VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.3/crypto/bn/bn_prime.c@ 95995

最後變更 在這個檔案從95995是 94082,由 vboxsync 提交於 3 年 前

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

檔案大小: 17.3 KB
 
1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include <time.h>
12#include "internal/cryptlib.h"
13#include "bn_local.h"
14
15/*
16 * The quick sieve algorithm approach to weeding out primes is Philip
17 * Zimmermann's, as implemented in PGP. I have had a read of his comments
18 * and implemented my own version.
19 */
20#include "bn_prime.h"
21
22static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
23 BN_CTX *ctx);
24static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
25 const BIGNUM *add, const BIGNUM *rem,
26 BN_CTX *ctx);
27static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
28 int do_trial_division, BN_GENCB *cb);
29
30#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31
32#if BN_BITS2 == 64
33# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
34#else
35# define BN_DEF(lo, hi) lo, hi
36#endif
37
38/*
39 * See SP800 89 5.3.3 (Step f)
40 * The product of the set of primes ranging from 3 to 751
41 * Generated using process in test/bn_internal_test.c test_bn_small_factors().
42 * This includes 751 (which is not currently included in SP 800-89).
43 */
44static const BN_ULONG small_prime_factors[] = {
45 BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
46 BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
47 BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
48 BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
49 BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
50 BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
51 BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
52 BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
53 (BN_ULONG)0x000017b1
54};
55
56#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
57static const BIGNUM _bignum_small_prime_factors = {
58 (BN_ULONG *)small_prime_factors,
59 BN_SMALL_PRIME_FACTORS_TOP,
60 BN_SMALL_PRIME_FACTORS_TOP,
61 0,
62 BN_FLG_STATIC_DATA
63};
64
65const BIGNUM *ossl_bn_get0_small_factors(void)
66{
67 return &_bignum_small_prime_factors;
68}
69
70/*
71 * Calculate the number of trial divisions that gives the best speed in
72 * combination with Miller-Rabin prime test, based on the sized of the prime.
73 */
74static int calc_trial_divisions(int bits)
75{
76 if (bits <= 512)
77 return 64;
78 else if (bits <= 1024)
79 return 128;
80 else if (bits <= 2048)
81 return 384;
82 else if (bits <= 4096)
83 return 1024;
84 return NUMPRIMES;
85}
86
87/*
88 * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
89 * positive rate of 2^-128. If the size of the prime is larger than 2048
90 * the user probably wants a higher security level than 128, so switch
91 * to 128 rounds giving a false positive rate of 2^-256.
92 * Returns the number of rounds.
93 */
94static int bn_mr_min_checks(int bits)
95{
96 if (bits > 2048)
97 return 128;
98 return 64;
99}
100
101int BN_GENCB_call(BN_GENCB *cb, int a, int b)
102{
103 /* No callback means continue */
104 if (!cb)
105 return 1;
106 switch (cb->ver) {
107 case 1:
108 /* Deprecated-style callbacks */
109 if (!cb->cb.cb_1)
110 return 1;
111 cb->cb.cb_1(a, b, cb->arg);
112 return 1;
113 case 2:
114 /* New-style callbacks */
115 return cb->cb.cb_2(a, b, cb);
116 default:
117 break;
118 }
119 /* Unrecognised callback type */
120 return 0;
121}
122
123int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
124 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
125 BN_CTX *ctx)
126{
127 BIGNUM *t;
128 int found = 0;
129 int i, j, c1 = 0;
130 prime_t *mods = NULL;
131 int checks = bn_mr_min_checks(bits);
132
133 if (bits < 2) {
134 /* There are no prime numbers this small. */
135 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
136 return 0;
137 } else if (add == NULL && safe && bits < 6 && bits != 3) {
138 /*
139 * The smallest safe prime (7) is three bits.
140 * But the following two safe primes with less than 6 bits (11, 23)
141 * are unreachable for BN_rand with BN_RAND_TOP_TWO.
142 */
143 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
144 return 0;
145 }
146
147 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
148 if (mods == NULL) {
149 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
150 return 0;
151 }
152
153 BN_CTX_start(ctx);
154 t = BN_CTX_get(ctx);
155 if (t == NULL)
156 goto err;
157 loop:
158 /* make a random number and set the top and bottom bits */
159 if (add == NULL) {
160 if (!probable_prime(ret, bits, safe, mods, ctx))
161 goto err;
162 } else {
163 if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
164 goto err;
165 }
166
167 if (!BN_GENCB_call(cb, 0, c1++))
168 /* aborted */
169 goto err;
170
171 if (!safe) {
172 i = bn_is_prime_int(ret, checks, ctx, 0, cb);
173 if (i == -1)
174 goto err;
175 if (i == 0)
176 goto loop;
177 } else {
178 /*
179 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
180 * prime is odd, We just need to divide by 2
181 */
182 if (!BN_rshift1(t, ret))
183 goto err;
184
185 for (i = 0; i < checks; i++) {
186 j = bn_is_prime_int(ret, 1, ctx, 0, cb);
187 if (j == -1)
188 goto err;
189 if (j == 0)
190 goto loop;
191
192 j = bn_is_prime_int(t, 1, ctx, 0, cb);
193 if (j == -1)
194 goto err;
195 if (j == 0)
196 goto loop;
197
198 if (!BN_GENCB_call(cb, 2, c1 - 1))
199 goto err;
200 /* We have a safe prime test pass */
201 }
202 }
203 /* we have a prime :-) */
204 found = 1;
205 err:
206 OPENSSL_free(mods);
207 BN_CTX_end(ctx);
208 bn_check_top(ret);
209 return found;
210}
211
212#ifndef FIPS_MODULE
213int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
214 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
215{
216 BN_CTX *ctx = BN_CTX_new();
217 int retval;
218
219 if (ctx == NULL)
220 return 0;
221
222 retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);
223
224 BN_CTX_free(ctx);
225 return retval;
226}
227#endif
228
229#ifndef OPENSSL_NO_DEPRECATED_3_0
230int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
231 BN_GENCB *cb)
232{
233 return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb);
234}
235
236int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
237 int do_trial_division, BN_GENCB *cb)
238{
239 return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb);
240}
241#endif
242
243/* Wrapper around bn_is_prime_int that sets the minimum number of checks */
244int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
245 int do_trial_division, BN_GENCB *cb)
246{
247 int min_checks = bn_mr_min_checks(BN_num_bits(w));
248
249 if (checks < min_checks)
250 checks = min_checks;
251
252 return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
253}
254
255int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
256{
257 return ossl_bn_check_prime(p, 0, ctx, 1, cb);
258}
259
260/*
261 * Tests that |w| is probably prime
262 * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
263 *
264 * Returns 0 when composite, 1 when probable prime, -1 on error.
265 */
266static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
267 int do_trial_division, BN_GENCB *cb)
268{
269 int i, status, ret = -1;
270#ifndef FIPS_MODULE
271 BN_CTX *ctxlocal = NULL;
272#else
273
274 if (ctx == NULL)
275 return -1;
276#endif
277
278 /* w must be bigger than 1 */
279 if (BN_cmp(w, BN_value_one()) <= 0)
280 return 0;
281
282 /* w must be odd */
283 if (BN_is_odd(w)) {
284 /* Take care of the really small prime 3 */
285 if (BN_is_word(w, 3))
286 return 1;
287 } else {
288 /* 2 is the only even prime */
289 return BN_is_word(w, 2);
290 }
291
292 /* first look for small factors */
293 if (do_trial_division) {
294 int trial_divisions = calc_trial_divisions(BN_num_bits(w));
295
296 for (i = 1; i < trial_divisions; i++) {
297 BN_ULONG mod = BN_mod_word(w, primes[i]);
298 if (mod == (BN_ULONG)-1)
299 return -1;
300 if (mod == 0)
301 return BN_is_word(w, primes[i]);
302 }
303 if (!BN_GENCB_call(cb, 1, -1))
304 return -1;
305 }
306#ifndef FIPS_MODULE
307 if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
308 goto err;
309#endif
310
311 ret = ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status);
312 if (!ret)
313 goto err;
314 ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
315err:
316#ifndef FIPS_MODULE
317 BN_CTX_free(ctxlocal);
318#endif
319 return ret;
320}
321
322/*
323 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
324 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
325 * The Step numbers listed in the code refer to the enhanced case.
326 *
327 * if enhanced is set, then status returns one of the following:
328 * BN_PRIMETEST_PROBABLY_PRIME
329 * BN_PRIMETEST_COMPOSITE_WITH_FACTOR
330 * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
331 * if enhanced is zero, then status returns either
332 * BN_PRIMETEST_PROBABLY_PRIME or
333 * BN_PRIMETEST_COMPOSITE
334 *
335 * returns 0 if there was an error, otherwise it returns 1.
336 */
337int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
338 BN_GENCB *cb, int enhanced, int *status)
339{
340 int i, j, a, ret = 0;
341 BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
342 BN_MONT_CTX *mont = NULL;
343
344 /* w must be odd */
345 if (!BN_is_odd(w))
346 return 0;
347
348 BN_CTX_start(ctx);
349 g = BN_CTX_get(ctx);
350 w1 = BN_CTX_get(ctx);
351 w3 = BN_CTX_get(ctx);
352 x = BN_CTX_get(ctx);
353 m = BN_CTX_get(ctx);
354 z = BN_CTX_get(ctx);
355 b = BN_CTX_get(ctx);
356
357 if (!(b != NULL
358 /* w1 := w - 1 */
359 && BN_copy(w1, w)
360 && BN_sub_word(w1, 1)
361 /* w3 := w - 3 */
362 && BN_copy(w3, w)
363 && BN_sub_word(w3, 3)))
364 goto err;
365
366 /* check w is larger than 3, otherwise the random b will be too small */
367 if (BN_is_zero(w3) || BN_is_negative(w3))
368 goto err;
369
370 /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
371 a = 1;
372 while (!BN_is_bit_set(w1, a))
373 a++;
374 /* (Step 2) m = (w-1) / 2^a */
375 if (!BN_rshift(m, w1, a))
376 goto err;
377
378 /* Montgomery setup for computations mod a */
379 mont = BN_MONT_CTX_new();
380 if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
381 goto err;
382
383 if (iterations == 0)
384 iterations = bn_mr_min_checks(BN_num_bits(w));
385
386 /* (Step 4) */
387 for (i = 0; i < iterations; ++i) {
388 /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
389 if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
390 || !BN_add_word(b, 2)) /* 1 < b < w-1 */
391 goto err;
392
393 if (enhanced) {
394 /* (Step 4.3) */
395 if (!BN_gcd(g, b, w, ctx))
396 goto err;
397 /* (Step 4.4) */
398 if (!BN_is_one(g)) {
399 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
400 ret = 1;
401 goto err;
402 }
403 }
404 /* (Step 4.5) z = b^m mod w */
405 if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
406 goto err;
407 /* (Step 4.6) if (z = 1 or z = w-1) */
408 if (BN_is_one(z) || BN_cmp(z, w1) == 0)
409 goto outer_loop;
410 /* (Step 4.7) for j = 1 to a-1 */
411 for (j = 1; j < a ; ++j) {
412 /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
413 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
414 goto err;
415 /* (Step 4.7.3) */
416 if (BN_cmp(z, w1) == 0)
417 goto outer_loop;
418 /* (Step 4.7.4) */
419 if (BN_is_one(z))
420 goto composite;
421 }
422 /* At this point z = b^((w-1)/2) mod w */
423 /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
424 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
425 goto err;
426 /* (Step 4.10) */
427 if (BN_is_one(z))
428 goto composite;
429 /* (Step 4.11) x = b^(w-1) mod w */
430 if (!BN_copy(x, z))
431 goto err;
432composite:
433 if (enhanced) {
434 /* (Step 4.1.2) g = GCD(x-1, w) */
435 if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
436 goto err;
437 /* (Steps 4.1.3 - 4.1.4) */
438 if (BN_is_one(g))
439 *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
440 else
441 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
442 } else {
443 *status = BN_PRIMETEST_COMPOSITE;
444 }
445 ret = 1;
446 goto err;
447outer_loop: ;
448 /* (Step 4.1.5) */
449 if (!BN_GENCB_call(cb, 1, i))
450 goto err;
451 }
452 /* (Step 5) */
453 *status = BN_PRIMETEST_PROBABLY_PRIME;
454 ret = 1;
455err:
456 BN_clear(g);
457 BN_clear(w1);
458 BN_clear(w3);
459 BN_clear(x);
460 BN_clear(m);
461 BN_clear(z);
462 BN_clear(b);
463 BN_CTX_end(ctx);
464 BN_MONT_CTX_free(mont);
465 return ret;
466}
467
468/*
469 * Generate a random number of |bits| bits that is probably prime by sieving.
470 * If |safe| != 0, it generates a safe prime.
471 * |mods| is a preallocated array that gets reused when called again.
472 *
473 * The probably prime is saved in |rnd|.
474 *
475 * Returns 1 on success and 0 on error.
476 */
477static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
478 BN_CTX *ctx)
479{
480 int i;
481 BN_ULONG delta;
482 int trial_divisions = calc_trial_divisions(bits);
483 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
484
485 again:
486 if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0,
487 ctx))
488 return 0;
489 if (safe && !BN_set_bit(rnd, 1))
490 return 0;
491 /* we now have a random number 'rnd' to test. */
492 for (i = 1; i < trial_divisions; i++) {
493 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
494 if (mod == (BN_ULONG)-1)
495 return 0;
496 mods[i] = (prime_t) mod;
497 }
498 delta = 0;
499 loop:
500 for (i = 1; i < trial_divisions; i++) {
501 /*
502 * check that rnd is a prime and also that
503 * gcd(rnd-1,primes) == 1 (except for 2)
504 * do the second check only if we are interested in safe primes
505 * in the case that the candidate prime is a single word then
506 * we check only the primes up to sqrt(rnd)
507 */
508 if (bits <= 31 && delta <= 0x7fffffff
509 && square(primes[i]) > BN_get_word(rnd) + delta)
510 break;
511 if (safe ? (mods[i] + delta) % primes[i] <= 1
512 : (mods[i] + delta) % primes[i] == 0) {
513 delta += safe ? 4 : 2;
514 if (delta > maxdelta)
515 goto again;
516 goto loop;
517 }
518 }
519 if (!BN_add_word(rnd, delta))
520 return 0;
521 if (BN_num_bits(rnd) != bits)
522 goto again;
523 bn_check_top(rnd);
524 return 1;
525}
526
527/*
528 * Generate a random number |rnd| of |bits| bits that is probably prime
529 * and satisfies |rnd| % |add| == |rem| by sieving.
530 * If |safe| != 0, it generates a safe prime.
531 * |mods| is a preallocated array that gets reused when called again.
532 *
533 * Returns 1 on success and 0 on error.
534 */
535static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
536 const BIGNUM *add, const BIGNUM *rem,
537 BN_CTX *ctx)
538{
539 int i, ret = 0;
540 BIGNUM *t1;
541 BN_ULONG delta;
542 int trial_divisions = calc_trial_divisions(bits);
543 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
544
545 BN_CTX_start(ctx);
546 if ((t1 = BN_CTX_get(ctx)) == NULL)
547 goto err;
548
549 if (maxdelta > BN_MASK2 - BN_get_word(add))
550 maxdelta = BN_MASK2 - BN_get_word(add);
551
552 again:
553 if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx))
554 goto err;
555
556 /* we need ((rnd-rem) % add) == 0 */
557
558 if (!BN_mod(t1, rnd, add, ctx))
559 goto err;
560 if (!BN_sub(rnd, rnd, t1))
561 goto err;
562 if (rem == NULL) {
563 if (!BN_add_word(rnd, safe ? 3u : 1u))
564 goto err;
565 } else {
566 if (!BN_add(rnd, rnd, rem))
567 goto err;
568 }
569
570 if (BN_num_bits(rnd) < bits
571 || BN_get_word(rnd) < (safe ? 5u : 3u)) {
572 if (!BN_add(rnd, rnd, add))
573 goto err;
574 }
575
576 /* we now have a random number 'rnd' to test. */
577 for (i = 1; i < trial_divisions; i++) {
578 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
579 if (mod == (BN_ULONG)-1)
580 goto err;
581 mods[i] = (prime_t) mod;
582 }
583 delta = 0;
584 loop:
585 for (i = 1; i < trial_divisions; i++) {
586 /* check that rnd is a prime */
587 if (bits <= 31 && delta <= 0x7fffffff
588 && square(primes[i]) > BN_get_word(rnd) + delta)
589 break;
590 /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
591 if (safe ? (mods[i] + delta) % primes[i] <= 1
592 : (mods[i] + delta) % primes[i] == 0) {
593 delta += BN_get_word(add);
594 if (delta > maxdelta)
595 goto again;
596 goto loop;
597 }
598 }
599 if (!BN_add_word(rnd, delta))
600 goto err;
601 ret = 1;
602
603 err:
604 BN_CTX_end(ctx);
605 bn_check_top(rnd);
606 return ret;
607}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette