;
|
---|
224 | continue;
|
---|
225 | }
|
---|
226 | /*
|
---|
227 | * if |r1|, product of factors so far, is not as long as expected
|
---|
228 | * (by checking the first 4 bits are less than 0x9 or greater than
|
---|
229 | * 0xF). If so, re-generate the last prime.
|
---|
230 | *
|
---|
231 | * NOTE: This actually can't happen in two-prime case, because of
|
---|
232 | * the way factors are generated.
|
---|
233 | *
|
---|
234 | * Besides, another consideration is, for multi-prime case, even the
|
---|
235 | * length modulus is as long as expected, the modulus could start at
|
---|
236 | * 0x8, which could be utilized to distinguish a multi-prime private
|
---|
237 | * key by using the modulus in a certificate. This is also covered
|
---|
238 | * by checking the length should not be less than 0x9.
|
---|
239 | */
|
---|
240 | if (!BN_rshift(r2, r1, bitse - 4))
|
---|
241 | goto err;
|
---|
242 | bitst = BN_get_word(r2);
|
---|
243 |
|
---|
244 | if (bitst < 0x9 || bitst > 0xF) {
|
---|
245 | /*
|
---|
246 | * For keys with more than 4 primes, we attempt longer factor to
|
---|
247 | * meet length requirement.
|
---|
248 | *
|
---|
249 | * Otherwise, we just re-generate the prime with the same length.
|
---|
250 | *
|
---|
251 | * This strategy has the following goals:
|
---|
252 | *
|
---|
253 | * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
|
---|
254 | * 2. stay the same logic with normal 2-prime key
|
---|
255 | */
|
---|
256 | bitse -= bitsr[i];
|
---|
257 | if (!BN_GENCB_call(cb, 2, n++))
|
---|
258 | goto err;
|
---|
259 | if (primes > 4) {
|
---|
260 | if (bitst < 0x9)
|
---|
261 | adj++;
|
---|
262 | else
|
---|
263 | adj--;
|
---|
264 | } else if (retries == 4) {
|
---|
265 | /*
|
---|
266 | * re-generate all primes from scratch, mainly used
|
---|
267 | * in 4 prime case to avoid long loop. Max retry times
|
---|
268 | * is set to 4.
|
---|
269 | */
|
---|
270 | i = -1;
|
---|
271 | bitse = 0;
|
---|
272 | continue;
|
---|
273 | }
|
---|
274 | retries++;
|
---|
275 | goto redo;
|
---|
276 | }
|
---|
277 | /* save product of primes for further use, for multi-prime only */
|
---|
278 | if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
|
---|
279 | goto err;
|
---|
280 | if (BN_copy(rsa->n, r1) == NULL)
|
---|
281 | goto err;
|
---|
282 | if (!BN_GENCB_call(cb, 3, i))
|
---|
283 | goto err;
|
---|
284 | }
|
---|
285 |
|
---|
286 | if (BN_cmp(rsa->p, rsa->q) < 0) {
|
---|
287 | tmp = rsa->p;
|
---|
288 | rsa->p = rsa->q;
|
---|
289 | rsa->q = tmp;
|
---|
290 | }
|
---|
291 |
|
---|
292 | /* calculate d */
|
---|
293 |
|
---|
294 | /* p - 1 */
|
---|
295 | if (!BN_sub(r1, rsa->p, BN_value_one()))
|
---|
296 | goto err;
|
---|
297 | /* q - 1 */
|
---|
298 | if (!BN_sub(r2, rsa->q, BN_value_one()))
|
---|
299 | goto err;
|
---|
300 | /* (p - 1)(q - 1) */
|
---|
301 | if (!BN_mul(r0, r1, r2, ctx))
|
---|
302 | goto err;
|
---|
303 | /* multi-prime */
|
---|
304 | for (i = 2; i < primes; i++) {
|
---|
305 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
306 | /* save r_i - 1 to pinfo->d temporarily */
|
---|
307 | if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
|
---|
308 | goto err;
|
---|
309 | if (!BN_mul(r0, r0, pinfo->d, ctx))
|
---|
310 | goto err;
|
---|
311 | }
|
---|
312 |
|
---|
313 | {
|
---|
314 | BIGNUM *pr0 = BN_new();
|
---|
315 |
|
---|
316 | if (pr0 == NULL)
|
---|
317 | goto err;
|
---|
318 |
|
---|
319 | BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
|
---|
320 | if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
|
---|
321 | BN_free(pr0);
|
---|
322 | goto err; /* d */
|
---|
323 | }
|
---|
324 | /* We MUST free pr0 before any further use of r0 */
|
---|
325 | BN_free(pr0);
|
---|
326 | }
|
---|
327 |
|
---|
328 | {
|
---|
329 | BIGNUM *d = BN_new();
|
---|
330 |
|
---|
331 | if (d == NULL)
|
---|
332 | goto err;
|
---|
333 |
|
---|
334 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
---|
335 |
|
---|
336 | /* calculate d mod (p-1) and d mod (q - 1) */
|
---|
337 | if (!BN_mod(rsa->dmp1, d, r1, ctx)
|
---|
338 | || !BN_mod(rsa->dmq1, d, r2, ctx)) {
|
---|
339 | BN_free(d);
|
---|
340 | goto err;
|
---|
341 | }
|
---|
342 |
|
---|
343 | /* calculate CRT exponents */
|
---|
344 | for (i = 2; i < primes; i++) {
|
---|
345 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
346 | /* pinfo->d == r_i - 1 */
|
---|
347 | if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
|
---|
348 | BN_free(d);
|
---|
349 | goto err;
|
---|
350 | }
|
---|
351 | }
|
---|
352 |
|
---|
353 | /* We MUST free d before any further use of rsa->d */
|
---|
354 | BN_free(d);
|
---|
355 | }
|
---|
356 |
|
---|
357 | {
|
---|
358 | BIGNUM *p = BN_new();
|
---|
359 |
|
---|
360 | if (p == NULL)
|
---|
361 | goto err;
|
---|
362 | BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
|
---|
363 |
|
---|
364 | /* calculate inverse of q mod p */
|
---|
365 | if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
|
---|
366 | BN_free(p);
|
---|
367 | goto err;
|
---|
368 | }
|
---|
369 |
|
---|
370 | /* calculate CRT coefficient for other primes */
|
---|
371 | for (i = 2; i < primes; i++) {
|
---|
372 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
373 | BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
|
---|
374 | if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
|
---|
375 | BN_free(p);
|
---|
376 | goto err;
|
---|
377 | }
|
---|
378 | }
|
---|
379 |
|
---|
380 | /* We MUST free p before any further use of rsa->p */
|
---|
381 | BN_free(p);
|
---|
382 | }
|
---|
383 |
|
---|
384 | ok = 1;
|
---|
385 | err:
|
---|
386 | if (ok == -1) {
|
---|
387 | RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
|
---|
388 | ok = 0;
|
---|
389 | }
|
---|
390 | BN_CTX_end(ctx);
|
---|
391 | BN_CTX_free(ctx);
|
---|
392 | return ok;
|
---|
393 | }
|
---|