VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.3/ssl/ssl_ciph.c@ 97138

最後變更 在這個檔案從97138是 94082,由 vboxsync 提交於 3 年 前

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

檔案大小: 69.6 KB
 
1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12#include <stdio.h>
13#include <ctype.h>
14#include <openssl/objects.h>
15#include <openssl/comp.h>
16#include <openssl/engine.h>
17#include <openssl/crypto.h>
18#include <openssl/conf.h>
19#include <openssl/trace.h>
20#include "internal/nelem.h"
21#include "ssl_local.h"
22#include "internal/thread_once.h"
23#include "internal/cryptlib.h"
24
25/* NB: make sure indices in these tables match values above */
26
27typedef struct {
28 uint32_t mask;
29 int nid;
30} ssl_cipher_table;
31
32/* Table of NIDs for each cipher */
33static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
35 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
37 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
38 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
39 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
40 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
46 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58};
59
60#define SSL_COMP_NULL_IDX 0
61#define SSL_COMP_ZLIB_IDX 1
62#define SSL_COMP_NUM_IDX 2
63
64static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65
66#ifndef OPENSSL_NO_COMP
67static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68#endif
69
70/* NB: make sure indices in this table matches values above */
71static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
73 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
74 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
77 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
78 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
82 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
83 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
84 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86};
87
88/* *INDENT-OFF* */
89static const ssl_cipher_table ssl_cipher_table_kx[] = {
90 {SSL_kRSA, NID_kx_rsa},
91 {SSL_kECDHE, NID_kx_ecdhe},
92 {SSL_kDHE, NID_kx_dhe},
93 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94 {SSL_kDHEPSK, NID_kx_dhe_psk},
95 {SSL_kRSAPSK, NID_kx_rsa_psk},
96 {SSL_kPSK, NID_kx_psk},
97 {SSL_kSRP, NID_kx_srp},
98 {SSL_kGOST, NID_kx_gost},
99 {SSL_kGOST18, NID_kx_gost18},
100 {SSL_kANY, NID_kx_any}
101};
102
103static const ssl_cipher_table ssl_cipher_table_auth[] = {
104 {SSL_aRSA, NID_auth_rsa},
105 {SSL_aECDSA, NID_auth_ecdsa},
106 {SSL_aPSK, NID_auth_psk},
107 {SSL_aDSS, NID_auth_dss},
108 {SSL_aGOST01, NID_auth_gost01},
109 {SSL_aGOST12, NID_auth_gost12},
110 {SSL_aSRP, NID_auth_srp},
111 {SSL_aNULL, NID_auth_null},
112 {SSL_aANY, NID_auth_any}
113};
114/* *INDENT-ON* */
115
116/* Utility function for table lookup */
117static int ssl_cipher_info_find(const ssl_cipher_table * table,
118 size_t table_cnt, uint32_t mask)
119{
120 size_t i;
121 for (i = 0; i < table_cnt; i++, table++) {
122 if (table->mask == mask)
123 return (int)i;
124 }
125 return -1;
126}
127
128#define ssl_cipher_info_lookup(table, x) \
129 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130
131/*
132 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134 * found
135 */
136static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137 /* MD5, SHA, GOST94, MAC89 */
138 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141 /* GOST2012_512 */
142 EVP_PKEY_HMAC,
143 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145};
146
147#define CIPHER_ADD 1
148#define CIPHER_KILL 2
149#define CIPHER_DEL 3
150#define CIPHER_ORD 4
151#define CIPHER_SPECIAL 5
152/*
153 * Bump the ciphers to the top of the list.
154 * This rule isn't currently supported by the public cipherstring API.
155 */
156#define CIPHER_BUMP 6
157
158typedef struct cipher_order_st {
159 const SSL_CIPHER *cipher;
160 int active;
161 int dead;
162 struct cipher_order_st *next, *prev;
163} CIPHER_ORDER;
164
165static const SSL_CIPHER cipher_aliases[] = {
166 /* "ALL" doesn't include eNULL (must be specifically enabled) */
167 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168 /* "COMPLEMENTOFALL" */
169 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170
171 /*
172 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173 * ALL!)
174 */
175 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176
177 /*
178 * key exchange aliases (some of those using only a single bit here
179 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180 * combines DHE_DSS and DHE_RSA)
181 */
182 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183
184 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187
188 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191
192 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199
200 /* server authentication aliases */
201 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212
213 /* aliases combining key exchange and server authentication */
214 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224
225 /* symmetric encryption aliases */
226 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248
249 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254
255 /* MAC aliases */
256 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264
265 /* protocol version aliases */
266 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270
271 /* strength classes */
272 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275 /* FIPS 140-2 approved ciphersuite */
276 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277
278 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283
284};
285
286/*
287 * Search for public key algorithm with given name and return its pkey_id if
288 * it is available. Otherwise return 0
289 */
290#ifdef OPENSSL_NO_ENGINE
291
292static int get_optional_pkey_id(const char *pkey_name)
293{
294 const EVP_PKEY_ASN1_METHOD *ameth;
295 int pkey_id = 0;
296 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298 ameth) > 0)
299 return pkey_id;
300 return 0;
301}
302
303#else
304
305static int get_optional_pkey_id(const char *pkey_name)
306{
307 const EVP_PKEY_ASN1_METHOD *ameth;
308 ENGINE *tmpeng = NULL;
309 int pkey_id = 0;
310 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311 if (ameth) {
312 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313 ameth) <= 0)
314 pkey_id = 0;
315 }
316 tls_engine_finish(tmpeng);
317 return pkey_id;
318}
319
320#endif
321
322int ssl_load_ciphers(SSL_CTX *ctx)
323{
324 size_t i;
325 const ssl_cipher_table *t;
326 EVP_KEYEXCH *kex = NULL;
327 EVP_SIGNATURE *sig = NULL;
328
329 ctx->disabled_enc_mask = 0;
330 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331 if (t->nid != NID_undef) {
332 const EVP_CIPHER *cipher
333 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334
335 ctx->ssl_cipher_methods[i] = cipher;
336 if (cipher == NULL)
337 ctx->disabled_enc_mask |= t->mask;
338 }
339 }
340 ctx->disabled_mac_mask = 0;
341 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342 const EVP_MD *md
343 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344
345 ctx->ssl_digest_methods[i] = md;
346 if (md == NULL) {
347 ctx->disabled_mac_mask |= t->mask;
348 } else {
349 int tmpsize = EVP_MD_get_size(md);
350 if (!ossl_assert(tmpsize >= 0))
351 return 0;
352 ctx->ssl_mac_secret_size[i] = tmpsize;
353 }
354 }
355
356 ctx->disabled_mkey_mask = 0;
357 ctx->disabled_auth_mask = 0;
358
359 /*
360 * We ignore any errors from the fetches below. They are expected to fail
361 * if theose algorithms are not available.
362 */
363 ERR_set_mark();
364 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365 if (sig == NULL)
366 ctx->disabled_auth_mask |= SSL_aDSS;
367 else
368 EVP_SIGNATURE_free(sig);
369 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370 if (kex == NULL)
371 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372 else
373 EVP_KEYEXCH_free(kex);
374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375 if (kex == NULL)
376 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377 else
378 EVP_KEYEXCH_free(kex);
379 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380 if (sig == NULL)
381 ctx->disabled_auth_mask |= SSL_aECDSA;
382 else
383 EVP_SIGNATURE_free(sig);
384 ERR_pop_to_mark();
385
386#ifdef OPENSSL_NO_PSK
387 ctx->disabled_mkey_mask |= SSL_PSK;
388 ctx->disabled_auth_mask |= SSL_aPSK;
389#endif
390#ifdef OPENSSL_NO_SRP
391 ctx->disabled_mkey_mask |= SSL_kSRP;
392#endif
393
394 /*
395 * Check for presence of GOST 34.10 algorithms, and if they are not
396 * present, disable appropriate auth and key exchange
397 */
398 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399 sizeof(ctx->ssl_mac_pkey_id));
400
401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405 else
406 ctx->disabled_mac_mask |= SSL_GOST89MAC;
407
408 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409 get_optional_pkey_id(SN_gost_mac_12);
410 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412 else
413 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414
415 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416 get_optional_pkey_id(SN_magma_mac);
417 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419 else
420 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421
422 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423 get_optional_pkey_id(SN_kuznyechik_mac);
424 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426 else
427 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428
429 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432 ctx->disabled_auth_mask |= SSL_aGOST12;
433 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434 ctx->disabled_auth_mask |= SSL_aGOST12;
435 /*
436 * Disable GOST key exchange if no GOST signature algs are available *
437 */
438 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439 (SSL_aGOST01 | SSL_aGOST12))
440 ctx->disabled_mkey_mask |= SSL_kGOST;
441
442 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
443 ctx->disabled_mkey_mask |= SSL_kGOST18;
444
445 return 1;
446}
447
448#ifndef OPENSSL_NO_COMP
449
450static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451{
452 return ((*a)->id - (*b)->id);
453}
454
455DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456{
457 SSL_COMP *comp = NULL;
458 COMP_METHOD *method = COMP_zlib();
459
460 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461
462 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463 comp = OPENSSL_malloc(sizeof(*comp));
464 if (comp != NULL) {
465 comp->method = method;
466 comp->id = SSL_COMP_ZLIB_IDX;
467 comp->name = COMP_get_name(method);
468 sk_SSL_COMP_push(ssl_comp_methods, comp);
469 sk_SSL_COMP_sort(ssl_comp_methods);
470 }
471 }
472 return 1;
473}
474
475static int load_builtin_compressions(void)
476{
477 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
478}
479#endif
480
481int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
482 const EVP_CIPHER **enc)
483{
484 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
485
486 if (i == -1) {
487 *enc = NULL;
488 } else {
489 if (i == SSL_ENC_NULL_IDX) {
490 /*
491 * We assume we don't care about this coming from an ENGINE so
492 * just do a normal EVP_CIPHER_fetch instead of
493 * ssl_evp_cipher_fetch()
494 */
495 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
496 if (*enc == NULL)
497 return 0;
498 } else {
499 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
500
501 if (cipher == NULL
502 || !ssl_evp_cipher_up_ref(cipher))
503 return 0;
504 *enc = ctx->ssl_cipher_methods[i];
505 }
506 }
507 return 1;
508}
509
510int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
511 const EVP_CIPHER **enc, const EVP_MD **md,
512 int *mac_pkey_type, size_t *mac_secret_size,
513 SSL_COMP **comp, int use_etm)
514{
515 int i;
516 const SSL_CIPHER *c;
517
518 c = s->cipher;
519 if (c == NULL)
520 return 0;
521 if (comp != NULL) {
522 SSL_COMP ctmp;
523#ifndef OPENSSL_NO_COMP
524 if (!load_builtin_compressions()) {
525 /*
526 * Currently don't care, since a failure only means that
527 * ssl_comp_methods is NULL, which is perfectly OK
528 */
529 }
530#endif
531 *comp = NULL;
532 ctmp.id = s->compress_meth;
533 if (ssl_comp_methods != NULL) {
534 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
535 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
536 }
537 /* If were only interested in comp then return success */
538 if ((enc == NULL) && (md == NULL))
539 return 1;
540 }
541
542 if ((enc == NULL) || (md == NULL))
543 return 0;
544
545 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
546 return 0;
547
548 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
549 if (i == -1) {
550 *md = NULL;
551 if (mac_pkey_type != NULL)
552 *mac_pkey_type = NID_undef;
553 if (mac_secret_size != NULL)
554 *mac_secret_size = 0;
555 if (c->algorithm_mac == SSL_AEAD)
556 mac_pkey_type = NULL;
557 } else {
558 if (!ssl_evp_md_up_ref(ctx->ssl_digest_methods[i])) {
559 ssl_evp_cipher_free(*enc);
560 return 0;
561 }
562 *md = ctx->ssl_digest_methods[i];
563 if (mac_pkey_type != NULL)
564 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
565 if (mac_secret_size != NULL)
566 *mac_secret_size = ctx->ssl_mac_secret_size[i];
567 }
568
569 if ((*enc != NULL)
570 && (*md != NULL
571 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
572 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
573 const EVP_CIPHER *evp = NULL;
574
575 if (use_etm
576 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
577 || s->ssl_version < TLS1_VERSION)
578 return 1;
579
580 if (c->algorithm_enc == SSL_RC4
581 && c->algorithm_mac == SSL_MD5)
582 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
583 ctx->propq);
584 else if (c->algorithm_enc == SSL_AES128
585 && c->algorithm_mac == SSL_SHA1)
586 evp = ssl_evp_cipher_fetch(ctx->libctx,
587 NID_aes_128_cbc_hmac_sha1,
588 ctx->propq);
589 else if (c->algorithm_enc == SSL_AES256
590 && c->algorithm_mac == SSL_SHA1)
591 evp = ssl_evp_cipher_fetch(ctx->libctx,
592 NID_aes_256_cbc_hmac_sha1,
593 ctx->propq);
594 else if (c->algorithm_enc == SSL_AES128
595 && c->algorithm_mac == SSL_SHA256)
596 evp = ssl_evp_cipher_fetch(ctx->libctx,
597 NID_aes_128_cbc_hmac_sha256,
598 ctx->propq);
599 else if (c->algorithm_enc == SSL_AES256
600 && c->algorithm_mac == SSL_SHA256)
601 evp = ssl_evp_cipher_fetch(ctx->libctx,
602 NID_aes_256_cbc_hmac_sha256,
603 ctx->propq);
604
605 if (evp != NULL) {
606 ssl_evp_cipher_free(*enc);
607 ssl_evp_md_free(*md);
608 *enc = evp;
609 *md = NULL;
610 }
611 return 1;
612 }
613
614 return 0;
615}
616
617const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
618{
619 idx &= SSL_HANDSHAKE_MAC_MASK;
620 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
621 return NULL;
622 return ctx->ssl_digest_methods[idx];
623}
624
625const EVP_MD *ssl_handshake_md(SSL *s)
626{
627 return ssl_md(s->ctx, ssl_get_algorithm2(s));
628}
629
630const EVP_MD *ssl_prf_md(SSL *s)
631{
632 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
633}
634
635#define ITEM_SEP(a) \
636 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
637
638static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
639 CIPHER_ORDER **tail)
640{
641 if (curr == *tail)
642 return;
643 if (curr == *head)
644 *head = curr->next;
645 if (curr->prev != NULL)
646 curr->prev->next = curr->next;
647 if (curr->next != NULL)
648 curr->next->prev = curr->prev;
649 (*tail)->next = curr;
650 curr->prev = *tail;
651 curr->next = NULL;
652 *tail = curr;
653}
654
655static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
656 CIPHER_ORDER **tail)
657{
658 if (curr == *head)
659 return;
660 if (curr == *tail)
661 *tail = curr->prev;
662 if (curr->next != NULL)
663 curr->next->prev = curr->prev;
664 if (curr->prev != NULL)
665 curr->prev->next = curr->next;
666 (*head)->prev = curr;
667 curr->next = *head;
668 curr->prev = NULL;
669 *head = curr;
670}
671
672static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
673 int num_of_ciphers,
674 uint32_t disabled_mkey,
675 uint32_t disabled_auth,
676 uint32_t disabled_enc,
677 uint32_t disabled_mac,
678 CIPHER_ORDER *co_list,
679 CIPHER_ORDER **head_p,
680 CIPHER_ORDER **tail_p)
681{
682 int i, co_list_num;
683 const SSL_CIPHER *c;
684
685 /*
686 * We have num_of_ciphers descriptions compiled in, depending on the
687 * method selected (SSLv3, TLSv1 etc).
688 * These will later be sorted in a linked list with at most num
689 * entries.
690 */
691
692 /* Get the initial list of ciphers */
693 co_list_num = 0; /* actual count of ciphers */
694 for (i = 0; i < num_of_ciphers; i++) {
695 c = ssl_method->get_cipher(i);
696 /* drop those that use any of that is not available */
697 if (c == NULL || !c->valid)
698 continue;
699 if ((c->algorithm_mkey & disabled_mkey) ||
700 (c->algorithm_auth & disabled_auth) ||
701 (c->algorithm_enc & disabled_enc) ||
702 (c->algorithm_mac & disabled_mac))
703 continue;
704 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
705 c->min_tls == 0)
706 continue;
707 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
708 c->min_dtls == 0)
709 continue;
710
711 co_list[co_list_num].cipher = c;
712 co_list[co_list_num].next = NULL;
713 co_list[co_list_num].prev = NULL;
714 co_list[co_list_num].active = 0;
715 co_list_num++;
716 }
717
718 /*
719 * Prepare linked list from list entries
720 */
721 if (co_list_num > 0) {
722 co_list[0].prev = NULL;
723
724 if (co_list_num > 1) {
725 co_list[0].next = &co_list[1];
726
727 for (i = 1; i < co_list_num - 1; i++) {
728 co_list[i].prev = &co_list[i - 1];
729 co_list[i].next = &co_list[i + 1];
730 }
731
732 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
733 }
734
735 co_list[co_list_num - 1].next = NULL;
736
737 *head_p = &co_list[0];
738 *tail_p = &co_list[co_list_num - 1];
739 }
740}
741
742static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
743 int num_of_group_aliases,
744 uint32_t disabled_mkey,
745 uint32_t disabled_auth,
746 uint32_t disabled_enc,
747 uint32_t disabled_mac,
748 CIPHER_ORDER *head)
749{
750 CIPHER_ORDER *ciph_curr;
751 const SSL_CIPHER **ca_curr;
752 int i;
753 uint32_t mask_mkey = ~disabled_mkey;
754 uint32_t mask_auth = ~disabled_auth;
755 uint32_t mask_enc = ~disabled_enc;
756 uint32_t mask_mac = ~disabled_mac;
757
758 /*
759 * First, add the real ciphers as already collected
760 */
761 ciph_curr = head;
762 ca_curr = ca_list;
763 while (ciph_curr != NULL) {
764 *ca_curr = ciph_curr->cipher;
765 ca_curr++;
766 ciph_curr = ciph_curr->next;
767 }
768
769 /*
770 * Now we add the available ones from the cipher_aliases[] table.
771 * They represent either one or more algorithms, some of which
772 * in any affected category must be supported (set in enabled_mask),
773 * or represent a cipher strength value (will be added in any case because algorithms=0).
774 */
775 for (i = 0; i < num_of_group_aliases; i++) {
776 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
777 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
778 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
779 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
780
781 if (algorithm_mkey)
782 if ((algorithm_mkey & mask_mkey) == 0)
783 continue;
784
785 if (algorithm_auth)
786 if ((algorithm_auth & mask_auth) == 0)
787 continue;
788
789 if (algorithm_enc)
790 if ((algorithm_enc & mask_enc) == 0)
791 continue;
792
793 if (algorithm_mac)
794 if ((algorithm_mac & mask_mac) == 0)
795 continue;
796
797 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
798 ca_curr++;
799 }
800
801 *ca_curr = NULL; /* end of list */
802}
803
804static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
805 uint32_t alg_auth, uint32_t alg_enc,
806 uint32_t alg_mac, int min_tls,
807 uint32_t algo_strength, int rule,
808 int32_t strength_bits, CIPHER_ORDER **head_p,
809 CIPHER_ORDER **tail_p)
810{
811 CIPHER_ORDER *head, *tail, *curr, *next, *last;
812 const SSL_CIPHER *cp;
813 int reverse = 0;
814
815 OSSL_TRACE_BEGIN(TLS_CIPHER){
816 BIO_printf(trc_out,
817 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
818 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
819 algo_strength, strength_bits);
820 }
821
822 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
823 reverse = 1; /* needed to maintain sorting between currently
824 * deleted ciphers */
825
826 head = *head_p;
827 tail = *tail_p;
828
829 if (reverse) {
830 next = tail;
831 last = head;
832 } else {
833 next = head;
834 last = tail;
835 }
836
837 curr = NULL;
838 for (;;) {
839 if (curr == last)
840 break;
841
842 curr = next;
843
844 if (curr == NULL)
845 break;
846
847 next = reverse ? curr->prev : curr->next;
848
849 cp = curr->cipher;
850
851 /*
852 * Selection criteria is either the value of strength_bits
853 * or the algorithms used.
854 */
855 if (strength_bits >= 0) {
856 if (strength_bits != cp->strength_bits)
857 continue;
858 } else {
859 if (trc_out != NULL) {
860 BIO_printf(trc_out,
861 "\nName: %s:"
862 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
863 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
864 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
865 cp->algo_strength);
866 }
867 if (cipher_id != 0 && (cipher_id != cp->id))
868 continue;
869 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
870 continue;
871 if (alg_auth && !(alg_auth & cp->algorithm_auth))
872 continue;
873 if (alg_enc && !(alg_enc & cp->algorithm_enc))
874 continue;
875 if (alg_mac && !(alg_mac & cp->algorithm_mac))
876 continue;
877 if (min_tls && (min_tls != cp->min_tls))
878 continue;
879 if ((algo_strength & SSL_STRONG_MASK)
880 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
881 continue;
882 if ((algo_strength & SSL_DEFAULT_MASK)
883 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
884 continue;
885 }
886
887 if (trc_out != NULL)
888 BIO_printf(trc_out, "Action = %d\n", rule);
889
890 /* add the cipher if it has not been added yet. */
891 if (rule == CIPHER_ADD) {
892 /* reverse == 0 */
893 if (!curr->active) {
894 ll_append_tail(&head, curr, &tail);
895 curr->active = 1;
896 }
897 }
898 /* Move the added cipher to this location */
899 else if (rule == CIPHER_ORD) {
900 /* reverse == 0 */
901 if (curr->active) {
902 ll_append_tail(&head, curr, &tail);
903 }
904 } else if (rule == CIPHER_DEL) {
905 /* reverse == 1 */
906 if (curr->active) {
907 /*
908 * most recently deleted ciphersuites get best positions for
909 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
910 * in reverse to maintain the order)
911 */
912 ll_append_head(&head, curr, &tail);
913 curr->active = 0;
914 }
915 } else if (rule == CIPHER_BUMP) {
916 if (curr->active)
917 ll_append_head(&head, curr, &tail);
918 } else if (rule == CIPHER_KILL) {
919 /* reverse == 0 */
920 if (head == curr)
921 head = curr->next;
922 else
923 curr->prev->next = curr->next;
924 if (tail == curr)
925 tail = curr->prev;
926 curr->active = 0;
927 if (curr->next != NULL)
928 curr->next->prev = curr->prev;
929 if (curr->prev != NULL)
930 curr->prev->next = curr->next;
931 curr->next = NULL;
932 curr->prev = NULL;
933 }
934 }
935
936 *head_p = head;
937 *tail_p = tail;
938
939 OSSL_TRACE_END(TLS_CIPHER);
940}
941
942static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
943 CIPHER_ORDER **tail_p)
944{
945 int32_t max_strength_bits;
946 int i, *number_uses;
947 CIPHER_ORDER *curr;
948
949 /*
950 * This routine sorts the ciphers with descending strength. The sorting
951 * must keep the pre-sorted sequence, so we apply the normal sorting
952 * routine as '+' movement to the end of the list.
953 */
954 max_strength_bits = 0;
955 curr = *head_p;
956 while (curr != NULL) {
957 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
958 max_strength_bits = curr->cipher->strength_bits;
959 curr = curr->next;
960 }
961
962 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
963 if (number_uses == NULL) {
964 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
965 return 0;
966 }
967
968 /*
969 * Now find the strength_bits values actually used
970 */
971 curr = *head_p;
972 while (curr != NULL) {
973 if (curr->active)
974 number_uses[curr->cipher->strength_bits]++;
975 curr = curr->next;
976 }
977 /*
978 * Go through the list of used strength_bits values in descending
979 * order.
980 */
981 for (i = max_strength_bits; i >= 0; i--)
982 if (number_uses[i] > 0)
983 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
984 tail_p);
985
986 OPENSSL_free(number_uses);
987 return 1;
988}
989
990static int ssl_cipher_process_rulestr(const char *rule_str,
991 CIPHER_ORDER **head_p,
992 CIPHER_ORDER **tail_p,
993 const SSL_CIPHER **ca_list, CERT *c)
994{
995 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
996 int min_tls;
997 const char *l, *buf;
998 int j, multi, found, rule, retval, ok, buflen;
999 uint32_t cipher_id = 0;
1000 char ch;
1001
1002 retval = 1;
1003 l = rule_str;
1004 for ( ; ; ) {
1005 ch = *l;
1006
1007 if (ch == '\0')
1008 break; /* done */
1009 if (ch == '-') {
1010 rule = CIPHER_DEL;
1011 l++;
1012 } else if (ch == '+') {
1013 rule = CIPHER_ORD;
1014 l++;
1015 } else if (ch == '!') {
1016 rule = CIPHER_KILL;
1017 l++;
1018 } else if (ch == '@') {
1019 rule = CIPHER_SPECIAL;
1020 l++;
1021 } else {
1022 rule = CIPHER_ADD;
1023 }
1024
1025 if (ITEM_SEP(ch)) {
1026 l++;
1027 continue;
1028 }
1029
1030 alg_mkey = 0;
1031 alg_auth = 0;
1032 alg_enc = 0;
1033 alg_mac = 0;
1034 min_tls = 0;
1035 algo_strength = 0;
1036
1037 for (;;) {
1038 ch = *l;
1039 buf = l;
1040 buflen = 0;
1041#ifndef CHARSET_EBCDIC
1042 while (((ch >= 'A') && (ch <= 'Z')) ||
1043 ((ch >= '0') && (ch <= '9')) ||
1044 ((ch >= 'a') && (ch <= 'z')) ||
1045 (ch == '-') || (ch == '.') || (ch == '='))
1046#else
1047 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1048 || (ch == '='))
1049#endif
1050 {
1051 ch = *(++l);
1052 buflen++;
1053 }
1054
1055 if (buflen == 0) {
1056 /*
1057 * We hit something we cannot deal with,
1058 * it is no command or separator nor
1059 * alphanumeric, so we call this an error.
1060 */
1061 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1062 retval = found = 0;
1063 l++;
1064 break;
1065 }
1066
1067 if (rule == CIPHER_SPECIAL) {
1068 found = 0; /* unused -- avoid compiler warning */
1069 break; /* special treatment */
1070 }
1071
1072 /* check for multi-part specification */
1073 if (ch == '+') {
1074 multi = 1;
1075 l++;
1076 } else {
1077 multi = 0;
1078 }
1079
1080 /*
1081 * Now search for the cipher alias in the ca_list. Be careful
1082 * with the strncmp, because the "buflen" limitation
1083 * will make the rule "ADH:SOME" and the cipher
1084 * "ADH-MY-CIPHER" look like a match for buflen=3.
1085 * So additionally check whether the cipher name found
1086 * has the correct length. We can save a strlen() call:
1087 * just checking for the '\0' at the right place is
1088 * sufficient, we have to strncmp() anyway. (We cannot
1089 * use strcmp(), because buf is not '\0' terminated.)
1090 */
1091 j = found = 0;
1092 cipher_id = 0;
1093 while (ca_list[j]) {
1094 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1095 && (ca_list[j]->name[buflen] == '\0')) {
1096 found = 1;
1097 break;
1098 } else
1099 j++;
1100 }
1101
1102 if (!found)
1103 break; /* ignore this entry */
1104
1105 if (ca_list[j]->algorithm_mkey) {
1106 if (alg_mkey) {
1107 alg_mkey &= ca_list[j]->algorithm_mkey;
1108 if (!alg_mkey) {
1109 found = 0;
1110 break;
1111 }
1112 } else {
1113 alg_mkey = ca_list[j]->algorithm_mkey;
1114 }
1115 }
1116
1117 if (ca_list[j]->algorithm_auth) {
1118 if (alg_auth) {
1119 alg_auth &= ca_list[j]->algorithm_auth;
1120 if (!alg_auth) {
1121 found = 0;
1122 break;
1123 }
1124 } else {
1125 alg_auth = ca_list[j]->algorithm_auth;
1126 }
1127 }
1128
1129 if (ca_list[j]->algorithm_enc) {
1130 if (alg_enc) {
1131 alg_enc &= ca_list[j]->algorithm_enc;
1132 if (!alg_enc) {
1133 found = 0;
1134 break;
1135 }
1136 } else {
1137 alg_enc = ca_list[j]->algorithm_enc;
1138 }
1139 }
1140
1141 if (ca_list[j]->algorithm_mac) {
1142 if (alg_mac) {
1143 alg_mac &= ca_list[j]->algorithm_mac;
1144 if (!alg_mac) {
1145 found = 0;
1146 break;
1147 }
1148 } else {
1149 alg_mac = ca_list[j]->algorithm_mac;
1150 }
1151 }
1152
1153 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1154 if (algo_strength & SSL_STRONG_MASK) {
1155 algo_strength &=
1156 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1157 ~SSL_STRONG_MASK;
1158 if (!(algo_strength & SSL_STRONG_MASK)) {
1159 found = 0;
1160 break;
1161 }
1162 } else {
1163 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1164 }
1165 }
1166
1167 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1168 if (algo_strength & SSL_DEFAULT_MASK) {
1169 algo_strength &=
1170 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1171 ~SSL_DEFAULT_MASK;
1172 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1173 found = 0;
1174 break;
1175 }
1176 } else {
1177 algo_strength |=
1178 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1179 }
1180 }
1181
1182 if (ca_list[j]->valid) {
1183 /*
1184 * explicit ciphersuite found; its protocol version does not
1185 * become part of the search pattern!
1186 */
1187
1188 cipher_id = ca_list[j]->id;
1189 } else {
1190 /*
1191 * not an explicit ciphersuite; only in this case, the
1192 * protocol version is considered part of the search pattern
1193 */
1194
1195 if (ca_list[j]->min_tls) {
1196 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1197 found = 0;
1198 break;
1199 } else {
1200 min_tls = ca_list[j]->min_tls;
1201 }
1202 }
1203 }
1204
1205 if (!multi)
1206 break;
1207 }
1208
1209 /*
1210 * Ok, we have the rule, now apply it
1211 */
1212 if (rule == CIPHER_SPECIAL) { /* special command */
1213 ok = 0;
1214 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1215 ok = ssl_cipher_strength_sort(head_p, tail_p);
1216 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1217 int level = buf[9] - '0';
1218 if (level < 0 || level > 5) {
1219 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1220 } else {
1221 c->sec_level = level;
1222 ok = 1;
1223 }
1224 } else {
1225 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1226 }
1227 if (ok == 0)
1228 retval = 0;
1229 /*
1230 * We do not support any "multi" options
1231 * together with "@", so throw away the
1232 * rest of the command, if any left, until
1233 * end or ':' is found.
1234 */
1235 while ((*l != '\0') && !ITEM_SEP(*l))
1236 l++;
1237 } else if (found) {
1238 ssl_cipher_apply_rule(cipher_id,
1239 alg_mkey, alg_auth, alg_enc, alg_mac,
1240 min_tls, algo_strength, rule, -1, head_p,
1241 tail_p);
1242 } else {
1243 while ((*l != '\0') && !ITEM_SEP(*l))
1244 l++;
1245 }
1246 if (*l == '\0')
1247 break; /* done */
1248 }
1249
1250 return retval;
1251}
1252
1253static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1254 const char **prule_str)
1255{
1256 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1257 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1258 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1259 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1260 suiteb_comb2 = 1;
1261 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1262 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1263 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1264 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1265 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1266 }
1267
1268 if (suiteb_flags) {
1269 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1270 c->cert_flags |= suiteb_flags;
1271 } else {
1272 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1273 }
1274
1275 if (!suiteb_flags)
1276 return 1;
1277 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1278
1279 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1280 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1281 return 0;
1282 }
1283
1284 switch (suiteb_flags) {
1285 case SSL_CERT_FLAG_SUITEB_128_LOS:
1286 if (suiteb_comb2)
1287 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1288 else
1289 *prule_str =
1290 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1291 break;
1292 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1293 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1294 break;
1295 case SSL_CERT_FLAG_SUITEB_192_LOS:
1296 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1297 break;
1298 }
1299 return 1;
1300}
1301
1302static int ciphersuite_cb(const char *elem, int len, void *arg)
1303{
1304 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1305 const SSL_CIPHER *cipher;
1306 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1307 char name[80];
1308
1309 if (len > (int)(sizeof(name) - 1))
1310 /* Anyway return 1 so we can parse rest of the list */
1311 return 1;
1312
1313 memcpy(name, elem, len);
1314 name[len] = '\0';
1315
1316 cipher = ssl3_get_cipher_by_std_name(name);
1317 if (cipher == NULL)
1318 /* Ciphersuite not found but return 1 to parse rest of the list */
1319 return 1;
1320
1321 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1322 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1323 return 0;
1324 }
1325
1326 return 1;
1327}
1328
1329static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1330{
1331 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1332
1333 if (newciphers == NULL)
1334 return 0;
1335
1336 /* Parse the list. We explicitly allow an empty list */
1337 if (*str != '\0'
1338 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1339 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1340 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1341 sk_SSL_CIPHER_free(newciphers);
1342 return 0;
1343 }
1344 sk_SSL_CIPHER_free(*currciphers);
1345 *currciphers = newciphers;
1346
1347 return 1;
1348}
1349
1350static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1351 STACK_OF(SSL_CIPHER) *cipherstack)
1352{
1353 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1354
1355 if (tmp_cipher_list == NULL) {
1356 return 0;
1357 }
1358
1359 sk_SSL_CIPHER_free(*cipher_list_by_id);
1360 *cipher_list_by_id = tmp_cipher_list;
1361
1362 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1363 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1364
1365 return 1;
1366}
1367
1368static int update_cipher_list(SSL_CTX *ctx,
1369 STACK_OF(SSL_CIPHER) **cipher_list,
1370 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1371 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1372{
1373 int i;
1374 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1375
1376 if (tmp_cipher_list == NULL)
1377 return 0;
1378
1379 /*
1380 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1381 * list.
1382 */
1383 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1384 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1385 == TLS1_3_VERSION)
1386 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1387
1388 /* Insert the new TLSv1.3 ciphersuites */
1389 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1390 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1391
1392 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1393 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1394 && (ssl_cipher_table_mac[sslc->algorithm2
1395 & SSL_HANDSHAKE_MAC_MASK].mask
1396 & ctx->disabled_mac_mask) == 0) {
1397 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1398 }
1399 }
1400
1401 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1402 sk_SSL_CIPHER_free(tmp_cipher_list);
1403 return 0;
1404 }
1405
1406 sk_SSL_CIPHER_free(*cipher_list);
1407 *cipher_list = tmp_cipher_list;
1408
1409 return 1;
1410}
1411
1412int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1413{
1414 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1415
1416 if (ret && ctx->cipher_list != NULL)
1417 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1418 ctx->tls13_ciphersuites);
1419
1420 return ret;
1421}
1422
1423int SSL_set_ciphersuites(SSL *s, const char *str)
1424{
1425 STACK_OF(SSL_CIPHER) *cipher_list;
1426 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1427
1428 if (s->cipher_list == NULL) {
1429 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1430 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1431 }
1432 if (ret && s->cipher_list != NULL)
1433 return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id,
1434 s->tls13_ciphersuites);
1435
1436 return ret;
1437}
1438
1439STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1440 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1441 STACK_OF(SSL_CIPHER) **cipher_list,
1442 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1443 const char *rule_str,
1444 CERT *c)
1445{
1446 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1447 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1448 STACK_OF(SSL_CIPHER) *cipherstack;
1449 const char *rule_p;
1450 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1451 const SSL_CIPHER **ca_list = NULL;
1452 const SSL_METHOD *ssl_method = ctx->method;
1453
1454 /*
1455 * Return with error if nothing to do.
1456 */
1457 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1458 return NULL;
1459
1460 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1461 return NULL;
1462
1463 /*
1464 * To reduce the work to do we only want to process the compiled
1465 * in algorithms, so we first get the mask of disabled ciphers.
1466 */
1467
1468 disabled_mkey = ctx->disabled_mkey_mask;
1469 disabled_auth = ctx->disabled_auth_mask;
1470 disabled_enc = ctx->disabled_enc_mask;
1471 disabled_mac = ctx->disabled_mac_mask;
1472
1473 /*
1474 * Now we have to collect the available ciphers from the compiled
1475 * in ciphers. We cannot get more than the number compiled in, so
1476 * it is used for allocation.
1477 */
1478 num_of_ciphers = ssl_method->num_ciphers();
1479
1480 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1481 if (co_list == NULL) {
1482 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1483 return NULL; /* Failure */
1484 }
1485
1486 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1487 disabled_mkey, disabled_auth, disabled_enc,
1488 disabled_mac, co_list, &head, &tail);
1489
1490 /* Now arrange all ciphers by preference. */
1491
1492 /*
1493 * Everything else being equal, prefer ephemeral ECDH over other key
1494 * exchange mechanisms.
1495 * For consistency, prefer ECDSA over RSA (though this only matters if the
1496 * server has both certificates, and is using the DEFAULT, or a client
1497 * preference).
1498 */
1499 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1500 -1, &head, &tail);
1501 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1502 &tail);
1503 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1504 &tail);
1505
1506 /* Within each strength group, we prefer GCM over CHACHA... */
1507 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1508 &head, &tail);
1509 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1510 &head, &tail);
1511
1512 /*
1513 * ...and generally, our preferred cipher is AES.
1514 * Note that AEADs will be bumped to take preference after sorting by
1515 * strength.
1516 */
1517 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1518 -1, &head, &tail);
1519
1520 /* Temporarily enable everything else for sorting */
1521 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1522
1523 /* Low priority for MD5 */
1524 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1525 &tail);
1526
1527 /*
1528 * Move anonymous ciphers to the end. Usually, these will remain
1529 * disabled. (For applications that allow them, they aren't too bad, but
1530 * we prefer authenticated ciphers.)
1531 */
1532 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1533 &tail);
1534
1535 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1536 &tail);
1537 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1538 &tail);
1539
1540 /* RC4 is sort-of broken -- move to the end */
1541 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1542 &tail);
1543
1544 /*
1545 * Now sort by symmetric encryption strength. The above ordering remains
1546 * in force within each class
1547 */
1548 if (!ssl_cipher_strength_sort(&head, &tail)) {
1549 OPENSSL_free(co_list);
1550 return NULL;
1551 }
1552
1553 /*
1554 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1555 */
1556 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1557 &head, &tail);
1558
1559 /*
1560 * Irrespective of strength, enforce the following order:
1561 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1562 * Within each group, ciphers remain sorted by strength and previous
1563 * preference, i.e.,
1564 * 1) ECDHE > DHE
1565 * 2) GCM > CHACHA
1566 * 3) AES > rest
1567 * 4) TLS 1.2 > legacy
1568 *
1569 * Because we now bump ciphers to the top of the list, we proceed in
1570 * reverse order of preference.
1571 */
1572 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1573 &head, &tail);
1574 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1575 CIPHER_BUMP, -1, &head, &tail);
1576 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1577 CIPHER_BUMP, -1, &head, &tail);
1578
1579 /* Now disable everything (maintaining the ordering!) */
1580 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1581
1582 /*
1583 * We also need cipher aliases for selecting based on the rule_str.
1584 * There might be two types of entries in the rule_str: 1) names
1585 * of ciphers themselves 2) aliases for groups of ciphers.
1586 * For 1) we need the available ciphers and for 2) the cipher
1587 * groups of cipher_aliases added together in one list (otherwise
1588 * we would be happy with just the cipher_aliases table).
1589 */
1590 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1591 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1592 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1593 if (ca_list == NULL) {
1594 OPENSSL_free(co_list);
1595 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1596 return NULL; /* Failure */
1597 }
1598 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1599 disabled_mkey, disabled_auth, disabled_enc,
1600 disabled_mac, head);
1601
1602 /*
1603 * If the rule_string begins with DEFAULT, apply the default rule
1604 * before using the (possibly available) additional rules.
1605 */
1606 ok = 1;
1607 rule_p = rule_str;
1608 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1609 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1610 &head, &tail, ca_list, c);
1611 rule_p += 7;
1612 if (*rule_p == ':')
1613 rule_p++;
1614 }
1615
1616 if (ok && (rule_p[0] != '\0'))
1617 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1618
1619 OPENSSL_free(ca_list); /* Not needed anymore */
1620
1621 if (!ok) { /* Rule processing failure */
1622 OPENSSL_free(co_list);
1623 return NULL;
1624 }
1625
1626 /*
1627 * Allocate new "cipherstack" for the result, return with error
1628 * if we cannot get one.
1629 */
1630 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1631 OPENSSL_free(co_list);
1632 return NULL;
1633 }
1634
1635 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1636 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1637 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1638
1639 /* Don't include any TLSv1.3 ciphers that are disabled */
1640 if ((sslc->algorithm_enc & disabled_enc) != 0
1641 || (ssl_cipher_table_mac[sslc->algorithm2
1642 & SSL_HANDSHAKE_MAC_MASK].mask
1643 & ctx->disabled_mac_mask) != 0) {
1644 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1645 i--;
1646 continue;
1647 }
1648
1649 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1650 OPENSSL_free(co_list);
1651 sk_SSL_CIPHER_free(cipherstack);
1652 return NULL;
1653 }
1654 }
1655
1656 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1657 BIO_printf(trc_out, "cipher selection:\n");
1658 }
1659 /*
1660 * The cipher selection for the list is done. The ciphers are added
1661 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1662 */
1663 for (curr = head; curr != NULL; curr = curr->next) {
1664 if (curr->active) {
1665 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1666 OPENSSL_free(co_list);
1667 sk_SSL_CIPHER_free(cipherstack);
1668 OSSL_TRACE_CANCEL(TLS_CIPHER);
1669 return NULL;
1670 }
1671 if (trc_out != NULL)
1672 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1673 }
1674 }
1675 OPENSSL_free(co_list); /* Not needed any longer */
1676 OSSL_TRACE_END(TLS_CIPHER);
1677
1678 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1679 sk_SSL_CIPHER_free(cipherstack);
1680 return NULL;
1681 }
1682 sk_SSL_CIPHER_free(*cipher_list);
1683 *cipher_list = cipherstack;
1684
1685 return cipherstack;
1686}
1687
1688char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1689{
1690 const char *ver;
1691 const char *kx, *au, *enc, *mac;
1692 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1693 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1694
1695 if (buf == NULL) {
1696 len = 128;
1697 if ((buf = OPENSSL_malloc(len)) == NULL) {
1698 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1699 return NULL;
1700 }
1701 } else if (len < 128) {
1702 return NULL;
1703 }
1704
1705 alg_mkey = cipher->algorithm_mkey;
1706 alg_auth = cipher->algorithm_auth;
1707 alg_enc = cipher->algorithm_enc;
1708 alg_mac = cipher->algorithm_mac;
1709
1710 ver = ssl_protocol_to_string(cipher->min_tls);
1711
1712 switch (alg_mkey) {
1713 case SSL_kRSA:
1714 kx = "RSA";
1715 break;
1716 case SSL_kDHE:
1717 kx = "DH";
1718 break;
1719 case SSL_kECDHE:
1720 kx = "ECDH";
1721 break;
1722 case SSL_kPSK:
1723 kx = "PSK";
1724 break;
1725 case SSL_kRSAPSK:
1726 kx = "RSAPSK";
1727 break;
1728 case SSL_kECDHEPSK:
1729 kx = "ECDHEPSK";
1730 break;
1731 case SSL_kDHEPSK:
1732 kx = "DHEPSK";
1733 break;
1734 case SSL_kSRP:
1735 kx = "SRP";
1736 break;
1737 case SSL_kGOST:
1738 kx = "GOST";
1739 break;
1740 case SSL_kGOST18:
1741 kx = "GOST18";
1742 break;
1743 case SSL_kANY:
1744 kx = "any";
1745 break;
1746 default:
1747 kx = "unknown";
1748 }
1749
1750 switch (alg_auth) {
1751 case SSL_aRSA:
1752 au = "RSA";
1753 break;
1754 case SSL_aDSS:
1755 au = "DSS";
1756 break;
1757 case SSL_aNULL:
1758 au = "None";
1759 break;
1760 case SSL_aECDSA:
1761 au = "ECDSA";
1762 break;
1763 case SSL_aPSK:
1764 au = "PSK";
1765 break;
1766 case SSL_aSRP:
1767 au = "SRP";
1768 break;
1769 case SSL_aGOST01:
1770 au = "GOST01";
1771 break;
1772 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1773 case (SSL_aGOST12 | SSL_aGOST01):
1774 au = "GOST12";
1775 break;
1776 case SSL_aANY:
1777 au = "any";
1778 break;
1779 default:
1780 au = "unknown";
1781 break;
1782 }
1783
1784 switch (alg_enc) {
1785 case SSL_DES:
1786 enc = "DES(56)";
1787 break;
1788 case SSL_3DES:
1789 enc = "3DES(168)";
1790 break;
1791 case SSL_RC4:
1792 enc = "RC4(128)";
1793 break;
1794 case SSL_RC2:
1795 enc = "RC2(128)";
1796 break;
1797 case SSL_IDEA:
1798 enc = "IDEA(128)";
1799 break;
1800 case SSL_eNULL:
1801 enc = "None";
1802 break;
1803 case SSL_AES128:
1804 enc = "AES(128)";
1805 break;
1806 case SSL_AES256:
1807 enc = "AES(256)";
1808 break;
1809 case SSL_AES128GCM:
1810 enc = "AESGCM(128)";
1811 break;
1812 case SSL_AES256GCM:
1813 enc = "AESGCM(256)";
1814 break;
1815 case SSL_AES128CCM:
1816 enc = "AESCCM(128)";
1817 break;
1818 case SSL_AES256CCM:
1819 enc = "AESCCM(256)";
1820 break;
1821 case SSL_AES128CCM8:
1822 enc = "AESCCM8(128)";
1823 break;
1824 case SSL_AES256CCM8:
1825 enc = "AESCCM8(256)";
1826 break;
1827 case SSL_CAMELLIA128:
1828 enc = "Camellia(128)";
1829 break;
1830 case SSL_CAMELLIA256:
1831 enc = "Camellia(256)";
1832 break;
1833 case SSL_ARIA128GCM:
1834 enc = "ARIAGCM(128)";
1835 break;
1836 case SSL_ARIA256GCM:
1837 enc = "ARIAGCM(256)";
1838 break;
1839 case SSL_SEED:
1840 enc = "SEED(128)";
1841 break;
1842 case SSL_eGOST2814789CNT:
1843 case SSL_eGOST2814789CNT12:
1844 enc = "GOST89(256)";
1845 break;
1846 case SSL_MAGMA:
1847 enc = "MAGMA";
1848 break;
1849 case SSL_KUZNYECHIK:
1850 enc = "KUZNYECHIK";
1851 break;
1852 case SSL_CHACHA20POLY1305:
1853 enc = "CHACHA20/POLY1305(256)";
1854 break;
1855 default:
1856 enc = "unknown";
1857 break;
1858 }
1859
1860 switch (alg_mac) {
1861 case SSL_MD5:
1862 mac = "MD5";
1863 break;
1864 case SSL_SHA1:
1865 mac = "SHA1";
1866 break;
1867 case SSL_SHA256:
1868 mac = "SHA256";
1869 break;
1870 case SSL_SHA384:
1871 mac = "SHA384";
1872 break;
1873 case SSL_AEAD:
1874 mac = "AEAD";
1875 break;
1876 case SSL_GOST89MAC:
1877 case SSL_GOST89MAC12:
1878 mac = "GOST89";
1879 break;
1880 case SSL_GOST94:
1881 mac = "GOST94";
1882 break;
1883 case SSL_GOST12_256:
1884 case SSL_GOST12_512:
1885 mac = "GOST2012";
1886 break;
1887 default:
1888 mac = "unknown";
1889 break;
1890 }
1891
1892 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1893
1894 return buf;
1895}
1896
1897const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1898{
1899 if (c == NULL)
1900 return "(NONE)";
1901
1902 /*
1903 * Backwards-compatibility crutch. In almost all contexts we report TLS
1904 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1905 */
1906 if (c->min_tls == TLS1_VERSION)
1907 return "TLSv1.0";
1908 return ssl_protocol_to_string(c->min_tls);
1909}
1910
1911/* return the actual cipher being used */
1912const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1913{
1914 if (c != NULL)
1915 return c->name;
1916 return "(NONE)";
1917}
1918
1919/* return the actual cipher being used in RFC standard name */
1920const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1921{
1922 if (c != NULL)
1923 return c->stdname;
1924 return "(NONE)";
1925}
1926
1927/* return the OpenSSL name based on given RFC standard name */
1928const char *OPENSSL_cipher_name(const char *stdname)
1929{
1930 const SSL_CIPHER *c;
1931
1932 if (stdname == NULL)
1933 return "(NONE)";
1934 c = ssl3_get_cipher_by_std_name(stdname);
1935 return SSL_CIPHER_get_name(c);
1936}
1937
1938/* number of bits for symmetric cipher */
1939int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1940{
1941 int ret = 0;
1942
1943 if (c != NULL) {
1944 if (alg_bits != NULL)
1945 *alg_bits = (int)c->alg_bits;
1946 ret = (int)c->strength_bits;
1947 }
1948 return ret;
1949}
1950
1951uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1952{
1953 return c->id;
1954}
1955
1956uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1957{
1958 return c->id & 0xFFFF;
1959}
1960
1961SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1962{
1963 SSL_COMP *ctmp;
1964 int i, nn;
1965
1966 if ((n == 0) || (sk == NULL))
1967 return NULL;
1968 nn = sk_SSL_COMP_num(sk);
1969 for (i = 0; i < nn; i++) {
1970 ctmp = sk_SSL_COMP_value(sk, i);
1971 if (ctmp->id == n)
1972 return ctmp;
1973 }
1974 return NULL;
1975}
1976
1977#ifdef OPENSSL_NO_COMP
1978STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1979{
1980 return NULL;
1981}
1982
1983STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1984 *meths)
1985{
1986 return meths;
1987}
1988
1989int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1990{
1991 return 1;
1992}
1993
1994#else
1995STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1996{
1997 load_builtin_compressions();
1998 return ssl_comp_methods;
1999}
2000
2001STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2002 *meths)
2003{
2004 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2005 ssl_comp_methods = meths;
2006 return old_meths;
2007}
2008
2009static void cmeth_free(SSL_COMP *cm)
2010{
2011 OPENSSL_free(cm);
2012}
2013
2014void ssl_comp_free_compression_methods_int(void)
2015{
2016 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2017 ssl_comp_methods = NULL;
2018 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2019}
2020
2021int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2022{
2023 SSL_COMP *comp;
2024
2025 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2026 return 1;
2027
2028 /*-
2029 * According to draft-ietf-tls-compression-04.txt, the
2030 * compression number ranges should be the following:
2031 *
2032 * 0 to 63: methods defined by the IETF
2033 * 64 to 192: external party methods assigned by IANA
2034 * 193 to 255: reserved for private use
2035 */
2036 if (id < 193 || id > 255) {
2037 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2038 return 1;
2039 }
2040
2041 comp = OPENSSL_malloc(sizeof(*comp));
2042 if (comp == NULL) {
2043 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2044 return 1;
2045 }
2046
2047 comp->id = id;
2048 comp->method = cm;
2049 load_builtin_compressions();
2050 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2051 OPENSSL_free(comp);
2052 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2053 return 1;
2054 }
2055 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2056 OPENSSL_free(comp);
2057 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2058 return 1;
2059 }
2060 return 0;
2061}
2062#endif
2063
2064const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2065{
2066#ifndef OPENSSL_NO_COMP
2067 return comp ? COMP_get_name(comp) : NULL;
2068#else
2069 return NULL;
2070#endif
2071}
2072
2073const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2074{
2075#ifndef OPENSSL_NO_COMP
2076 return comp->name;
2077#else
2078 return NULL;
2079#endif
2080}
2081
2082int SSL_COMP_get_id(const SSL_COMP *comp)
2083{
2084#ifndef OPENSSL_NO_COMP
2085 return comp->id;
2086#else
2087 return -1;
2088#endif
2089}
2090
2091const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2092 int all)
2093{
2094 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2095
2096 if (c == NULL || (!all && c->valid == 0))
2097 return NULL;
2098 return c;
2099}
2100
2101const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2102{
2103 return ssl->method->get_cipher_by_char(ptr);
2104}
2105
2106int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2107{
2108 int i;
2109 if (c == NULL)
2110 return NID_undef;
2111 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2112 if (i == -1)
2113 return NID_undef;
2114 return ssl_cipher_table_cipher[i].nid;
2115}
2116
2117int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2118{
2119 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2120
2121 if (i == -1)
2122 return NID_undef;
2123 return ssl_cipher_table_mac[i].nid;
2124}
2125
2126int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2127{
2128 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2129
2130 if (i == -1)
2131 return NID_undef;
2132 return ssl_cipher_table_kx[i].nid;
2133}
2134
2135int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2136{
2137 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2138
2139 if (i == -1)
2140 return NID_undef;
2141 return ssl_cipher_table_auth[i].nid;
2142}
2143
2144const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2145{
2146 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2147
2148 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2149 return NULL;
2150 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2151}
2152
2153int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2154{
2155 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2156}
2157
2158int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2159 size_t *int_overhead, size_t *blocksize,
2160 size_t *ext_overhead)
2161{
2162 size_t mac = 0, in = 0, blk = 0, out = 0;
2163
2164 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2165 * because there are no handy #defines for those. */
2166 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2167 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2168 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2169 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2170 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2171 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2172 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2173 out = 16;
2174 } else if (c->algorithm_mac & SSL_AEAD) {
2175 /* We're supposed to have handled all the AEAD modes above */
2176 return 0;
2177 } else {
2178 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2179 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2180 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2181
2182 if (e_md == NULL)
2183 return 0;
2184
2185 mac = EVP_MD_get_size(e_md);
2186 if (c->algorithm_enc != SSL_eNULL) {
2187 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2188 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2189
2190 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2191 known CBC cipher. */
2192 if (e_ciph == NULL ||
2193 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2194 return 0;
2195
2196 in = 1; /* padding length byte */
2197 out = EVP_CIPHER_get_iv_length(e_ciph);
2198 blk = EVP_CIPHER_get_block_size(e_ciph);
2199 }
2200 }
2201
2202 *mac_overhead = mac;
2203 *int_overhead = in;
2204 *blocksize = blk;
2205 *ext_overhead = out;
2206
2207 return 1;
2208}
2209
2210int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2211{
2212 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2213
2214 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2215 return 1;
2216 return 0;
2217}
2218
2219/*
2220 * Default list of TLSv1.2 (and earlier) ciphers
2221 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2222 * Update both macro and function simultaneously
2223 */
2224const char *OSSL_default_cipher_list(void)
2225{
2226 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2227}
2228
2229/*
2230 * Default list of TLSv1.3 (and later) ciphers
2231 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2232 * Update both macro and function simultaneously
2233 */
2234const char *OSSL_default_ciphersuites(void)
2235{
2236 return "TLS_AES_256_GCM_SHA384:"
2237 "TLS_CHACHA20_POLY1305_SHA256:"
2238 "TLS_AES_128_GCM_SHA256";
2239}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette