1 | /*
|
---|
2 | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdlib.h>
|
---|
11 | #include <string.h>
|
---|
12 | #include <openssl/crypto.h>
|
---|
13 |
|
---|
14 | #include "crypto/poly1305.h"
|
---|
15 | #include "poly1305_local.h"
|
---|
16 |
|
---|
17 | size_t Poly1305_ctx_size(void)
|
---|
18 | {
|
---|
19 | return sizeof(struct poly1305_context);
|
---|
20 | }
|
---|
21 |
|
---|
22 | /* pick 32-bit unsigned integer in little endian order */
|
---|
23 | static unsigned int U8TOU32(const unsigned char *p)
|
---|
24 | {
|
---|
25 | return (((unsigned int)(p[0] & 0xff)) |
|
---|
26 | ((unsigned int)(p[1] & 0xff) << 8) |
|
---|
27 | ((unsigned int)(p[2] & 0xff) << 16) |
|
---|
28 | ((unsigned int)(p[3] & 0xff) << 24));
|
---|
29 | }
|
---|
30 |
|
---|
31 | /*
|
---|
32 | * Implementations can be classified by amount of significant bits in
|
---|
33 | * words making up the multi-precision value, or in other words radix
|
---|
34 | * or base of numerical representation, e.g. base 2^64, base 2^32,
|
---|
35 | * base 2^26. Complementary characteristic is how wide is the result of
|
---|
36 | * multiplication of pair of digits, e.g. it would take 128 bits to
|
---|
37 | * accommodate multiplication result in base 2^64 case. These are used
|
---|
38 | * interchangeably. To describe implementation that is. But interface
|
---|
39 | * is designed to isolate this so that low-level primitives implemented
|
---|
40 | * in assembly can be self-contained/self-coherent.
|
---|
41 | */
|
---|
42 | #ifndef POLY1305_ASM
|
---|
43 | /*
|
---|
44 | * Even though there is __int128 reference implementation targeting
|
---|
45 | * 64-bit platforms provided below, it's not obvious that it's optimal
|
---|
46 | * choice for every one of them. Depending on instruction set overall
|
---|
47 | * amount of instructions can be comparable to one in __int64
|
---|
48 | * implementation. Amount of multiplication instructions would be lower,
|
---|
49 | * but not necessarily overall. And in out-of-order execution context,
|
---|
50 | * it is the latter that can be crucial...
|
---|
51 | *
|
---|
52 | * On related note. Poly1305 author, D. J. Bernstein, discusses and
|
---|
53 | * provides floating-point implementations of the algorithm in question.
|
---|
54 | * It made a lot of sense by the time of introduction, because most
|
---|
55 | * then-modern processors didn't have pipelined integer multiplier.
|
---|
56 | * [Not to mention that some had non-constant timing for integer
|
---|
57 | * multiplications.] Floating-point instructions on the other hand could
|
---|
58 | * be issued every cycle, which allowed to achieve better performance.
|
---|
59 | * Nowadays, with SIMD and/or out-or-order execution, shared or
|
---|
60 | * even emulated FPU, it's more complicated, and floating-point
|
---|
61 | * implementation is not necessarily optimal choice in every situation,
|
---|
62 | * rather contrary...
|
---|
63 | *
|
---|
64 | * <[email protected]>
|
---|
65 | */
|
---|
66 |
|
---|
67 | typedef unsigned int u32;
|
---|
68 |
|
---|
69 | /*
|
---|
70 | * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
|
---|
71 | * of |inp| no longer than |len|. Behaviour for |len| not divisible by
|
---|
72 | * block size is unspecified in general case, even though in reference
|
---|
73 | * implementation the trailing chunk is simply ignored. Per algorithm
|
---|
74 | * specification, every input block, complete or last partial, is to be
|
---|
75 | * padded with a bit past most significant byte. The latter kind is then
|
---|
76 | * padded with zeros till block size. This last partial block padding
|
---|
77 | * is caller(*)'s responsibility, and because of this the last partial
|
---|
78 | * block is always processed with separate call with |len| set to
|
---|
79 | * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
|
---|
80 | * should be set to 1 to perform implicit padding with 128th bit.
|
---|
81 | * poly1305_blocks does not actually check for this constraint though,
|
---|
82 | * it's caller(*)'s responsibility to comply.
|
---|
83 | *
|
---|
84 | * (*) In the context "caller" is not application code, but higher
|
---|
85 | * level Poly1305_* from this very module, so that quirks are
|
---|
86 | * handled locally.
|
---|
87 | */
|
---|
88 | static void
|
---|
89 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
|
---|
90 |
|
---|
91 | /*
|
---|
92 | * Type-agnostic "rip-off" from constant_time.h
|
---|
93 | */
|
---|
94 | # define CONSTANT_TIME_CARRY(a,b) ( \
|
---|
95 | (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
|
---|
96 | )
|
---|
97 |
|
---|
98 | # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
|
---|
99 | (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)
|
---|
100 |
|
---|
101 | typedef unsigned long u64;
|
---|
102 | typedef __uint128_t u128;
|
---|
103 |
|
---|
104 | typedef struct {
|
---|
105 | u64 h[3];
|
---|
106 | u64 r[2];
|
---|
107 | } poly1305_internal;
|
---|
108 |
|
---|
109 | /* pick 32-bit unsigned integer in little endian order */
|
---|
110 | static u64 U8TOU64(const unsigned char *p)
|
---|
111 | {
|
---|
112 | return (((u64)(p[0] & 0xff)) |
|
---|
113 | ((u64)(p[1] & 0xff) << 8) |
|
---|
114 | ((u64)(p[2] & 0xff) << 16) |
|
---|
115 | ((u64)(p[3] & 0xff) << 24) |
|
---|
116 | ((u64)(p[4] & 0xff) << 32) |
|
---|
117 | ((u64)(p[5] & 0xff) << 40) |
|
---|
118 | ((u64)(p[6] & 0xff) << 48) |
|
---|
119 | ((u64)(p[7] & 0xff) << 56));
|
---|
120 | }
|
---|
121 |
|
---|
122 | /* store a 32-bit unsigned integer in little endian */
|
---|
123 | static void U64TO8(unsigned char *p, u64 v)
|
---|
124 | {
|
---|
125 | p[0] = (unsigned char)((v) & 0xff);
|
---|
126 | p[1] = (unsigned char)((v >> 8) & 0xff);
|
---|
127 | p[2] = (unsigned char)((v >> 16) & 0xff);
|
---|
128 | p[3] = (unsigned char)((v >> 24) & 0xff);
|
---|
129 | p[4] = (unsigned char)((v >> 32) & 0xff);
|
---|
130 | p[5] = (unsigned char)((v >> 40) & 0xff);
|
---|
131 | p[6] = (unsigned char)((v >> 48) & 0xff);
|
---|
132 | p[7] = (unsigned char)((v >> 56) & 0xff);
|
---|
133 | }
|
---|
134 |
|
---|
135 | static void poly1305_init(void *ctx, const unsigned char key[16])
|
---|
136 | {
|
---|
137 | poly1305_internal *st = (poly1305_internal *) ctx;
|
---|
138 |
|
---|
139 | /* h = 0 */
|
---|
140 | st->h[0] = 0;
|
---|
141 | st->h[1] = 0;
|
---|
142 | st->h[2] = 0;
|
---|
143 |
|
---|
144 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
|
---|
145 | st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
|
---|
146 | st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
|
---|
147 | }
|
---|
148 |
|
---|
149 | static void
|
---|
150 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
|
---|
151 | {
|
---|
152 | poly1305_internal *st = (poly1305_internal *)ctx;
|
---|
153 | u64 r0, r1;
|
---|
154 | u64 s1;
|
---|
155 | u64 h0, h1, h2, c;
|
---|
156 | u128 d0, d1;
|
---|
157 |
|
---|
158 | r0 = st->r[0];
|
---|
159 | r1 = st->r[1];
|
---|
160 |
|
---|
161 | s1 = r1 + (r1 >> 2);
|
---|
162 |
|
---|
163 | h0 = st->h[0];
|
---|
164 | h1 = st->h[1];
|
---|
165 | h2 = st->h[2];
|
---|
166 |
|
---|
167 | while (len >= POLY1305_BLOCK_SIZE) {
|
---|
168 | /* h += m[i] */
|
---|
169 | h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
|
---|
170 | h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
|
---|
171 | /*
|
---|
172 | * padbit can be zero only when original len was
|
---|
173 | * POLY1306_BLOCK_SIZE, but we don't check
|
---|
174 | */
|
---|
175 | h2 += (u64)(d1 >> 64) + padbit;
|
---|
176 |
|
---|
177 | /* h *= r "%" p, where "%" stands for "partial remainder" */
|
---|
178 | d0 = ((u128)h0 * r0) +
|
---|
179 | ((u128)h1 * s1);
|
---|
180 | d1 = ((u128)h0 * r1) +
|
---|
181 | ((u128)h1 * r0) +
|
---|
182 | (h2 * s1);
|
---|
183 | h2 = (h2 * r0);
|
---|
184 |
|
---|
185 | /* last reduction step: */
|
---|
186 | /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
|
---|
187 | h0 = (u64)d0;
|
---|
188 | h1 = (u64)(d1 += d0 >> 64);
|
---|
189 | h2 += (u64)(d1 >> 64);
|
---|
190 | /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
|
---|
191 | c = (h2 >> 2) + (h2 & ~3UL);
|
---|
192 | h2 &= 3;
|
---|
193 | h0 += c;
|
---|
194 | h1 += (c = CONSTANT_TIME_CARRY(h0,c));
|
---|
195 | h2 += CONSTANT_TIME_CARRY(h1,c);
|
---|
196 | /*
|
---|
197 | * Occasional overflows to 3rd bit of h2 are taken care of
|
---|
198 | * "naturally". If after this point we end up at the top of
|
---|
199 | * this loop, then the overflow bit will be accounted for
|
---|
200 | * in next iteration. If we end up in poly1305_emit, then
|
---|
201 | * comparison to modulus below will still count as "carry
|
---|
202 | * into 131st bit", so that properly reduced value will be
|
---|
203 | * picked in conditional move.
|
---|
204 | */
|
---|
205 |
|
---|
206 | inp += POLY1305_BLOCK_SIZE;
|
---|
207 | len -= POLY1305_BLOCK_SIZE;
|
---|
208 | }
|
---|
209 |
|
---|
210 | st->h[0] = h0;
|
---|
211 | st->h[1] = h1;
|
---|
212 | st->h[2] = h2;
|
---|
213 | }
|
---|
214 |
|
---|
215 | static void poly1305_emit(void *ctx, unsigned char mac[16],
|
---|
216 | const u32 nonce[4])
|
---|
217 | {
|
---|
218 | poly1305_internal *st = (poly1305_internal *) ctx;
|
---|
219 | u64 h0, h1, h2;
|
---|
220 | u64 g0, g1, g2;
|
---|
221 | u128 t;
|
---|
222 | u64 mask;
|
---|
223 |
|
---|
224 | h0 = st->h[0];
|
---|
225 | h1 = st->h[1];
|
---|
226 | h2 = st->h[2];
|
---|
227 |
|
---|
228 | /* compare to modulus by computing h + -p */
|
---|
229 | g0 = (u64)(t = (u128)h0 + 5);
|
---|
230 | g1 = (u64)(t = (u128)h1 + (t >> 64));
|
---|
231 | g2 = h2 + (u64)(t >> 64);
|
---|
232 |
|
---|
233 | /* if there was carry into 131st bit, h1:h0 = g1:g0 */
|
---|
234 | mask = 0 - (g2 >> 2);
|
---|
235 | g0 &= mask;
|
---|
236 | g1 &= mask;
|
---|
237 | mask = ~mask;
|
---|
238 | h0 = (h0 & mask) | g0;
|
---|
239 | h1 = (h1 & mask) | g1;
|
---|
240 |
|
---|
241 | /* mac = (h + nonce) % (2^128) */
|
---|
242 | h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
|
---|
243 | h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
|
---|
244 |
|
---|
245 | U64TO8(mac + 0, h0);
|
---|
246 | U64TO8(mac + 8, h1);
|
---|
247 | }
|
---|
248 |
|
---|
249 | # else
|
---|
250 |
|
---|
251 | # if defined(_WIN32) && !defined(__MINGW32__)
|
---|
252 | typedef unsigned __int64 u64;
|
---|
253 | # elif defined(__arch64__)
|
---|
254 | typedef unsigned long u64;
|
---|
255 | # else
|
---|
256 | typedef unsigned long long u64;
|
---|
257 | # endif
|
---|
258 |
|
---|
259 | typedef struct {
|
---|
260 | u32 h[5];
|
---|
261 | u32 r[4];
|
---|
262 | } poly1305_internal;
|
---|
263 |
|
---|
264 | /* store a 32-bit unsigned integer in little endian */
|
---|
265 | static void U32TO8(unsigned char *p, unsigned int v)
|
---|
266 | {
|
---|
267 | p[0] = (unsigned char)((v) & 0xff);
|
---|
268 | p[1] = (unsigned char)((v >> 8) & 0xff);
|
---|
269 | p[2] = (unsigned char)((v >> 16) & 0xff);
|
---|
270 | p[3] = (unsigned char)((v >> 24) & 0xff);
|
---|
271 | }
|
---|
272 |
|
---|
273 | static void poly1305_init(void *ctx, const unsigned char key[16])
|
---|
274 | {
|
---|
275 | poly1305_internal *st = (poly1305_internal *) ctx;
|
---|
276 |
|
---|
277 | /* h = 0 */
|
---|
278 | st->h[0] = 0;
|
---|
279 | st->h[1] = 0;
|
---|
280 | st->h[2] = 0;
|
---|
281 | st->h[3] = 0;
|
---|
282 | st->h[4] = 0;
|
---|
283 |
|
---|
284 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
|
---|
285 | st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
|
---|
286 | st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
|
---|
287 | st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
|
---|
288 | st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
|
---|
289 | }
|
---|
290 |
|
---|
291 | static void
|
---|
292 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
|
---|
293 | {
|
---|
294 | poly1305_internal *st = (poly1305_internal *)ctx;
|
---|
295 | u32 r0, r1, r2, r3;
|
---|
296 | u32 s1, s2, s3;
|
---|
297 | u32 h0, h1, h2, h3, h4, c;
|
---|
298 | u64 d0, d1, d2, d3;
|
---|
299 |
|
---|
300 | r0 = st->r[0];
|
---|
301 | r1 = st->r[1];
|
---|
302 | r2 = st->r[2];
|
---|
303 | r3 = st->r[3];
|
---|
304 |
|
---|
305 | s1 = r1 + (r1 >> 2);
|
---|
306 | s2 = r2 + (r2 >> 2);
|
---|
307 | s3 = r3 + (r3 >> 2);
|
---|
308 |
|
---|
309 | h0 = st->h[0];
|
---|
310 | h1 = st->h[1];
|
---|
311 | h2 = st->h[2];
|
---|
312 | h3 = st->h[3];
|
---|
313 | h4 = st->h[4];
|
---|
314 |
|
---|
315 | while (len >= POLY1305_BLOCK_SIZE) {
|
---|
316 | /* h += m[i] */
|
---|
317 | h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
|
---|
318 | h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
|
---|
319 | h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
|
---|
320 | h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
|
---|
321 | h4 += (u32)(d3 >> 32) + padbit;
|
---|
322 |
|
---|
323 | /* h *= r "%" p, where "%" stands for "partial remainder" */
|
---|
324 | d0 = ((u64)h0 * r0) +
|
---|
325 | ((u64)h1 * s3) +
|
---|
326 | ((u64)h2 * s2) +
|
---|
327 | ((u64)h3 * s1);
|
---|
328 | d1 = ((u64)h0 * r1) +
|
---|
329 | ((u64)h1 * r0) +
|
---|
330 | ((u64)h2 * s3) +
|
---|
331 | ((u64)h3 * s2) +
|
---|
332 | (h4 * s1);
|
---|
333 | d2 = ((u64)h0 * r2) +
|
---|
334 | ((u64)h1 * r1) +
|
---|
335 | ((u64)h2 * r0) +
|
---|
336 | ((u64)h3 * s3) +
|
---|
337 | (h4 * s2);
|
---|
338 | d3 = ((u64)h0 * r3) +
|
---|
339 | ((u64)h1 * r2) +
|
---|
340 | ((u64)h2 * r1) +
|
---|
341 | ((u64)h3 * r0) +
|
---|
342 | (h4 * s3);
|
---|
343 | h4 = (h4 * r0);
|
---|
344 |
|
---|
345 | /* last reduction step: */
|
---|
346 | /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
|
---|
347 | h0 = (u32)d0;
|
---|
348 | h1 = (u32)(d1 += d0 >> 32);
|
---|
349 | h2 = (u32)(d2 += d1 >> 32);
|
---|
350 | h3 = (u32)(d3 += d2 >> 32);
|
---|
351 | h4 += (u32)(d3 >> 32);
|
---|
352 | /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
|
---|
353 | c = (h4 >> 2) + (h4 & ~3U);
|
---|
354 | h4 &= 3;
|
---|
355 | h0 += c;
|
---|
356 | h1 += (c = CONSTANT_TIME_CARRY(h0,c));
|
---|
357 | h2 += (c = CONSTANT_TIME_CARRY(h1,c));
|
---|
358 | h3 += (c = CONSTANT_TIME_CARRY(h2,c));
|
---|
359 | h4 += CONSTANT_TIME_CARRY(h3,c);
|
---|
360 | /*
|
---|
361 | * Occasional overflows to 3rd bit of h4 are taken care of
|
---|
362 | * "naturally". If after this point we end up at the top of
|
---|
363 | * this loop, then the overflow bit will be accounted for
|
---|
364 | * in next iteration. If we end up in poly1305_emit, then
|
---|
365 | * comparison to modulus below will still count as "carry
|
---|
366 | * into 131st bit", so that properly reduced value will be
|
---|
367 | * picked in conditional move.
|
---|
368 | */
|
---|
369 |
|
---|
370 | inp += POLY1305_BLOCK_SIZE;
|
---|
371 | len -= POLY1305_BLOCK_SIZE;
|
---|
372 | }
|
---|
373 |
|
---|
374 | st->h[0] = h0;
|
---|
375 | st->h[1] = h1;
|
---|
376 | st->h[2] = h2;
|
---|
377 | st->h[3] = h3;
|
---|
378 | st->h[4] = h4;
|
---|
379 | }
|
---|
380 |
|
---|
381 | static void poly1305_emit(void *ctx, unsigned char mac[16],
|
---|
382 | const u32 nonce[4])
|
---|
383 | {
|
---|
384 | poly1305_internal *st = (poly1305_internal *) ctx;
|
---|
385 | u32 h0, h1, h2, h3, h4;
|
---|
386 | u32 g0, g1, g2, g3, g4;
|
---|
387 | u64 t;
|
---|
388 | u32 mask;
|
---|
389 |
|
---|
390 | h0 = st->h[0];
|
---|
391 | h1 = st->h[1];
|
---|
392 | h2 = st->h[2];
|
---|
393 | h3 = st->h[3];
|
---|
394 | h4 = st->h[4];
|
---|
395 |
|
---|
396 | /* compare to modulus by computing h + -p */
|
---|
397 | g0 = (u32)(t = (u64)h0 + 5);
|
---|
398 | g1 = (u32)(t = (u64)h1 + (t >> 32));
|
---|
399 | g2 = (u32)(t = (u64)h2 + (t >> 32));
|
---|
400 | g3 = (u32)(t = (u64)h3 + (t >> 32));
|
---|
401 | g4 = h4 + (u32)(t >> 32);
|
---|
402 |
|
---|
403 | /* if there was carry into 131st bit, h3:h0 = g3:g0 */
|
---|
404 | mask = 0 - (g4 >> 2);
|
---|
405 | g0 &= mask;
|
---|
406 | g1 &= mask;
|
---|
407 | g2 &= mask;
|
---|
408 | g3 &= mask;
|
---|
409 | mask = ~mask;
|
---|
410 | h0 = (h0 & mask) | g0;
|
---|
411 | h1 = (h1 & mask) | g1;
|
---|
412 | h2 = (h2 & mask) | g2;
|
---|
413 | h3 = (h3 & mask) | g3;
|
---|
414 |
|
---|
415 | /* mac = (h + nonce) % (2^128) */
|
---|
416 | h0 = (u32)(t = (u64)h0 + nonce[0]);
|
---|
417 | h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
|
---|
418 | h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
|
---|
419 | h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
|
---|
420 |
|
---|
421 | U32TO8(mac + 0, h0);
|
---|
422 | U32TO8(mac + 4, h1);
|
---|
423 | U32TO8(mac + 8, h2);
|
---|
424 | U32TO8(mac + 12, h3);
|
---|
425 | }
|
---|
426 | # endif
|
---|
427 | #else
|
---|
428 | int poly1305_init(void *ctx, const unsigned char key[16], void *func);
|
---|
429 | void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
|
---|
430 | unsigned int padbit);
|
---|
431 | void poly1305_emit(void *ctx, unsigned char mac[16],
|
---|
432 | const unsigned int nonce[4]);
|
---|
433 | #endif
|
---|
434 |
|
---|
435 | void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
|
---|
436 | {
|
---|
437 | ctx->nonce[0] = U8TOU32(&key[16]);
|
---|
438 | ctx->nonce[1] = U8TOU32(&key[20]);
|
---|
439 | ctx->nonce[2] = U8TOU32(&key[24]);
|
---|
440 | ctx->nonce[3] = U8TOU32(&key[28]);
|
---|
441 |
|
---|
442 | #ifndef POLY1305_ASM
|
---|
443 | poly1305_init(ctx->opaque, key);
|
---|
444 | #else
|
---|
445 | /*
|
---|
446 | * Unlike reference poly1305_init assembly counterpart is expected
|
---|
447 | * to return a value: non-zero if it initializes ctx->func, and zero
|
---|
448 | * otherwise. Latter is to simplify assembly in cases when there no
|
---|
449 | * multiple code paths to switch between.
|
---|
450 | */
|
---|
451 | if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
|
---|
452 | ctx->func.blocks = poly1305_blocks;
|
---|
453 | ctx->func.emit = poly1305_emit;
|
---|
454 | }
|
---|
455 | #endif
|
---|
456 |
|
---|
457 | ctx->num = 0;
|
---|
458 |
|
---|
459 | }
|
---|
460 |
|
---|
461 | #ifdef POLY1305_ASM
|
---|
462 | /*
|
---|
463 | * This "eclipses" poly1305_blocks and poly1305_emit, but it's
|
---|
464 | * conscious choice imposed by -Wshadow compiler warnings.
|
---|
465 | */
|
---|
466 | # define poly1305_blocks (*poly1305_blocks_p)
|
---|
467 | # define poly1305_emit (*poly1305_emit_p)
|
---|
468 | #endif
|
---|
469 |
|
---|
470 | void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
|
---|
471 | {
|
---|
472 | #ifdef POLY1305_ASM
|
---|
473 | /*
|
---|
474 | * As documented, poly1305_blocks is never called with input
|
---|
475 | * longer than single block and padbit argument set to 0. This
|
---|
476 | * property is fluently used in assembly modules to optimize
|
---|
477 | * padbit handling on loop boundary.
|
---|
478 | */
|
---|
479 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
|
---|
480 | #endif
|
---|
481 | size_t rem, num;
|
---|
482 |
|
---|
483 | if ((num = ctx->num)) {
|
---|
484 | rem = POLY1305_BLOCK_SIZE - num;
|
---|
485 | if (len >= rem) {
|
---|
486 | memcpy(ctx->data + num, inp, rem);
|
---|
487 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
|
---|
488 | inp += rem;
|
---|
489 | len -= rem;
|
---|
490 | } else {
|
---|
491 | /* Still not enough data to process a block. */
|
---|
492 | memcpy(ctx->data + num, inp, len);
|
---|
493 | ctx->num = num + len;
|
---|
494 | return;
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | rem = len % POLY1305_BLOCK_SIZE;
|
---|
499 | len -= rem;
|
---|
500 |
|
---|
501 | if (len >= POLY1305_BLOCK_SIZE) {
|
---|
502 | poly1305_blocks(ctx->opaque, inp, len, 1);
|
---|
503 | inp += len;
|
---|
504 | }
|
---|
505 |
|
---|
506 | if (rem)
|
---|
507 | memcpy(ctx->data, inp, rem);
|
---|
508 |
|
---|
509 | ctx->num = rem;
|
---|
510 | }
|
---|
511 |
|
---|
512 | void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
|
---|
513 | {
|
---|
514 | #ifdef POLY1305_ASM
|
---|
515 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
|
---|
516 | poly1305_emit_f poly1305_emit_p = ctx->func.emit;
|
---|
517 | #endif
|
---|
518 | size_t num;
|
---|
519 |
|
---|
520 | if ((num = ctx->num)) {
|
---|
521 | ctx->data[num++] = 1; /* pad bit */
|
---|
522 | while (num < POLY1305_BLOCK_SIZE)
|
---|
523 | ctx->data[num++] = 0;
|
---|
524 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
|
---|
525 | }
|
---|
526 |
|
---|
527 | poly1305_emit(ctx->opaque, mac, ctx->nonce);
|
---|
528 |
|
---|
529 | /* zero out the state */
|
---|
530 | OPENSSL_cleanse(ctx, sizeof(*ctx));
|
---|
531 | }
|
---|