VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.7/ssl/t1_lib.c@ 97673

最後變更 在這個檔案從97673是 97372,由 vboxsync 提交於 2 年 前

libs: Switch to openssl-3.0.7, bugref:10317

檔案大小: 109.9 KB
 
1/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "e_os.h"
12#include <stdlib.h>
13#include <openssl/objects.h>
14#include <openssl/evp.h>
15#include <openssl/hmac.h>
16#include <openssl/core_names.h>
17#include <openssl/ocsp.h>
18#include <openssl/conf.h>
19#include <openssl/x509v3.h>
20#include <openssl/dh.h>
21#include <openssl/bn.h>
22#include <openssl/provider.h>
23#include <openssl/param_build.h>
24#include "internal/nelem.h"
25#include "internal/sizes.h"
26#include "internal/tlsgroups.h"
27#include "ssl_local.h"
28#include <openssl/ct.h>
29
30static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33SSL3_ENC_METHOD const TLSv1_enc_data = {
34 tls1_enc,
35 tls1_mac,
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48};
49
50SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_enc,
52 tls1_mac,
53 tls1_setup_key_block,
54 tls1_generate_master_secret,
55 tls1_change_cipher_state,
56 tls1_final_finish_mac,
57 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59 tls1_alert_code,
60 tls1_export_keying_material,
61 SSL_ENC_FLAG_EXPLICIT_IV,
62 ssl3_set_handshake_header,
63 tls_close_construct_packet,
64 ssl3_handshake_write
65};
66
67SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68 tls1_enc,
69 tls1_mac,
70 tls1_setup_key_block,
71 tls1_generate_master_secret,
72 tls1_change_cipher_state,
73 tls1_final_finish_mac,
74 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76 tls1_alert_code,
77 tls1_export_keying_material,
78 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80 ssl3_set_handshake_header,
81 tls_close_construct_packet,
82 ssl3_handshake_write
83};
84
85SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86 tls13_enc,
87 tls1_mac,
88 tls13_setup_key_block,
89 tls13_generate_master_secret,
90 tls13_change_cipher_state,
91 tls13_final_finish_mac,
92 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94 tls13_alert_code,
95 tls13_export_keying_material,
96 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97 ssl3_set_handshake_header,
98 tls_close_construct_packet,
99 ssl3_handshake_write
100};
101
102long tls1_default_timeout(void)
103{
104 /*
105 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106 * http, the cache would over fill
107 */
108 return (60 * 60 * 2);
109}
110
111int tls1_new(SSL *s)
112{
113 if (!ssl3_new(s))
114 return 0;
115 if (!s->method->ssl_clear(s))
116 return 0;
117
118 return 1;
119}
120
121void tls1_free(SSL *s)
122{
123 OPENSSL_free(s->ext.session_ticket);
124 ssl3_free(s);
125}
126
127int tls1_clear(SSL *s)
128{
129 if (!ssl3_clear(s))
130 return 0;
131
132 if (s->method->version == TLS_ANY_VERSION)
133 s->version = TLS_MAX_VERSION_INTERNAL;
134 else
135 s->version = s->method->version;
136
137 return 1;
138}
139
140/* Legacy NID to group_id mapping. Only works for groups we know about */
141static struct {
142 int nid;
143 uint16_t group_id;
144} nid_to_group[] = {
145 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
146 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
147 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
148 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
149 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
150 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
151 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
152 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
153 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
154 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
155 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
156 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
157 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
158 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
159 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
160 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
161 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
162 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
163 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
164 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
165 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
166 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
167 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
168 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
169 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
170 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
171 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
172 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
173 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
174 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
175 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
176 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
177 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
178 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
179 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
180 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
181 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
182 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
183 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
184 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
185 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
186 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
187};
188
189static const unsigned char ecformats_default[] = {
190 TLSEXT_ECPOINTFORMAT_uncompressed,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193};
194
195/* The default curves */
196static const uint16_t supported_groups_default[] = {
197 29, /* X25519 (29) */
198 23, /* secp256r1 (23) */
199 30, /* X448 (30) */
200 25, /* secp521r1 (25) */
201 24, /* secp384r1 (24) */
202 34, /* GC256A (34) */
203 35, /* GC256B (35) */
204 36, /* GC256C (36) */
205 37, /* GC256D (37) */
206 38, /* GC512A (38) */
207 39, /* GC512B (39) */
208 40, /* GC512C (40) */
209 0x100, /* ffdhe2048 (0x100) */
210 0x101, /* ffdhe3072 (0x101) */
211 0x102, /* ffdhe4096 (0x102) */
212 0x103, /* ffdhe6144 (0x103) */
213 0x104, /* ffdhe8192 (0x104) */
214};
215
216static const uint16_t suiteb_curves[] = {
217 TLSEXT_curve_P_256,
218 TLSEXT_curve_P_384
219};
220
221struct provider_group_data_st {
222 SSL_CTX *ctx;
223 OSSL_PROVIDER *provider;
224};
225
226#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
227static OSSL_CALLBACK add_provider_groups;
228static int add_provider_groups(const OSSL_PARAM params[], void *data)
229{
230 struct provider_group_data_st *pgd = data;
231 SSL_CTX *ctx = pgd->ctx;
232 OSSL_PROVIDER *provider = pgd->provider;
233 const OSSL_PARAM *p;
234 TLS_GROUP_INFO *ginf = NULL;
235 EVP_KEYMGMT *keymgmt;
236 unsigned int gid;
237 unsigned int is_kem = 0;
238 int ret = 0;
239
240 if (ctx->group_list_max_len == ctx->group_list_len) {
241 TLS_GROUP_INFO *tmp = NULL;
242
243 if (ctx->group_list_max_len == 0)
244 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246 else
247 tmp = OPENSSL_realloc(ctx->group_list,
248 (ctx->group_list_max_len
249 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250 * sizeof(TLS_GROUP_INFO));
251 if (tmp == NULL) {
252 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253 return 0;
254 }
255 ctx->group_list = tmp;
256 memset(tmp + ctx->group_list_max_len,
257 0,
258 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260 }
261
262 ginf = &ctx->group_list[ctx->group_list_len];
263
264 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267 goto err;
268 }
269 ginf->tlsname = OPENSSL_strdup(p->data);
270 if (ginf->tlsname == NULL) {
271 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272 goto err;
273 }
274
275 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278 goto err;
279 }
280 ginf->realname = OPENSSL_strdup(p->data);
281 if (ginf->realname == NULL) {
282 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283 goto err;
284 }
285
286 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289 goto err;
290 }
291 ginf->group_id = (uint16_t)gid;
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->algorithm = OPENSSL_strdup(p->data);
299 if (ginf->algorithm == NULL) {
300 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301 goto err;
302 }
303
304 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307 goto err;
308 }
309
310 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313 goto err;
314 }
315 ginf->is_kem = 1 & is_kem;
316
317 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320 goto err;
321 }
322
323 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326 goto err;
327 }
328
329 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332 goto err;
333 }
334
335 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338 goto err;
339 }
340 /*
341 * Now check that the algorithm is actually usable for our property query
342 * string. Regardless of the result we still return success because we have
343 * successfully processed this group, even though we may decide not to use
344 * it.
345 */
346 ret = 1;
347 ERR_set_mark();
348 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
349 if (keymgmt != NULL) {
350 /*
351 * We have successfully fetched the algorithm - however if the provider
352 * doesn't match this one then we ignore it.
353 *
354 * Note: We're cheating a little here. Technically if the same algorithm
355 * is available from more than one provider then it is undefined which
356 * implementation you will get back. Theoretically this could be
357 * different every time...we assume here that you'll always get the
358 * same one back if you repeat the exact same fetch. Is this a reasonable
359 * assumption to make (in which case perhaps we should document this
360 * behaviour)?
361 */
362 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
363 /* We have a match - so we will use this group */
364 ctx->group_list_len++;
365 ginf = NULL;
366 }
367 EVP_KEYMGMT_free(keymgmt);
368 }
369 ERR_pop_to_mark();
370 err:
371 if (ginf != NULL) {
372 OPENSSL_free(ginf->tlsname);
373 OPENSSL_free(ginf->realname);
374 OPENSSL_free(ginf->algorithm);
375 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
376 }
377 return ret;
378}
379
380static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
381{
382 struct provider_group_data_st pgd;
383
384 pgd.ctx = vctx;
385 pgd.provider = provider;
386 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
387 add_provider_groups, &pgd);
388}
389
390int ssl_load_groups(SSL_CTX *ctx)
391{
392 size_t i, j, num_deflt_grps = 0;
393 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
394
395 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
396 return 0;
397
398 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
399 for (j = 0; j < ctx->group_list_len; j++) {
400 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
401 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
402 break;
403 }
404 }
405 }
406
407 if (num_deflt_grps == 0)
408 return 1;
409
410 ctx->ext.supported_groups_default
411 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
412
413 if (ctx->ext.supported_groups_default == NULL) {
414 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
415 return 0;
416 }
417
418 memcpy(ctx->ext.supported_groups_default,
419 tmp_supp_groups,
420 num_deflt_grps * sizeof(tmp_supp_groups[0]));
421 ctx->ext.supported_groups_default_len = num_deflt_grps;
422
423 return 1;
424}
425
426static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
427{
428 size_t i;
429
430 for (i = 0; i < ctx->group_list_len; i++) {
431 if (strcmp(ctx->group_list[i].tlsname, name) == 0
432 || strcmp(ctx->group_list[i].realname, name) == 0)
433 return ctx->group_list[i].group_id;
434 }
435
436 return 0;
437}
438
439const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
440{
441 size_t i;
442
443 for (i = 0; i < ctx->group_list_len; i++) {
444 if (ctx->group_list[i].group_id == group_id)
445 return &ctx->group_list[i];
446 }
447
448 return NULL;
449}
450
451int tls1_group_id2nid(uint16_t group_id, int include_unknown)
452{
453 size_t i;
454
455 if (group_id == 0)
456 return NID_undef;
457
458 /*
459 * Return well known Group NIDs - for backwards compatibility. This won't
460 * work for groups we don't know about.
461 */
462 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
463 {
464 if (nid_to_group[i].group_id == group_id)
465 return nid_to_group[i].nid;
466 }
467 if (!include_unknown)
468 return NID_undef;
469 return TLSEXT_nid_unknown | (int)group_id;
470}
471
472uint16_t tls1_nid2group_id(int nid)
473{
474 size_t i;
475
476 /*
477 * Return well known Group ids - for backwards compatibility. This won't
478 * work for groups we don't know about.
479 */
480 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
481 {
482 if (nid_to_group[i].nid == nid)
483 return nid_to_group[i].group_id;
484 }
485
486 return 0;
487}
488
489/*
490 * Set *pgroups to the supported groups list and *pgroupslen to
491 * the number of groups supported.
492 */
493void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
494 size_t *pgroupslen)
495{
496 /* For Suite B mode only include P-256, P-384 */
497 switch (tls1_suiteb(s)) {
498 case SSL_CERT_FLAG_SUITEB_128_LOS:
499 *pgroups = suiteb_curves;
500 *pgroupslen = OSSL_NELEM(suiteb_curves);
501 break;
502
503 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
504 *pgroups = suiteb_curves;
505 *pgroupslen = 1;
506 break;
507
508 case SSL_CERT_FLAG_SUITEB_192_LOS:
509 *pgroups = suiteb_curves + 1;
510 *pgroupslen = 1;
511 break;
512
513 default:
514 if (s->ext.supportedgroups == NULL) {
515 *pgroups = s->ctx->ext.supported_groups_default;
516 *pgroupslen = s->ctx->ext.supported_groups_default_len;
517 } else {
518 *pgroups = s->ext.supportedgroups;
519 *pgroupslen = s->ext.supportedgroups_len;
520 }
521 break;
522 }
523}
524
525int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
526 int isec, int *okfortls13)
527{
528 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
529 int ret;
530
531 if (okfortls13 != NULL)
532 *okfortls13 = 0;
533
534 if (ginfo == NULL)
535 return 0;
536
537 if (SSL_IS_DTLS(s)) {
538 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
539 return 0;
540 if (ginfo->maxdtls == 0)
541 ret = 1;
542 else
543 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
544 if (ginfo->mindtls > 0)
545 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
546 } else {
547 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
548 return 0;
549 if (ginfo->maxtls == 0)
550 ret = 1;
551 else
552 ret = (minversion <= ginfo->maxtls);
553 if (ginfo->mintls > 0)
554 ret &= (maxversion >= ginfo->mintls);
555 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
556 *okfortls13 = (ginfo->maxtls == 0)
557 || (ginfo->maxtls >= TLS1_3_VERSION);
558 }
559 ret &= !isec
560 || strcmp(ginfo->algorithm, "EC") == 0
561 || strcmp(ginfo->algorithm, "X25519") == 0
562 || strcmp(ginfo->algorithm, "X448") == 0;
563
564 return ret;
565}
566
567/* See if group is allowed by security callback */
568int tls_group_allowed(SSL *s, uint16_t group, int op)
569{
570 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
571 unsigned char gtmp[2];
572
573 if (ginfo == NULL)
574 return 0;
575
576 gtmp[0] = group >> 8;
577 gtmp[1] = group & 0xff;
578 return ssl_security(s, op, ginfo->secbits,
579 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
580}
581
582/* Return 1 if "id" is in "list" */
583static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
584{
585 size_t i;
586 for (i = 0; i < listlen; i++)
587 if (list[i] == id)
588 return 1;
589 return 0;
590}
591
592/*-
593 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
594 * if there is no match.
595 * For nmatch == -1, return number of matches
596 * For nmatch == -2, return the id of the group to use for
597 * a tmp key, or 0 if there is no match.
598 */
599uint16_t tls1_shared_group(SSL *s, int nmatch)
600{
601 const uint16_t *pref, *supp;
602 size_t num_pref, num_supp, i;
603 int k;
604
605 /* Can't do anything on client side */
606 if (s->server == 0)
607 return 0;
608 if (nmatch == -2) {
609 if (tls1_suiteb(s)) {
610 /*
611 * For Suite B ciphersuite determines curve: we already know
612 * these are acceptable due to previous checks.
613 */
614 unsigned long cid = s->s3.tmp.new_cipher->id;
615
616 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
617 return TLSEXT_curve_P_256;
618 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
619 return TLSEXT_curve_P_384;
620 /* Should never happen */
621 return 0;
622 }
623 /* If not Suite B just return first preference shared curve */
624 nmatch = 0;
625 }
626 /*
627 * If server preference set, our groups are the preference order
628 * otherwise peer decides.
629 */
630 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
631 tls1_get_supported_groups(s, &pref, &num_pref);
632 tls1_get_peer_groups(s, &supp, &num_supp);
633 } else {
634 tls1_get_peer_groups(s, &pref, &num_pref);
635 tls1_get_supported_groups(s, &supp, &num_supp);
636 }
637
638 for (k = 0, i = 0; i < num_pref; i++) {
639 uint16_t id = pref[i];
640
641 if (!tls1_in_list(id, supp, num_supp)
642 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
643 continue;
644 if (nmatch == k)
645 return id;
646 k++;
647 }
648 if (nmatch == -1)
649 return k;
650 /* Out of range (nmatch > k). */
651 return 0;
652}
653
654int tls1_set_groups(uint16_t **pext, size_t *pextlen,
655 int *groups, size_t ngroups)
656{
657 uint16_t *glist;
658 size_t i;
659 /*
660 * Bitmap of groups included to detect duplicates: two variables are added
661 * to detect duplicates as some values are more than 32.
662 */
663 unsigned long *dup_list = NULL;
664 unsigned long dup_list_egrp = 0;
665 unsigned long dup_list_dhgrp = 0;
666
667 if (ngroups == 0) {
668 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
669 return 0;
670 }
671 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
672 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
673 return 0;
674 }
675 for (i = 0; i < ngroups; i++) {
676 unsigned long idmask;
677 uint16_t id;
678 id = tls1_nid2group_id(groups[i]);
679 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
680 goto err;
681 idmask = 1L << (id & 0x00FF);
682 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
683 if (!id || ((*dup_list) & idmask))
684 goto err;
685 *dup_list |= idmask;
686 glist[i] = id;
687 }
688 OPENSSL_free(*pext);
689 *pext = glist;
690 *pextlen = ngroups;
691 return 1;
692err:
693 OPENSSL_free(glist);
694 return 0;
695}
696
697# define GROUPLIST_INCREMENT 40
698# define GROUP_NAME_BUFFER_LENGTH 64
699typedef struct {
700 SSL_CTX *ctx;
701 size_t gidcnt;
702 size_t gidmax;
703 uint16_t *gid_arr;
704} gid_cb_st;
705
706static int gid_cb(const char *elem, int len, void *arg)
707{
708 gid_cb_st *garg = arg;
709 size_t i;
710 uint16_t gid = 0;
711 char etmp[GROUP_NAME_BUFFER_LENGTH];
712
713 if (elem == NULL)
714 return 0;
715 if (garg->gidcnt == garg->gidmax) {
716 uint16_t *tmp =
717 OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
718 if (tmp == NULL)
719 return 0;
720 garg->gidmax += GROUPLIST_INCREMENT;
721 garg->gid_arr = tmp;
722 }
723 if (len > (int)(sizeof(etmp) - 1))
724 return 0;
725 memcpy(etmp, elem, len);
726 etmp[len] = 0;
727
728 gid = tls1_group_name2id(garg->ctx, etmp);
729 if (gid == 0) {
730 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
731 "group '%s' cannot be set", etmp);
732 return 0;
733 }
734 for (i = 0; i < garg->gidcnt; i++)
735 if (garg->gid_arr[i] == gid)
736 return 0;
737 garg->gid_arr[garg->gidcnt++] = gid;
738 return 1;
739}
740
741/* Set groups based on a colon separated list */
742int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
743 const char *str)
744{
745 gid_cb_st gcb;
746 uint16_t *tmparr;
747 int ret = 0;
748
749 gcb.gidcnt = 0;
750 gcb.gidmax = GROUPLIST_INCREMENT;
751 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
752 if (gcb.gid_arr == NULL)
753 return 0;
754 gcb.ctx = ctx;
755 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
756 goto end;
757 if (pext == NULL) {
758 ret = 1;
759 goto end;
760 }
761
762 /*
763 * gid_cb ensurse there are no duplicates so we can just go ahead and set
764 * the result
765 */
766 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
767 if (tmparr == NULL)
768 goto end;
769 *pext = tmparr;
770 *pextlen = gcb.gidcnt;
771 ret = 1;
772 end:
773 OPENSSL_free(gcb.gid_arr);
774 return ret;
775}
776
777/* Check a group id matches preferences */
778int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
779 {
780 const uint16_t *groups;
781 size_t groups_len;
782
783 if (group_id == 0)
784 return 0;
785
786 /* Check for Suite B compliance */
787 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
788 unsigned long cid = s->s3.tmp.new_cipher->id;
789
790 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
791 if (group_id != TLSEXT_curve_P_256)
792 return 0;
793 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
794 if (group_id != TLSEXT_curve_P_384)
795 return 0;
796 } else {
797 /* Should never happen */
798 return 0;
799 }
800 }
801
802 if (check_own_groups) {
803 /* Check group is one of our preferences */
804 tls1_get_supported_groups(s, &groups, &groups_len);
805 if (!tls1_in_list(group_id, groups, groups_len))
806 return 0;
807 }
808
809 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
810 return 0;
811
812 /* For clients, nothing more to check */
813 if (!s->server)
814 return 1;
815
816 /* Check group is one of peers preferences */
817 tls1_get_peer_groups(s, &groups, &groups_len);
818
819 /*
820 * RFC 4492 does not require the supported elliptic curves extension
821 * so if it is not sent we can just choose any curve.
822 * It is invalid to send an empty list in the supported groups
823 * extension, so groups_len == 0 always means no extension.
824 */
825 if (groups_len == 0)
826 return 1;
827 return tls1_in_list(group_id, groups, groups_len);
828}
829
830void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
831 size_t *num_formats)
832{
833 /*
834 * If we have a custom point format list use it otherwise use default
835 */
836 if (s->ext.ecpointformats) {
837 *pformats = s->ext.ecpointformats;
838 *num_formats = s->ext.ecpointformats_len;
839 } else {
840 *pformats = ecformats_default;
841 /* For Suite B we don't support char2 fields */
842 if (tls1_suiteb(s))
843 *num_formats = sizeof(ecformats_default) - 1;
844 else
845 *num_formats = sizeof(ecformats_default);
846 }
847}
848
849/* Check a key is compatible with compression extension */
850static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
851{
852 unsigned char comp_id;
853 size_t i;
854 int point_conv;
855
856 /* If not an EC key nothing to check */
857 if (!EVP_PKEY_is_a(pkey, "EC"))
858 return 1;
859
860
861 /* Get required compression id */
862 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
863 if (point_conv == 0)
864 return 0;
865 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
866 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
867 } else if (SSL_IS_TLS13(s)) {
868 /*
869 * ec_point_formats extension is not used in TLSv1.3 so we ignore
870 * this check.
871 */
872 return 1;
873 } else {
874 int field_type = EVP_PKEY_get_field_type(pkey);
875
876 if (field_type == NID_X9_62_prime_field)
877 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
878 else if (field_type == NID_X9_62_characteristic_two_field)
879 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
880 else
881 return 0;
882 }
883 /*
884 * If point formats extension present check it, otherwise everything is
885 * supported (see RFC4492).
886 */
887 if (s->ext.peer_ecpointformats == NULL)
888 return 1;
889
890 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
891 if (s->ext.peer_ecpointformats[i] == comp_id)
892 return 1;
893 }
894 return 0;
895}
896
897/* Return group id of a key */
898static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
899{
900 int curve_nid = ssl_get_EC_curve_nid(pkey);
901
902 if (curve_nid == NID_undef)
903 return 0;
904 return tls1_nid2group_id(curve_nid);
905}
906
907/*
908 * Check cert parameters compatible with extensions: currently just checks EC
909 * certificates have compatible curves and compression.
910 */
911static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
912{
913 uint16_t group_id;
914 EVP_PKEY *pkey;
915 pkey = X509_get0_pubkey(x);
916 if (pkey == NULL)
917 return 0;
918 /* If not EC nothing to do */
919 if (!EVP_PKEY_is_a(pkey, "EC"))
920 return 1;
921 /* Check compression */
922 if (!tls1_check_pkey_comp(s, pkey))
923 return 0;
924 group_id = tls1_get_group_id(pkey);
925 /*
926 * For a server we allow the certificate to not be in our list of supported
927 * groups.
928 */
929 if (!tls1_check_group_id(s, group_id, !s->server))
930 return 0;
931 /*
932 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
933 * SHA384+P-384.
934 */
935 if (check_ee_md && tls1_suiteb(s)) {
936 int check_md;
937 size_t i;
938
939 /* Check to see we have necessary signing algorithm */
940 if (group_id == TLSEXT_curve_P_256)
941 check_md = NID_ecdsa_with_SHA256;
942 else if (group_id == TLSEXT_curve_P_384)
943 check_md = NID_ecdsa_with_SHA384;
944 else
945 return 0; /* Should never happen */
946 for (i = 0; i < s->shared_sigalgslen; i++) {
947 if (check_md == s->shared_sigalgs[i]->sigandhash)
948 return 1;;
949 }
950 return 0;
951 }
952 return 1;
953}
954
955/*
956 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
957 * @s: SSL connection
958 * @cid: Cipher ID we're considering using
959 *
960 * Checks that the kECDHE cipher suite we're considering using
961 * is compatible with the client extensions.
962 *
963 * Returns 0 when the cipher can't be used or 1 when it can.
964 */
965int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
966{
967 /* If not Suite B just need a shared group */
968 if (!tls1_suiteb(s))
969 return tls1_shared_group(s, 0) != 0;
970 /*
971 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
972 * curves permitted.
973 */
974 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
975 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
976 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
977 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
978
979 return 0;
980}
981
982/* Default sigalg schemes */
983static const uint16_t tls12_sigalgs[] = {
984 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
985 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
986 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
987 TLSEXT_SIGALG_ed25519,
988 TLSEXT_SIGALG_ed448,
989
990 TLSEXT_SIGALG_rsa_pss_pss_sha256,
991 TLSEXT_SIGALG_rsa_pss_pss_sha384,
992 TLSEXT_SIGALG_rsa_pss_pss_sha512,
993 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
994 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
995 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
996
997 TLSEXT_SIGALG_rsa_pkcs1_sha256,
998 TLSEXT_SIGALG_rsa_pkcs1_sha384,
999 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1000
1001 TLSEXT_SIGALG_ecdsa_sha224,
1002 TLSEXT_SIGALG_ecdsa_sha1,
1003
1004 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1005 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1006
1007 TLSEXT_SIGALG_dsa_sha224,
1008 TLSEXT_SIGALG_dsa_sha1,
1009
1010 TLSEXT_SIGALG_dsa_sha256,
1011 TLSEXT_SIGALG_dsa_sha384,
1012 TLSEXT_SIGALG_dsa_sha512,
1013
1014#ifndef OPENSSL_NO_GOST
1015 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1016 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1017 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1018 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1019 TLSEXT_SIGALG_gostr34102001_gostr3411,
1020#endif
1021};
1022
1023
1024static const uint16_t suiteb_sigalgs[] = {
1025 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1026 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1027};
1028
1029static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1030 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1031 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1032 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1033 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1034 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1035 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1036 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1037 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1038 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1039 {"ed25519", TLSEXT_SIGALG_ed25519,
1040 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1041 NID_undef, NID_undef, 1},
1042 {"ed448", TLSEXT_SIGALG_ed448,
1043 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1044 NID_undef, NID_undef, 1},
1045 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1046 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1047 NID_ecdsa_with_SHA224, NID_undef, 1},
1048 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1049 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1050 NID_ecdsa_with_SHA1, NID_undef, 1},
1051 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1052 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1053 NID_undef, NID_undef, 1},
1054 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1055 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1056 NID_undef, NID_undef, 1},
1057 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1058 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1059 NID_undef, NID_undef, 1},
1060 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1061 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1062 NID_undef, NID_undef, 1},
1063 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1064 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1065 NID_undef, NID_undef, 1},
1066 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1067 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1068 NID_undef, NID_undef, 1},
1069 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1070 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1071 NID_sha256WithRSAEncryption, NID_undef, 1},
1072 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1073 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1074 NID_sha384WithRSAEncryption, NID_undef, 1},
1075 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1076 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1077 NID_sha512WithRSAEncryption, NID_undef, 1},
1078 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1079 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1080 NID_sha224WithRSAEncryption, NID_undef, 1},
1081 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1082 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1083 NID_sha1WithRSAEncryption, NID_undef, 1},
1084 {NULL, TLSEXT_SIGALG_dsa_sha256,
1085 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1086 NID_dsa_with_SHA256, NID_undef, 1},
1087 {NULL, TLSEXT_SIGALG_dsa_sha384,
1088 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1089 NID_undef, NID_undef, 1},
1090 {NULL, TLSEXT_SIGALG_dsa_sha512,
1091 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1092 NID_undef, NID_undef, 1},
1093 {NULL, TLSEXT_SIGALG_dsa_sha224,
1094 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1095 NID_undef, NID_undef, 1},
1096 {NULL, TLSEXT_SIGALG_dsa_sha1,
1097 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1098 NID_dsaWithSHA1, NID_undef, 1},
1099#ifndef OPENSSL_NO_GOST
1100 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1101 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1102 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1103 NID_undef, NID_undef, 1},
1104 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1105 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1106 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1107 NID_undef, NID_undef, 1},
1108 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1109 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1110 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1111 NID_undef, NID_undef, 1},
1112 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1113 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1114 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1115 NID_undef, NID_undef, 1},
1116 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1117 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1118 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1119 NID_undef, NID_undef, 1}
1120#endif
1121};
1122/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1123static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1124 "rsa_pkcs1_md5_sha1", 0,
1125 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1126 EVP_PKEY_RSA, SSL_PKEY_RSA,
1127 NID_undef, NID_undef, 1
1128};
1129
1130/*
1131 * Default signature algorithm values used if signature algorithms not present.
1132 * From RFC5246. Note: order must match certificate index order.
1133 */
1134static const uint16_t tls_default_sigalg[] = {
1135 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1136 0, /* SSL_PKEY_RSA_PSS_SIGN */
1137 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1138 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1139 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1140 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1141 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1142 0, /* SSL_PKEY_ED25519 */
1143 0, /* SSL_PKEY_ED448 */
1144};
1145
1146int ssl_setup_sig_algs(SSL_CTX *ctx)
1147{
1148 size_t i;
1149 const SIGALG_LOOKUP *lu;
1150 SIGALG_LOOKUP *cache
1151 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1152 EVP_PKEY *tmpkey = EVP_PKEY_new();
1153 int ret = 0;
1154
1155 if (cache == NULL || tmpkey == NULL)
1156 goto err;
1157
1158 ERR_set_mark();
1159 for (i = 0, lu = sigalg_lookup_tbl;
1160 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1161 EVP_PKEY_CTX *pctx;
1162
1163 cache[i] = *lu;
1164
1165 /*
1166 * Check hash is available.
1167 * This test is not perfect. A provider could have support
1168 * for a signature scheme, but not a particular hash. However the hash
1169 * could be available from some other loaded provider. In that case it
1170 * could be that the signature is available, and the hash is available
1171 * independently - but not as a combination. We ignore this for now.
1172 */
1173 if (lu->hash != NID_undef
1174 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1175 cache[i].enabled = 0;
1176 continue;
1177 }
1178
1179 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1180 cache[i].enabled = 0;
1181 continue;
1182 }
1183 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1184 /* If unable to create pctx we assume the sig algorithm is unavailable */
1185 if (pctx == NULL)
1186 cache[i].enabled = 0;
1187 EVP_PKEY_CTX_free(pctx);
1188 }
1189 ERR_pop_to_mark();
1190 ctx->sigalg_lookup_cache = cache;
1191 cache = NULL;
1192
1193 ret = 1;
1194 err:
1195 OPENSSL_free(cache);
1196 EVP_PKEY_free(tmpkey);
1197 return ret;
1198}
1199
1200/* Lookup TLS signature algorithm */
1201static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1202{
1203 size_t i;
1204 const SIGALG_LOOKUP *lu;
1205
1206 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1207 /* cache should have the same number of elements as sigalg_lookup_tbl */
1208 i < OSSL_NELEM(sigalg_lookup_tbl);
1209 lu++, i++) {
1210 if (lu->sigalg == sigalg) {
1211 if (!lu->enabled)
1212 return NULL;
1213 return lu;
1214 }
1215 }
1216 return NULL;
1217}
1218/* Lookup hash: return 0 if invalid or not enabled */
1219int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1220{
1221 const EVP_MD *md;
1222 if (lu == NULL)
1223 return 0;
1224 /* lu->hash == NID_undef means no associated digest */
1225 if (lu->hash == NID_undef) {
1226 md = NULL;
1227 } else {
1228 md = ssl_md(ctx, lu->hash_idx);
1229 if (md == NULL)
1230 return 0;
1231 }
1232 if (pmd)
1233 *pmd = md;
1234 return 1;
1235}
1236
1237/*
1238 * Check if key is large enough to generate RSA-PSS signature.
1239 *
1240 * The key must greater than or equal to 2 * hash length + 2.
1241 * SHA512 has a hash length of 64 bytes, which is incompatible
1242 * with a 128 byte (1024 bit) key.
1243 */
1244#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1245static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1246 const SIGALG_LOOKUP *lu)
1247{
1248 const EVP_MD *md;
1249
1250 if (pkey == NULL)
1251 return 0;
1252 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1253 return 0;
1254 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1255 return 0;
1256 return 1;
1257}
1258
1259/*
1260 * Returns a signature algorithm when the peer did not send a list of supported
1261 * signature algorithms. The signature algorithm is fixed for the certificate
1262 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1263 * certificate type from |s| will be used.
1264 * Returns the signature algorithm to use, or NULL on error.
1265 */
1266static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1267{
1268 if (idx == -1) {
1269 if (s->server) {
1270 size_t i;
1271
1272 /* Work out index corresponding to ciphersuite */
1273 for (i = 0; i < SSL_PKEY_NUM; i++) {
1274 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1275
1276 if (clu == NULL)
1277 continue;
1278 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1279 idx = i;
1280 break;
1281 }
1282 }
1283
1284 /*
1285 * Some GOST ciphersuites allow more than one signature algorithms
1286 * */
1287 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1288 int real_idx;
1289
1290 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1291 real_idx--) {
1292 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1293 idx = real_idx;
1294 break;
1295 }
1296 }
1297 }
1298 /*
1299 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1300 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1301 */
1302 else if (idx == SSL_PKEY_GOST12_256) {
1303 int real_idx;
1304
1305 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1306 real_idx--) {
1307 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1308 idx = real_idx;
1309 break;
1310 }
1311 }
1312 }
1313 } else {
1314 idx = s->cert->key - s->cert->pkeys;
1315 }
1316 }
1317 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1318 return NULL;
1319 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1320 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1321
1322 if (lu == NULL)
1323 return NULL;
1324 if (!tls1_lookup_md(s->ctx, lu, NULL))
1325 return NULL;
1326 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1327 return NULL;
1328 return lu;
1329 }
1330 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1331 return NULL;
1332 return &legacy_rsa_sigalg;
1333}
1334/* Set peer sigalg based key type */
1335int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1336{
1337 size_t idx;
1338 const SIGALG_LOOKUP *lu;
1339
1340 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1341 return 0;
1342 lu = tls1_get_legacy_sigalg(s, idx);
1343 if (lu == NULL)
1344 return 0;
1345 s->s3.tmp.peer_sigalg = lu;
1346 return 1;
1347}
1348
1349size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1350{
1351 /*
1352 * If Suite B mode use Suite B sigalgs only, ignore any other
1353 * preferences.
1354 */
1355 switch (tls1_suiteb(s)) {
1356 case SSL_CERT_FLAG_SUITEB_128_LOS:
1357 *psigs = suiteb_sigalgs;
1358 return OSSL_NELEM(suiteb_sigalgs);
1359
1360 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1361 *psigs = suiteb_sigalgs;
1362 return 1;
1363
1364 case SSL_CERT_FLAG_SUITEB_192_LOS:
1365 *psigs = suiteb_sigalgs + 1;
1366 return 1;
1367 }
1368 /*
1369 * We use client_sigalgs (if not NULL) if we're a server
1370 * and sending a certificate request or if we're a client and
1371 * determining which shared algorithm to use.
1372 */
1373 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1374 *psigs = s->cert->client_sigalgs;
1375 return s->cert->client_sigalgslen;
1376 } else if (s->cert->conf_sigalgs) {
1377 *psigs = s->cert->conf_sigalgs;
1378 return s->cert->conf_sigalgslen;
1379 } else {
1380 *psigs = tls12_sigalgs;
1381 return OSSL_NELEM(tls12_sigalgs);
1382 }
1383}
1384
1385/*
1386 * Called by servers only. Checks that we have a sig alg that supports the
1387 * specified EC curve.
1388 */
1389int tls_check_sigalg_curve(const SSL *s, int curve)
1390{
1391 const uint16_t *sigs;
1392 size_t siglen, i;
1393
1394 if (s->cert->conf_sigalgs) {
1395 sigs = s->cert->conf_sigalgs;
1396 siglen = s->cert->conf_sigalgslen;
1397 } else {
1398 sigs = tls12_sigalgs;
1399 siglen = OSSL_NELEM(tls12_sigalgs);
1400 }
1401
1402 for (i = 0; i < siglen; i++) {
1403 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1404
1405 if (lu == NULL)
1406 continue;
1407 if (lu->sig == EVP_PKEY_EC
1408 && lu->curve != NID_undef
1409 && curve == lu->curve)
1410 return 1;
1411 }
1412
1413 return 0;
1414}
1415
1416/*
1417 * Return the number of security bits for the signature algorithm, or 0 on
1418 * error.
1419 */
1420static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1421{
1422 const EVP_MD *md = NULL;
1423 int secbits = 0;
1424
1425 if (!tls1_lookup_md(ctx, lu, &md))
1426 return 0;
1427 if (md != NULL)
1428 {
1429 int md_type = EVP_MD_get_type(md);
1430
1431 /* Security bits: half digest bits */
1432 secbits = EVP_MD_get_size(md) * 4;
1433 /*
1434 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1435 * they're no longer accepted at security level 1. The real values don't
1436 * really matter as long as they're lower than 80, which is our
1437 * security level 1.
1438 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1439 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1440 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1441 * puts a chosen-prefix attack for MD5 at 2^39.
1442 */
1443 if (md_type == NID_sha1)
1444 secbits = 64;
1445 else if (md_type == NID_md5_sha1)
1446 secbits = 67;
1447 else if (md_type == NID_md5)
1448 secbits = 39;
1449 } else {
1450 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1451 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1452 secbits = 128;
1453 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1454 secbits = 224;
1455 }
1456 return secbits;
1457}
1458
1459/*
1460 * Check signature algorithm is consistent with sent supported signature
1461 * algorithms and if so set relevant digest and signature scheme in
1462 * s.
1463 */
1464int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1465{
1466 const uint16_t *sent_sigs;
1467 const EVP_MD *md = NULL;
1468 char sigalgstr[2];
1469 size_t sent_sigslen, i, cidx;
1470 int pkeyid = -1;
1471 const SIGALG_LOOKUP *lu;
1472 int secbits = 0;
1473
1474 pkeyid = EVP_PKEY_get_id(pkey);
1475 /* Should never happen */
1476 if (pkeyid == -1)
1477 return -1;
1478 if (SSL_IS_TLS13(s)) {
1479 /* Disallow DSA for TLS 1.3 */
1480 if (pkeyid == EVP_PKEY_DSA) {
1481 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1482 return 0;
1483 }
1484 /* Only allow PSS for TLS 1.3 */
1485 if (pkeyid == EVP_PKEY_RSA)
1486 pkeyid = EVP_PKEY_RSA_PSS;
1487 }
1488 lu = tls1_lookup_sigalg(s, sig);
1489 /*
1490 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1491 * is consistent with signature: RSA keys can be used for RSA-PSS
1492 */
1493 if (lu == NULL
1494 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1495 || (pkeyid != lu->sig
1496 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1497 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1498 return 0;
1499 }
1500 /* Check the sigalg is consistent with the key OID */
1501 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1502 || lu->sig_idx != (int)cidx) {
1503 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1504 return 0;
1505 }
1506
1507 if (pkeyid == EVP_PKEY_EC) {
1508
1509 /* Check point compression is permitted */
1510 if (!tls1_check_pkey_comp(s, pkey)) {
1511 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1512 SSL_R_ILLEGAL_POINT_COMPRESSION);
1513 return 0;
1514 }
1515
1516 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1517 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1518 int curve = ssl_get_EC_curve_nid(pkey);
1519
1520 if (lu->curve != NID_undef && curve != lu->curve) {
1521 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1522 return 0;
1523 }
1524 }
1525 if (!SSL_IS_TLS13(s)) {
1526 /* Check curve matches extensions */
1527 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1528 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1529 return 0;
1530 }
1531 if (tls1_suiteb(s)) {
1532 /* Check sigalg matches a permissible Suite B value */
1533 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1534 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1535 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1536 SSL_R_WRONG_SIGNATURE_TYPE);
1537 return 0;
1538 }
1539 }
1540 }
1541 } else if (tls1_suiteb(s)) {
1542 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1543 return 0;
1544 }
1545
1546 /* Check signature matches a type we sent */
1547 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1548 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1549 if (sig == *sent_sigs)
1550 break;
1551 }
1552 /* Allow fallback to SHA1 if not strict mode */
1553 if (i == sent_sigslen && (lu->hash != NID_sha1
1554 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1555 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1556 return 0;
1557 }
1558 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1559 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1560 return 0;
1561 }
1562 /*
1563 * Make sure security callback allows algorithm. For historical
1564 * reasons we have to pass the sigalg as a two byte char array.
1565 */
1566 sigalgstr[0] = (sig >> 8) & 0xff;
1567 sigalgstr[1] = sig & 0xff;
1568 secbits = sigalg_security_bits(s->ctx, lu);
1569 if (secbits == 0 ||
1570 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1571 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1572 (void *)sigalgstr)) {
1573 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1574 return 0;
1575 }
1576 /* Store the sigalg the peer uses */
1577 s->s3.tmp.peer_sigalg = lu;
1578 return 1;
1579}
1580
1581int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1582{
1583 if (s->s3.tmp.peer_sigalg == NULL)
1584 return 0;
1585 *pnid = s->s3.tmp.peer_sigalg->sig;
1586 return 1;
1587}
1588
1589int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1590{
1591 if (s->s3.tmp.sigalg == NULL)
1592 return 0;
1593 *pnid = s->s3.tmp.sigalg->sig;
1594 return 1;
1595}
1596
1597/*
1598 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1599 * supported, doesn't appear in supported signature algorithms, isn't supported
1600 * by the enabled protocol versions or by the security level.
1601 *
1602 * This function should only be used for checking which ciphers are supported
1603 * by the client.
1604 *
1605 * Call ssl_cipher_disabled() to check that it's enabled or not.
1606 */
1607int ssl_set_client_disabled(SSL *s)
1608{
1609 s->s3.tmp.mask_a = 0;
1610 s->s3.tmp.mask_k = 0;
1611 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1612 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1613 &s->s3.tmp.max_ver, NULL) != 0)
1614 return 0;
1615#ifndef OPENSSL_NO_PSK
1616 /* with PSK there must be client callback set */
1617 if (!s->psk_client_callback) {
1618 s->s3.tmp.mask_a |= SSL_aPSK;
1619 s->s3.tmp.mask_k |= SSL_PSK;
1620 }
1621#endif /* OPENSSL_NO_PSK */
1622#ifndef OPENSSL_NO_SRP
1623 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1624 s->s3.tmp.mask_a |= SSL_aSRP;
1625 s->s3.tmp.mask_k |= SSL_kSRP;
1626 }
1627#endif
1628 return 1;
1629}
1630
1631/*
1632 * ssl_cipher_disabled - check that a cipher is disabled or not
1633 * @s: SSL connection that you want to use the cipher on
1634 * @c: cipher to check
1635 * @op: Security check that you want to do
1636 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1637 *
1638 * Returns 1 when it's disabled, 0 when enabled.
1639 */
1640int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1641{
1642 if (c->algorithm_mkey & s->s3.tmp.mask_k
1643 || c->algorithm_auth & s->s3.tmp.mask_a)
1644 return 1;
1645 if (s->s3.tmp.max_ver == 0)
1646 return 1;
1647 if (!SSL_IS_DTLS(s)) {
1648 int min_tls = c->min_tls;
1649
1650 /*
1651 * For historical reasons we will allow ECHDE to be selected by a server
1652 * in SSLv3 if we are a client
1653 */
1654 if (min_tls == TLS1_VERSION && ecdhe
1655 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1656 min_tls = SSL3_VERSION;
1657
1658 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1659 return 1;
1660 }
1661 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1662 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1663 return 1;
1664
1665 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1666}
1667
1668int tls_use_ticket(SSL *s)
1669{
1670 if ((s->options & SSL_OP_NO_TICKET))
1671 return 0;
1672 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1673}
1674
1675int tls1_set_server_sigalgs(SSL *s)
1676{
1677 size_t i;
1678
1679 /* Clear any shared signature algorithms */
1680 OPENSSL_free(s->shared_sigalgs);
1681 s->shared_sigalgs = NULL;
1682 s->shared_sigalgslen = 0;
1683 /* Clear certificate validity flags */
1684 for (i = 0; i < SSL_PKEY_NUM; i++)
1685 s->s3.tmp.valid_flags[i] = 0;
1686 /*
1687 * If peer sent no signature algorithms check to see if we support
1688 * the default algorithm for each certificate type
1689 */
1690 if (s->s3.tmp.peer_cert_sigalgs == NULL
1691 && s->s3.tmp.peer_sigalgs == NULL) {
1692 const uint16_t *sent_sigs;
1693 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1694
1695 for (i = 0; i < SSL_PKEY_NUM; i++) {
1696 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1697 size_t j;
1698
1699 if (lu == NULL)
1700 continue;
1701 /* Check default matches a type we sent */
1702 for (j = 0; j < sent_sigslen; j++) {
1703 if (lu->sigalg == sent_sigs[j]) {
1704 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1705 break;
1706 }
1707 }
1708 }
1709 return 1;
1710 }
1711
1712 if (!tls1_process_sigalgs(s)) {
1713 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1714 return 0;
1715 }
1716 if (s->shared_sigalgs != NULL)
1717 return 1;
1718
1719 /* Fatal error if no shared signature algorithms */
1720 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1721 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1722 return 0;
1723}
1724
1725/*-
1726 * Gets the ticket information supplied by the client if any.
1727 *
1728 * hello: The parsed ClientHello data
1729 * ret: (output) on return, if a ticket was decrypted, then this is set to
1730 * point to the resulting session.
1731 */
1732SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1733 SSL_SESSION **ret)
1734{
1735 size_t size;
1736 RAW_EXTENSION *ticketext;
1737
1738 *ret = NULL;
1739 s->ext.ticket_expected = 0;
1740
1741 /*
1742 * If tickets disabled or not supported by the protocol version
1743 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1744 * resumption.
1745 */
1746 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1747 return SSL_TICKET_NONE;
1748
1749 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1750 if (!ticketext->present)
1751 return SSL_TICKET_NONE;
1752
1753 size = PACKET_remaining(&ticketext->data);
1754
1755 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1756 hello->session_id, hello->session_id_len, ret);
1757}
1758
1759/*-
1760 * tls_decrypt_ticket attempts to decrypt a session ticket.
1761 *
1762 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1763 * expecting a pre-shared key ciphersuite, in which case we have no use for
1764 * session tickets and one will never be decrypted, nor will
1765 * s->ext.ticket_expected be set to 1.
1766 *
1767 * Side effects:
1768 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1769 * a new session ticket to the client because the client indicated support
1770 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1771 * a session ticket or we couldn't use the one it gave us, or if
1772 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1773 * Otherwise, s->ext.ticket_expected is set to 0.
1774 *
1775 * etick: points to the body of the session ticket extension.
1776 * eticklen: the length of the session tickets extension.
1777 * sess_id: points at the session ID.
1778 * sesslen: the length of the session ID.
1779 * psess: (output) on return, if a ticket was decrypted, then this is set to
1780 * point to the resulting session.
1781 */
1782SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1783 size_t eticklen, const unsigned char *sess_id,
1784 size_t sesslen, SSL_SESSION **psess)
1785{
1786 SSL_SESSION *sess = NULL;
1787 unsigned char *sdec;
1788 const unsigned char *p;
1789 int slen, ivlen, renew_ticket = 0, declen;
1790 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1791 size_t mlen;
1792 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1793 SSL_HMAC *hctx = NULL;
1794 EVP_CIPHER_CTX *ctx = NULL;
1795 SSL_CTX *tctx = s->session_ctx;
1796
1797 if (eticklen == 0) {
1798 /*
1799 * The client will accept a ticket but doesn't currently have
1800 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1801 */
1802 ret = SSL_TICKET_EMPTY;
1803 goto end;
1804 }
1805 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1806 /*
1807 * Indicate that the ticket couldn't be decrypted rather than
1808 * generating the session from ticket now, trigger
1809 * abbreviated handshake based on external mechanism to
1810 * calculate the master secret later.
1811 */
1812 ret = SSL_TICKET_NO_DECRYPT;
1813 goto end;
1814 }
1815
1816 /* Need at least keyname + iv */
1817 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1818 ret = SSL_TICKET_NO_DECRYPT;
1819 goto end;
1820 }
1821
1822 /* Initialize session ticket encryption and HMAC contexts */
1823 hctx = ssl_hmac_new(tctx);
1824 if (hctx == NULL) {
1825 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1826 goto end;
1827 }
1828 ctx = EVP_CIPHER_CTX_new();
1829 if (ctx == NULL) {
1830 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1831 goto end;
1832 }
1833#ifndef OPENSSL_NO_DEPRECATED_3_0
1834 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1835#else
1836 if (tctx->ext.ticket_key_evp_cb != NULL)
1837#endif
1838 {
1839 unsigned char *nctick = (unsigned char *)etick;
1840 int rv = 0;
1841
1842 if (tctx->ext.ticket_key_evp_cb != NULL)
1843 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1844 nctick + TLSEXT_KEYNAME_LENGTH,
1845 ctx,
1846 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1847 0);
1848#ifndef OPENSSL_NO_DEPRECATED_3_0
1849 else if (tctx->ext.ticket_key_cb != NULL)
1850 /* if 0 is returned, write an empty ticket */
1851 rv = tctx->ext.ticket_key_cb(s, nctick,
1852 nctick + TLSEXT_KEYNAME_LENGTH,
1853 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1854#endif
1855 if (rv < 0) {
1856 ret = SSL_TICKET_FATAL_ERR_OTHER;
1857 goto end;
1858 }
1859 if (rv == 0) {
1860 ret = SSL_TICKET_NO_DECRYPT;
1861 goto end;
1862 }
1863 if (rv == 2)
1864 renew_ticket = 1;
1865 } else {
1866 EVP_CIPHER *aes256cbc = NULL;
1867
1868 /* Check key name matches */
1869 if (memcmp(etick, tctx->ext.tick_key_name,
1870 TLSEXT_KEYNAME_LENGTH) != 0) {
1871 ret = SSL_TICKET_NO_DECRYPT;
1872 goto end;
1873 }
1874
1875 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1876 s->ctx->propq);
1877 if (aes256cbc == NULL
1878 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1879 sizeof(tctx->ext.secure->tick_hmac_key),
1880 "SHA256") <= 0
1881 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1882 tctx->ext.secure->tick_aes_key,
1883 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1884 EVP_CIPHER_free(aes256cbc);
1885 ret = SSL_TICKET_FATAL_ERR_OTHER;
1886 goto end;
1887 }
1888 EVP_CIPHER_free(aes256cbc);
1889 if (SSL_IS_TLS13(s))
1890 renew_ticket = 1;
1891 }
1892 /*
1893 * Attempt to process session ticket, first conduct sanity and integrity
1894 * checks on ticket.
1895 */
1896 mlen = ssl_hmac_size(hctx);
1897 if (mlen == 0) {
1898 ret = SSL_TICKET_FATAL_ERR_OTHER;
1899 goto end;
1900 }
1901
1902 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1903 if (ivlen < 0) {
1904 ret = SSL_TICKET_FATAL_ERR_OTHER;
1905 goto end;
1906 }
1907
1908 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1909 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1910 ret = SSL_TICKET_NO_DECRYPT;
1911 goto end;
1912 }
1913 eticklen -= mlen;
1914 /* Check HMAC of encrypted ticket */
1915 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1916 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1917 ret = SSL_TICKET_FATAL_ERR_OTHER;
1918 goto end;
1919 }
1920
1921 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1922 ret = SSL_TICKET_NO_DECRYPT;
1923 goto end;
1924 }
1925 /* Attempt to decrypt session data */
1926 /* Move p after IV to start of encrypted ticket, update length */
1927 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1928 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1929 sdec = OPENSSL_malloc(eticklen);
1930 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1931 (int)eticklen) <= 0) {
1932 OPENSSL_free(sdec);
1933 ret = SSL_TICKET_FATAL_ERR_OTHER;
1934 goto end;
1935 }
1936 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1937 OPENSSL_free(sdec);
1938 ret = SSL_TICKET_NO_DECRYPT;
1939 goto end;
1940 }
1941 slen += declen;
1942 p = sdec;
1943
1944 sess = d2i_SSL_SESSION(NULL, &p, slen);
1945 slen -= p - sdec;
1946 OPENSSL_free(sdec);
1947 if (sess) {
1948 /* Some additional consistency checks */
1949 if (slen != 0) {
1950 SSL_SESSION_free(sess);
1951 sess = NULL;
1952 ret = SSL_TICKET_NO_DECRYPT;
1953 goto end;
1954 }
1955 /*
1956 * The session ID, if non-empty, is used by some clients to detect
1957 * that the ticket has been accepted. So we copy it to the session
1958 * structure. If it is empty set length to zero as required by
1959 * standard.
1960 */
1961 if (sesslen) {
1962 memcpy(sess->session_id, sess_id, sesslen);
1963 sess->session_id_length = sesslen;
1964 }
1965 if (renew_ticket)
1966 ret = SSL_TICKET_SUCCESS_RENEW;
1967 else
1968 ret = SSL_TICKET_SUCCESS;
1969 goto end;
1970 }
1971 ERR_clear_error();
1972 /*
1973 * For session parse failure, indicate that we need to send a new ticket.
1974 */
1975 ret = SSL_TICKET_NO_DECRYPT;
1976
1977 end:
1978 EVP_CIPHER_CTX_free(ctx);
1979 ssl_hmac_free(hctx);
1980
1981 /*
1982 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1983 * detected above. The callback is responsible for checking |ret| before it
1984 * performs any action
1985 */
1986 if (s->session_ctx->decrypt_ticket_cb != NULL
1987 && (ret == SSL_TICKET_EMPTY
1988 || ret == SSL_TICKET_NO_DECRYPT
1989 || ret == SSL_TICKET_SUCCESS
1990 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1991 size_t keyname_len = eticklen;
1992 int retcb;
1993
1994 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1995 keyname_len = TLSEXT_KEYNAME_LENGTH;
1996 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1997 ret,
1998 s->session_ctx->ticket_cb_data);
1999 switch (retcb) {
2000 case SSL_TICKET_RETURN_ABORT:
2001 ret = SSL_TICKET_FATAL_ERR_OTHER;
2002 break;
2003
2004 case SSL_TICKET_RETURN_IGNORE:
2005 ret = SSL_TICKET_NONE;
2006 SSL_SESSION_free(sess);
2007 sess = NULL;
2008 break;
2009
2010 case SSL_TICKET_RETURN_IGNORE_RENEW:
2011 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2012 ret = SSL_TICKET_NO_DECRYPT;
2013 /* else the value of |ret| will already do the right thing */
2014 SSL_SESSION_free(sess);
2015 sess = NULL;
2016 break;
2017
2018 case SSL_TICKET_RETURN_USE:
2019 case SSL_TICKET_RETURN_USE_RENEW:
2020 if (ret != SSL_TICKET_SUCCESS
2021 && ret != SSL_TICKET_SUCCESS_RENEW)
2022 ret = SSL_TICKET_FATAL_ERR_OTHER;
2023 else if (retcb == SSL_TICKET_RETURN_USE)
2024 ret = SSL_TICKET_SUCCESS;
2025 else
2026 ret = SSL_TICKET_SUCCESS_RENEW;
2027 break;
2028
2029 default:
2030 ret = SSL_TICKET_FATAL_ERR_OTHER;
2031 }
2032 }
2033
2034 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2035 switch (ret) {
2036 case SSL_TICKET_NO_DECRYPT:
2037 case SSL_TICKET_SUCCESS_RENEW:
2038 case SSL_TICKET_EMPTY:
2039 s->ext.ticket_expected = 1;
2040 }
2041 }
2042
2043 *psess = sess;
2044
2045 return ret;
2046}
2047
2048/* Check to see if a signature algorithm is allowed */
2049static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2050{
2051 unsigned char sigalgstr[2];
2052 int secbits;
2053
2054 if (lu == NULL || !lu->enabled)
2055 return 0;
2056 /* DSA is not allowed in TLS 1.3 */
2057 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2058 return 0;
2059 /*
2060 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2061 * spec
2062 */
2063 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2064 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2065 || lu->hash_idx == SSL_MD_MD5_IDX
2066 || lu->hash_idx == SSL_MD_SHA224_IDX))
2067 return 0;
2068
2069 /* See if public key algorithm allowed */
2070 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2071 return 0;
2072
2073 if (lu->sig == NID_id_GostR3410_2012_256
2074 || lu->sig == NID_id_GostR3410_2012_512
2075 || lu->sig == NID_id_GostR3410_2001) {
2076 /* We never allow GOST sig algs on the server with TLSv1.3 */
2077 if (s->server && SSL_IS_TLS13(s))
2078 return 0;
2079 if (!s->server
2080 && s->method->version == TLS_ANY_VERSION
2081 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2082 int i, num;
2083 STACK_OF(SSL_CIPHER) *sk;
2084
2085 /*
2086 * We're a client that could negotiate TLSv1.3. We only allow GOST
2087 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2088 * ciphersuites enabled.
2089 */
2090
2091 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2092 return 0;
2093
2094 sk = SSL_get_ciphers(s);
2095 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2096 for (i = 0; i < num; i++) {
2097 const SSL_CIPHER *c;
2098
2099 c = sk_SSL_CIPHER_value(sk, i);
2100 /* Skip disabled ciphers */
2101 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2102 continue;
2103
2104 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2105 break;
2106 }
2107 if (i == num)
2108 return 0;
2109 }
2110 }
2111
2112 /* Finally see if security callback allows it */
2113 secbits = sigalg_security_bits(s->ctx, lu);
2114 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2115 sigalgstr[1] = lu->sigalg & 0xff;
2116 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2117}
2118
2119/*
2120 * Get a mask of disabled public key algorithms based on supported signature
2121 * algorithms. For example if no signature algorithm supports RSA then RSA is
2122 * disabled.
2123 */
2124
2125void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2126{
2127 const uint16_t *sigalgs;
2128 size_t i, sigalgslen;
2129 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2130 /*
2131 * Go through all signature algorithms seeing if we support any
2132 * in disabled_mask.
2133 */
2134 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2135 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2136 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2137 const SSL_CERT_LOOKUP *clu;
2138
2139 if (lu == NULL)
2140 continue;
2141
2142 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2143 if (clu == NULL)
2144 continue;
2145
2146 /* If algorithm is disabled see if we can enable it */
2147 if ((clu->amask & disabled_mask) != 0
2148 && tls12_sigalg_allowed(s, op, lu))
2149 disabled_mask &= ~clu->amask;
2150 }
2151 *pmask_a |= disabled_mask;
2152}
2153
2154int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2155 const uint16_t *psig, size_t psiglen)
2156{
2157 size_t i;
2158 int rv = 0;
2159
2160 for (i = 0; i < psiglen; i++, psig++) {
2161 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2162
2163 if (lu == NULL
2164 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2165 continue;
2166 if (!WPACKET_put_bytes_u16(pkt, *psig))
2167 return 0;
2168 /*
2169 * If TLS 1.3 must have at least one valid TLS 1.3 message
2170 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2171 */
2172 if (rv == 0 && (!SSL_IS_TLS13(s)
2173 || (lu->sig != EVP_PKEY_RSA
2174 && lu->hash != NID_sha1
2175 && lu->hash != NID_sha224)))
2176 rv = 1;
2177 }
2178 if (rv == 0)
2179 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2180 return rv;
2181}
2182
2183/* Given preference and allowed sigalgs set shared sigalgs */
2184static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2185 const uint16_t *pref, size_t preflen,
2186 const uint16_t *allow, size_t allowlen)
2187{
2188 const uint16_t *ptmp, *atmp;
2189 size_t i, j, nmatch = 0;
2190 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2191 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2192
2193 /* Skip disabled hashes or signature algorithms */
2194 if (lu == NULL
2195 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2196 continue;
2197 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2198 if (*ptmp == *atmp) {
2199 nmatch++;
2200 if (shsig)
2201 *shsig++ = lu;
2202 break;
2203 }
2204 }
2205 }
2206 return nmatch;
2207}
2208
2209/* Set shared signature algorithms for SSL structures */
2210static int tls1_set_shared_sigalgs(SSL *s)
2211{
2212 const uint16_t *pref, *allow, *conf;
2213 size_t preflen, allowlen, conflen;
2214 size_t nmatch;
2215 const SIGALG_LOOKUP **salgs = NULL;
2216 CERT *c = s->cert;
2217 unsigned int is_suiteb = tls1_suiteb(s);
2218
2219 OPENSSL_free(s->shared_sigalgs);
2220 s->shared_sigalgs = NULL;
2221 s->shared_sigalgslen = 0;
2222 /* If client use client signature algorithms if not NULL */
2223 if (!s->server && c->client_sigalgs && !is_suiteb) {
2224 conf = c->client_sigalgs;
2225 conflen = c->client_sigalgslen;
2226 } else if (c->conf_sigalgs && !is_suiteb) {
2227 conf = c->conf_sigalgs;
2228 conflen = c->conf_sigalgslen;
2229 } else
2230 conflen = tls12_get_psigalgs(s, 0, &conf);
2231 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2232 pref = conf;
2233 preflen = conflen;
2234 allow = s->s3.tmp.peer_sigalgs;
2235 allowlen = s->s3.tmp.peer_sigalgslen;
2236 } else {
2237 allow = conf;
2238 allowlen = conflen;
2239 pref = s->s3.tmp.peer_sigalgs;
2240 preflen = s->s3.tmp.peer_sigalgslen;
2241 }
2242 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2243 if (nmatch) {
2244 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2245 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2246 return 0;
2247 }
2248 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2249 } else {
2250 salgs = NULL;
2251 }
2252 s->shared_sigalgs = salgs;
2253 s->shared_sigalgslen = nmatch;
2254 return 1;
2255}
2256
2257int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2258{
2259 unsigned int stmp;
2260 size_t size, i;
2261 uint16_t *buf;
2262
2263 size = PACKET_remaining(pkt);
2264
2265 /* Invalid data length */
2266 if (size == 0 || (size & 1) != 0)
2267 return 0;
2268
2269 size >>= 1;
2270
2271 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2272 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2273 return 0;
2274 }
2275 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2276 buf[i] = stmp;
2277
2278 if (i != size) {
2279 OPENSSL_free(buf);
2280 return 0;
2281 }
2282
2283 OPENSSL_free(*pdest);
2284 *pdest = buf;
2285 *pdestlen = size;
2286
2287 return 1;
2288}
2289
2290int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2291{
2292 /* Extension ignored for inappropriate versions */
2293 if (!SSL_USE_SIGALGS(s))
2294 return 1;
2295 /* Should never happen */
2296 if (s->cert == NULL)
2297 return 0;
2298
2299 if (cert)
2300 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2301 &s->s3.tmp.peer_cert_sigalgslen);
2302 else
2303 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2304 &s->s3.tmp.peer_sigalgslen);
2305
2306}
2307
2308/* Set preferred digest for each key type */
2309
2310int tls1_process_sigalgs(SSL *s)
2311{
2312 size_t i;
2313 uint32_t *pvalid = s->s3.tmp.valid_flags;
2314
2315 if (!tls1_set_shared_sigalgs(s))
2316 return 0;
2317
2318 for (i = 0; i < SSL_PKEY_NUM; i++)
2319 pvalid[i] = 0;
2320
2321 for (i = 0; i < s->shared_sigalgslen; i++) {
2322 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2323 int idx = sigptr->sig_idx;
2324
2325 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2326 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2327 continue;
2328 /* If not disabled indicate we can explicitly sign */
2329 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2330 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2331 }
2332 return 1;
2333}
2334
2335int SSL_get_sigalgs(SSL *s, int idx,
2336 int *psign, int *phash, int *psignhash,
2337 unsigned char *rsig, unsigned char *rhash)
2338{
2339 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2340 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2341 if (psig == NULL || numsigalgs > INT_MAX)
2342 return 0;
2343 if (idx >= 0) {
2344 const SIGALG_LOOKUP *lu;
2345
2346 if (idx >= (int)numsigalgs)
2347 return 0;
2348 psig += idx;
2349 if (rhash != NULL)
2350 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2351 if (rsig != NULL)
2352 *rsig = (unsigned char)(*psig & 0xff);
2353 lu = tls1_lookup_sigalg(s, *psig);
2354 if (psign != NULL)
2355 *psign = lu != NULL ? lu->sig : NID_undef;
2356 if (phash != NULL)
2357 *phash = lu != NULL ? lu->hash : NID_undef;
2358 if (psignhash != NULL)
2359 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2360 }
2361 return (int)numsigalgs;
2362}
2363
2364int SSL_get_shared_sigalgs(SSL *s, int idx,
2365 int *psign, int *phash, int *psignhash,
2366 unsigned char *rsig, unsigned char *rhash)
2367{
2368 const SIGALG_LOOKUP *shsigalgs;
2369 if (s->shared_sigalgs == NULL
2370 || idx < 0
2371 || idx >= (int)s->shared_sigalgslen
2372 || s->shared_sigalgslen > INT_MAX)
2373 return 0;
2374 shsigalgs = s->shared_sigalgs[idx];
2375 if (phash != NULL)
2376 *phash = shsigalgs->hash;
2377 if (psign != NULL)
2378 *psign = shsigalgs->sig;
2379 if (psignhash != NULL)
2380 *psignhash = shsigalgs->sigandhash;
2381 if (rsig != NULL)
2382 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2383 if (rhash != NULL)
2384 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2385 return (int)s->shared_sigalgslen;
2386}
2387
2388/* Maximum possible number of unique entries in sigalgs array */
2389#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2390
2391typedef struct {
2392 size_t sigalgcnt;
2393 /* TLSEXT_SIGALG_XXX values */
2394 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2395} sig_cb_st;
2396
2397static void get_sigorhash(int *psig, int *phash, const char *str)
2398{
2399 if (strcmp(str, "RSA") == 0) {
2400 *psig = EVP_PKEY_RSA;
2401 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2402 *psig = EVP_PKEY_RSA_PSS;
2403 } else if (strcmp(str, "DSA") == 0) {
2404 *psig = EVP_PKEY_DSA;
2405 } else if (strcmp(str, "ECDSA") == 0) {
2406 *psig = EVP_PKEY_EC;
2407 } else {
2408 *phash = OBJ_sn2nid(str);
2409 if (*phash == NID_undef)
2410 *phash = OBJ_ln2nid(str);
2411 }
2412}
2413/* Maximum length of a signature algorithm string component */
2414#define TLS_MAX_SIGSTRING_LEN 40
2415
2416static int sig_cb(const char *elem, int len, void *arg)
2417{
2418 sig_cb_st *sarg = arg;
2419 size_t i;
2420 const SIGALG_LOOKUP *s;
2421 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2422 int sig_alg = NID_undef, hash_alg = NID_undef;
2423 if (elem == NULL)
2424 return 0;
2425 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2426 return 0;
2427 if (len > (int)(sizeof(etmp) - 1))
2428 return 0;
2429 memcpy(etmp, elem, len);
2430 etmp[len] = 0;
2431 p = strchr(etmp, '+');
2432 /*
2433 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2434 * if there's no '+' in the provided name, look for the new-style combined
2435 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2436 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2437 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2438 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2439 * in the table.
2440 */
2441 if (p == NULL) {
2442 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2443 i++, s++) {
2444 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2445 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2446 break;
2447 }
2448 }
2449 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2450 return 0;
2451 } else {
2452 *p = 0;
2453 p++;
2454 if (*p == 0)
2455 return 0;
2456 get_sigorhash(&sig_alg, &hash_alg, etmp);
2457 get_sigorhash(&sig_alg, &hash_alg, p);
2458 if (sig_alg == NID_undef || hash_alg == NID_undef)
2459 return 0;
2460 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2461 i++, s++) {
2462 if (s->hash == hash_alg && s->sig == sig_alg) {
2463 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2464 break;
2465 }
2466 }
2467 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2468 return 0;
2469 }
2470
2471 /* Reject duplicates */
2472 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2473 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2474 sarg->sigalgcnt--;
2475 return 0;
2476 }
2477 }
2478 return 1;
2479}
2480
2481/*
2482 * Set supported signature algorithms based on a colon separated list of the
2483 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2484 */
2485int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2486{
2487 sig_cb_st sig;
2488 sig.sigalgcnt = 0;
2489 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2490 return 0;
2491 if (c == NULL)
2492 return 1;
2493 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2494}
2495
2496int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2497 int client)
2498{
2499 uint16_t *sigalgs;
2500
2501 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2502 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2503 return 0;
2504 }
2505 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2506
2507 if (client) {
2508 OPENSSL_free(c->client_sigalgs);
2509 c->client_sigalgs = sigalgs;
2510 c->client_sigalgslen = salglen;
2511 } else {
2512 OPENSSL_free(c->conf_sigalgs);
2513 c->conf_sigalgs = sigalgs;
2514 c->conf_sigalgslen = salglen;
2515 }
2516
2517 return 1;
2518}
2519
2520int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2521{
2522 uint16_t *sigalgs, *sptr;
2523 size_t i;
2524
2525 if (salglen & 1)
2526 return 0;
2527 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2528 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2529 return 0;
2530 }
2531 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2532 size_t j;
2533 const SIGALG_LOOKUP *curr;
2534 int md_id = *psig_nids++;
2535 int sig_id = *psig_nids++;
2536
2537 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2538 j++, curr++) {
2539 if (curr->hash == md_id && curr->sig == sig_id) {
2540 *sptr++ = curr->sigalg;
2541 break;
2542 }
2543 }
2544
2545 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2546 goto err;
2547 }
2548
2549 if (client) {
2550 OPENSSL_free(c->client_sigalgs);
2551 c->client_sigalgs = sigalgs;
2552 c->client_sigalgslen = salglen / 2;
2553 } else {
2554 OPENSSL_free(c->conf_sigalgs);
2555 c->conf_sigalgs = sigalgs;
2556 c->conf_sigalgslen = salglen / 2;
2557 }
2558
2559 return 1;
2560
2561 err:
2562 OPENSSL_free(sigalgs);
2563 return 0;
2564}
2565
2566static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2567{
2568 int sig_nid, use_pc_sigalgs = 0;
2569 size_t i;
2570 const SIGALG_LOOKUP *sigalg;
2571 size_t sigalgslen;
2572 if (default_nid == -1)
2573 return 1;
2574 sig_nid = X509_get_signature_nid(x);
2575 if (default_nid)
2576 return sig_nid == default_nid ? 1 : 0;
2577
2578 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2579 /*
2580 * If we're in TLSv1.3 then we only get here if we're checking the
2581 * chain. If the peer has specified peer_cert_sigalgs then we use them
2582 * otherwise we default to normal sigalgs.
2583 */
2584 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2585 use_pc_sigalgs = 1;
2586 } else {
2587 sigalgslen = s->shared_sigalgslen;
2588 }
2589 for (i = 0; i < sigalgslen; i++) {
2590 sigalg = use_pc_sigalgs
2591 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2592 : s->shared_sigalgs[i];
2593 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2594 return 1;
2595 }
2596 return 0;
2597}
2598
2599/* Check to see if a certificate issuer name matches list of CA names */
2600static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2601{
2602 const X509_NAME *nm;
2603 int i;
2604 nm = X509_get_issuer_name(x);
2605 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2606 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2607 return 1;
2608 }
2609 return 0;
2610}
2611
2612/*
2613 * Check certificate chain is consistent with TLS extensions and is usable by
2614 * server. This servers two purposes: it allows users to check chains before
2615 * passing them to the server and it allows the server to check chains before
2616 * attempting to use them.
2617 */
2618
2619/* Flags which need to be set for a certificate when strict mode not set */
2620
2621#define CERT_PKEY_VALID_FLAGS \
2622 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2623/* Strict mode flags */
2624#define CERT_PKEY_STRICT_FLAGS \
2625 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2626 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2627
2628int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2629 int idx)
2630{
2631 int i;
2632 int rv = 0;
2633 int check_flags = 0, strict_mode;
2634 CERT_PKEY *cpk = NULL;
2635 CERT *c = s->cert;
2636 uint32_t *pvalid;
2637 unsigned int suiteb_flags = tls1_suiteb(s);
2638 /* idx == -1 means checking server chains */
2639 if (idx != -1) {
2640 /* idx == -2 means checking client certificate chains */
2641 if (idx == -2) {
2642 cpk = c->key;
2643 idx = (int)(cpk - c->pkeys);
2644 } else
2645 cpk = c->pkeys + idx;
2646 pvalid = s->s3.tmp.valid_flags + idx;
2647 x = cpk->x509;
2648 pk = cpk->privatekey;
2649 chain = cpk->chain;
2650 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2651 /* If no cert or key, forget it */
2652 if (!x || !pk)
2653 goto end;
2654 } else {
2655 size_t certidx;
2656
2657 if (!x || !pk)
2658 return 0;
2659
2660 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2661 return 0;
2662 idx = certidx;
2663 pvalid = s->s3.tmp.valid_flags + idx;
2664
2665 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2666 check_flags = CERT_PKEY_STRICT_FLAGS;
2667 else
2668 check_flags = CERT_PKEY_VALID_FLAGS;
2669 strict_mode = 1;
2670 }
2671
2672 if (suiteb_flags) {
2673 int ok;
2674 if (check_flags)
2675 check_flags |= CERT_PKEY_SUITEB;
2676 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2677 if (ok == X509_V_OK)
2678 rv |= CERT_PKEY_SUITEB;
2679 else if (!check_flags)
2680 goto end;
2681 }
2682
2683 /*
2684 * Check all signature algorithms are consistent with signature
2685 * algorithms extension if TLS 1.2 or later and strict mode.
2686 */
2687 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2688 int default_nid;
2689 int rsign = 0;
2690 if (s->s3.tmp.peer_cert_sigalgs != NULL
2691 || s->s3.tmp.peer_sigalgs != NULL) {
2692 default_nid = 0;
2693 /* If no sigalgs extension use defaults from RFC5246 */
2694 } else {
2695 switch (idx) {
2696 case SSL_PKEY_RSA:
2697 rsign = EVP_PKEY_RSA;
2698 default_nid = NID_sha1WithRSAEncryption;
2699 break;
2700
2701 case SSL_PKEY_DSA_SIGN:
2702 rsign = EVP_PKEY_DSA;
2703 default_nid = NID_dsaWithSHA1;
2704 break;
2705
2706 case SSL_PKEY_ECC:
2707 rsign = EVP_PKEY_EC;
2708 default_nid = NID_ecdsa_with_SHA1;
2709 break;
2710
2711 case SSL_PKEY_GOST01:
2712 rsign = NID_id_GostR3410_2001;
2713 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2714 break;
2715
2716 case SSL_PKEY_GOST12_256:
2717 rsign = NID_id_GostR3410_2012_256;
2718 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2719 break;
2720
2721 case SSL_PKEY_GOST12_512:
2722 rsign = NID_id_GostR3410_2012_512;
2723 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2724 break;
2725
2726 default:
2727 default_nid = -1;
2728 break;
2729 }
2730 }
2731 /*
2732 * If peer sent no signature algorithms extension and we have set
2733 * preferred signature algorithms check we support sha1.
2734 */
2735 if (default_nid > 0 && c->conf_sigalgs) {
2736 size_t j;
2737 const uint16_t *p = c->conf_sigalgs;
2738 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2739 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2740
2741 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2742 break;
2743 }
2744 if (j == c->conf_sigalgslen) {
2745 if (check_flags)
2746 goto skip_sigs;
2747 else
2748 goto end;
2749 }
2750 }
2751 /* Check signature algorithm of each cert in chain */
2752 if (SSL_IS_TLS13(s)) {
2753 /*
2754 * We only get here if the application has called SSL_check_chain(),
2755 * so check_flags is always set.
2756 */
2757 if (find_sig_alg(s, x, pk) != NULL)
2758 rv |= CERT_PKEY_EE_SIGNATURE;
2759 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2760 if (!check_flags)
2761 goto end;
2762 } else
2763 rv |= CERT_PKEY_EE_SIGNATURE;
2764 rv |= CERT_PKEY_CA_SIGNATURE;
2765 for (i = 0; i < sk_X509_num(chain); i++) {
2766 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2767 if (check_flags) {
2768 rv &= ~CERT_PKEY_CA_SIGNATURE;
2769 break;
2770 } else
2771 goto end;
2772 }
2773 }
2774 }
2775 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2776 else if (check_flags)
2777 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2778 skip_sigs:
2779 /* Check cert parameters are consistent */
2780 if (tls1_check_cert_param(s, x, 1))
2781 rv |= CERT_PKEY_EE_PARAM;
2782 else if (!check_flags)
2783 goto end;
2784 if (!s->server)
2785 rv |= CERT_PKEY_CA_PARAM;
2786 /* In strict mode check rest of chain too */
2787 else if (strict_mode) {
2788 rv |= CERT_PKEY_CA_PARAM;
2789 for (i = 0; i < sk_X509_num(chain); i++) {
2790 X509 *ca = sk_X509_value(chain, i);
2791 if (!tls1_check_cert_param(s, ca, 0)) {
2792 if (check_flags) {
2793 rv &= ~CERT_PKEY_CA_PARAM;
2794 break;
2795 } else
2796 goto end;
2797 }
2798 }
2799 }
2800 if (!s->server && strict_mode) {
2801 STACK_OF(X509_NAME) *ca_dn;
2802 int check_type = 0;
2803
2804 if (EVP_PKEY_is_a(pk, "RSA"))
2805 check_type = TLS_CT_RSA_SIGN;
2806 else if (EVP_PKEY_is_a(pk, "DSA"))
2807 check_type = TLS_CT_DSS_SIGN;
2808 else if (EVP_PKEY_is_a(pk, "EC"))
2809 check_type = TLS_CT_ECDSA_SIGN;
2810
2811 if (check_type) {
2812 const uint8_t *ctypes = s->s3.tmp.ctype;
2813 size_t j;
2814
2815 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2816 if (*ctypes == check_type) {
2817 rv |= CERT_PKEY_CERT_TYPE;
2818 break;
2819 }
2820 }
2821 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2822 goto end;
2823 } else {
2824 rv |= CERT_PKEY_CERT_TYPE;
2825 }
2826
2827 ca_dn = s->s3.tmp.peer_ca_names;
2828
2829 if (ca_dn == NULL
2830 || sk_X509_NAME_num(ca_dn) == 0
2831 || ssl_check_ca_name(ca_dn, x))
2832 rv |= CERT_PKEY_ISSUER_NAME;
2833 else
2834 for (i = 0; i < sk_X509_num(chain); i++) {
2835 X509 *xtmp = sk_X509_value(chain, i);
2836
2837 if (ssl_check_ca_name(ca_dn, xtmp)) {
2838 rv |= CERT_PKEY_ISSUER_NAME;
2839 break;
2840 }
2841 }
2842
2843 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2844 goto end;
2845 } else
2846 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2847
2848 if (!check_flags || (rv & check_flags) == check_flags)
2849 rv |= CERT_PKEY_VALID;
2850
2851 end:
2852
2853 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2854 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2855 else
2856 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2857
2858 /*
2859 * When checking a CERT_PKEY structure all flags are irrelevant if the
2860 * chain is invalid.
2861 */
2862 if (!check_flags) {
2863 if (rv & CERT_PKEY_VALID) {
2864 *pvalid = rv;
2865 } else {
2866 /* Preserve sign and explicit sign flag, clear rest */
2867 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2868 return 0;
2869 }
2870 }
2871 return rv;
2872}
2873
2874/* Set validity of certificates in an SSL structure */
2875void tls1_set_cert_validity(SSL *s)
2876{
2877 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2878 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2879 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2880 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2881 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2882 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2883 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2884 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2885 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2886}
2887
2888/* User level utility function to check a chain is suitable */
2889int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2890{
2891 return tls1_check_chain(s, x, pk, chain, -1);
2892}
2893
2894EVP_PKEY *ssl_get_auto_dh(SSL *s)
2895{
2896 EVP_PKEY *dhp = NULL;
2897 BIGNUM *p;
2898 int dh_secbits = 80, sec_level_bits;
2899 EVP_PKEY_CTX *pctx = NULL;
2900 OSSL_PARAM_BLD *tmpl = NULL;
2901 OSSL_PARAM *params = NULL;
2902
2903 if (s->cert->dh_tmp_auto != 2) {
2904 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2905 if (s->s3.tmp.new_cipher->strength_bits == 256)
2906 dh_secbits = 128;
2907 else
2908 dh_secbits = 80;
2909 } else {
2910 if (s->s3.tmp.cert == NULL)
2911 return NULL;
2912 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2913 }
2914 }
2915
2916 /* Do not pick a prime that is too weak for the current security level */
2917 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2918 if (dh_secbits < sec_level_bits)
2919 dh_secbits = sec_level_bits;
2920
2921 if (dh_secbits >= 192)
2922 p = BN_get_rfc3526_prime_8192(NULL);
2923 else if (dh_secbits >= 152)
2924 p = BN_get_rfc3526_prime_4096(NULL);
2925 else if (dh_secbits >= 128)
2926 p = BN_get_rfc3526_prime_3072(NULL);
2927 else if (dh_secbits >= 112)
2928 p = BN_get_rfc3526_prime_2048(NULL);
2929 else
2930 p = BN_get_rfc2409_prime_1024(NULL);
2931 if (p == NULL)
2932 goto err;
2933
2934 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2935 if (pctx == NULL
2936 || EVP_PKEY_fromdata_init(pctx) != 1)
2937 goto err;
2938
2939 tmpl = OSSL_PARAM_BLD_new();
2940 if (tmpl == NULL
2941 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2942 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2943 goto err;
2944
2945 params = OSSL_PARAM_BLD_to_param(tmpl);
2946 if (params == NULL
2947 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2948 goto err;
2949
2950err:
2951 OSSL_PARAM_free(params);
2952 OSSL_PARAM_BLD_free(tmpl);
2953 EVP_PKEY_CTX_free(pctx);
2954 BN_free(p);
2955 return dhp;
2956}
2957
2958static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2959{
2960 int secbits = -1;
2961 EVP_PKEY *pkey = X509_get0_pubkey(x);
2962 if (pkey) {
2963 /*
2964 * If no parameters this will return -1 and fail using the default
2965 * security callback for any non-zero security level. This will
2966 * reject keys which omit parameters but this only affects DSA and
2967 * omission of parameters is never (?) done in practice.
2968 */
2969 secbits = EVP_PKEY_get_security_bits(pkey);
2970 }
2971 if (s)
2972 return ssl_security(s, op, secbits, 0, x);
2973 else
2974 return ssl_ctx_security(ctx, op, secbits, 0, x);
2975}
2976
2977static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2978{
2979 /* Lookup signature algorithm digest */
2980 int secbits, nid, pknid;
2981 /* Don't check signature if self signed */
2982 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2983 return 1;
2984 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2985 secbits = -1;
2986 /* If digest NID not defined use signature NID */
2987 if (nid == NID_undef)
2988 nid = pknid;
2989 if (s)
2990 return ssl_security(s, op, secbits, nid, x);
2991 else
2992 return ssl_ctx_security(ctx, op, secbits, nid, x);
2993}
2994
2995int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2996{
2997 if (vfy)
2998 vfy = SSL_SECOP_PEER;
2999 if (is_ee) {
3000 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3001 return SSL_R_EE_KEY_TOO_SMALL;
3002 } else {
3003 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3004 return SSL_R_CA_KEY_TOO_SMALL;
3005 }
3006 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3007 return SSL_R_CA_MD_TOO_WEAK;
3008 return 1;
3009}
3010
3011/*
3012 * Check security of a chain, if |sk| includes the end entity certificate then
3013 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3014 * one to the peer. Return values: 1 if ok otherwise error code to use
3015 */
3016
3017int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3018{
3019 int rv, start_idx, i;
3020 if (x == NULL) {
3021 x = sk_X509_value(sk, 0);
3022 if (x == NULL)
3023 return ERR_R_INTERNAL_ERROR;
3024 start_idx = 1;
3025 } else
3026 start_idx = 0;
3027
3028 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3029 if (rv != 1)
3030 return rv;
3031
3032 for (i = start_idx; i < sk_X509_num(sk); i++) {
3033 x = sk_X509_value(sk, i);
3034 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3035 if (rv != 1)
3036 return rv;
3037 }
3038 return 1;
3039}
3040
3041/*
3042 * For TLS 1.2 servers check if we have a certificate which can be used
3043 * with the signature algorithm "lu" and return index of certificate.
3044 */
3045
3046static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3047{
3048 int sig_idx = lu->sig_idx;
3049 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3050
3051 /* If not recognised or not supported by cipher mask it is not suitable */
3052 if (clu == NULL
3053 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3054 || (clu->nid == EVP_PKEY_RSA_PSS
3055 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3056 return -1;
3057
3058 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3059}
3060
3061/*
3062 * Checks the given cert against signature_algorithm_cert restrictions sent by
3063 * the peer (if any) as well as whether the hash from the sigalg is usable with
3064 * the key.
3065 * Returns true if the cert is usable and false otherwise.
3066 */
3067static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3068 EVP_PKEY *pkey)
3069{
3070 const SIGALG_LOOKUP *lu;
3071 int mdnid, pknid, supported;
3072 size_t i;
3073 const char *mdname = NULL;
3074
3075 /*
3076 * If the given EVP_PKEY cannot support signing with this digest,
3077 * the answer is simply 'no'.
3078 */
3079 if (sig->hash != NID_undef)
3080 mdname = OBJ_nid2sn(sig->hash);
3081 supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3082 mdname,
3083 s->ctx->propq);
3084 if (supported <= 0)
3085 return 0;
3086
3087 /*
3088 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3089 * on the sigalg with which the certificate was signed (by its issuer).
3090 */
3091 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3092 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3093 return 0;
3094 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3095 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3096 if (lu == NULL)
3097 continue;
3098
3099 /*
3100 * This does not differentiate between the
3101 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3102 * have a chain here that lets us look at the key OID in the
3103 * signing certificate.
3104 */
3105 if (mdnid == lu->hash && pknid == lu->sig)
3106 return 1;
3107 }
3108 return 0;
3109 }
3110
3111 /*
3112 * Without signat_algorithms_cert, any certificate for which we have
3113 * a viable public key is permitted.
3114 */
3115 return 1;
3116}
3117
3118/*
3119 * Returns true if |s| has a usable certificate configured for use
3120 * with signature scheme |sig|.
3121 * "Usable" includes a check for presence as well as applying
3122 * the signature_algorithm_cert restrictions sent by the peer (if any).
3123 * Returns false if no usable certificate is found.
3124 */
3125static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3126{
3127 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3128 if (idx == -1)
3129 idx = sig->sig_idx;
3130 if (!ssl_has_cert(s, idx))
3131 return 0;
3132
3133 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3134 s->cert->pkeys[idx].privatekey);
3135}
3136
3137/*
3138 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3139 * specified signature scheme |sig|, or false otherwise.
3140 */
3141static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3142 EVP_PKEY *pkey)
3143{
3144 size_t idx;
3145
3146 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3147 return 0;
3148
3149 /* Check the key is consistent with the sig alg */
3150 if ((int)idx != sig->sig_idx)
3151 return 0;
3152
3153 return check_cert_usable(s, sig, x, pkey);
3154}
3155
3156/*
3157 * Find a signature scheme that works with the supplied certificate |x| and key
3158 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3159 * available certs/keys to find one that works.
3160 */
3161static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3162{
3163 const SIGALG_LOOKUP *lu = NULL;
3164 size_t i;
3165 int curve = -1;
3166 EVP_PKEY *tmppkey;
3167
3168 /* Look for a shared sigalgs matching possible certificates */
3169 for (i = 0; i < s->shared_sigalgslen; i++) {
3170 lu = s->shared_sigalgs[i];
3171
3172 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3173 if (lu->hash == NID_sha1
3174 || lu->hash == NID_sha224
3175 || lu->sig == EVP_PKEY_DSA
3176 || lu->sig == EVP_PKEY_RSA)
3177 continue;
3178 /* Check that we have a cert, and signature_algorithms_cert */
3179 if (!tls1_lookup_md(s->ctx, lu, NULL))
3180 continue;
3181 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3182 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3183 continue;
3184
3185 tmppkey = (pkey != NULL) ? pkey
3186 : s->cert->pkeys[lu->sig_idx].privatekey;
3187
3188 if (lu->sig == EVP_PKEY_EC) {
3189 if (curve == -1)
3190 curve = ssl_get_EC_curve_nid(tmppkey);
3191 if (lu->curve != NID_undef && curve != lu->curve)
3192 continue;
3193 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3194 /* validate that key is large enough for the signature algorithm */
3195 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3196 continue;
3197 }
3198 break;
3199 }
3200
3201 if (i == s->shared_sigalgslen)
3202 return NULL;
3203
3204 return lu;
3205}
3206
3207/*
3208 * Choose an appropriate signature algorithm based on available certificates
3209 * Sets chosen certificate and signature algorithm.
3210 *
3211 * For servers if we fail to find a required certificate it is a fatal error,
3212 * an appropriate error code is set and a TLS alert is sent.
3213 *
3214 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3215 * a fatal error: we will either try another certificate or not present one
3216 * to the server. In this case no error is set.
3217 */
3218int tls_choose_sigalg(SSL *s, int fatalerrs)
3219{
3220 const SIGALG_LOOKUP *lu = NULL;
3221 int sig_idx = -1;
3222
3223 s->s3.tmp.cert = NULL;
3224 s->s3.tmp.sigalg = NULL;
3225
3226 if (SSL_IS_TLS13(s)) {
3227 lu = find_sig_alg(s, NULL, NULL);
3228 if (lu == NULL) {
3229 if (!fatalerrs)
3230 return 1;
3231 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3232 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3233 return 0;
3234 }
3235 } else {
3236 /* If ciphersuite doesn't require a cert nothing to do */
3237 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3238 return 1;
3239 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3240 return 1;
3241
3242 if (SSL_USE_SIGALGS(s)) {
3243 size_t i;
3244 if (s->s3.tmp.peer_sigalgs != NULL) {
3245 int curve = -1;
3246
3247 /* For Suite B need to match signature algorithm to curve */
3248 if (tls1_suiteb(s))
3249 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3250 .privatekey);
3251
3252 /*
3253 * Find highest preference signature algorithm matching
3254 * cert type
3255 */
3256 for (i = 0; i < s->shared_sigalgslen; i++) {
3257 lu = s->shared_sigalgs[i];
3258
3259 if (s->server) {
3260 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3261 continue;
3262 } else {
3263 int cc_idx = s->cert->key - s->cert->pkeys;
3264
3265 sig_idx = lu->sig_idx;
3266 if (cc_idx != sig_idx)
3267 continue;
3268 }
3269 /* Check that we have a cert, and sig_algs_cert */
3270 if (!has_usable_cert(s, lu, sig_idx))
3271 continue;
3272 if (lu->sig == EVP_PKEY_RSA_PSS) {
3273 /* validate that key is large enough for the signature algorithm */
3274 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3275
3276 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3277 continue;
3278 }
3279 if (curve == -1 || lu->curve == curve)
3280 break;
3281 }
3282#ifndef OPENSSL_NO_GOST
3283 /*
3284 * Some Windows-based implementations do not send GOST algorithms indication
3285 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3286 * we have to assume GOST support.
3287 */
3288 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3289 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3290 if (!fatalerrs)
3291 return 1;
3292 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3293 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3294 return 0;
3295 } else {
3296 i = 0;
3297 sig_idx = lu->sig_idx;
3298 }
3299 }
3300#endif
3301 if (i == s->shared_sigalgslen) {
3302 if (!fatalerrs)
3303 return 1;
3304 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3305 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3306 return 0;
3307 }
3308 } else {
3309 /*
3310 * If we have no sigalg use defaults
3311 */
3312 const uint16_t *sent_sigs;
3313 size_t sent_sigslen;
3314
3315 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3316 if (!fatalerrs)
3317 return 1;
3318 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3319 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3320 return 0;
3321 }
3322
3323 /* Check signature matches a type we sent */
3324 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3325 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3326 if (lu->sigalg == *sent_sigs
3327 && has_usable_cert(s, lu, lu->sig_idx))
3328 break;
3329 }
3330 if (i == sent_sigslen) {
3331 if (!fatalerrs)
3332 return 1;
3333 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3334 SSL_R_WRONG_SIGNATURE_TYPE);
3335 return 0;
3336 }
3337 }
3338 } else {
3339 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3340 if (!fatalerrs)
3341 return 1;
3342 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3343 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3344 return 0;
3345 }
3346 }
3347 }
3348 if (sig_idx == -1)
3349 sig_idx = lu->sig_idx;
3350 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3351 s->cert->key = s->s3.tmp.cert;
3352 s->s3.tmp.sigalg = lu;
3353 return 1;
3354}
3355
3356int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3357{
3358 if (mode != TLSEXT_max_fragment_length_DISABLED
3359 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3360 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3361 return 0;
3362 }
3363
3364 ctx->ext.max_fragment_len_mode = mode;
3365 return 1;
3366}
3367
3368int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3369{
3370 if (mode != TLSEXT_max_fragment_length_DISABLED
3371 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3372 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3373 return 0;
3374 }
3375
3376 ssl->ext.max_fragment_len_mode = mode;
3377 return 1;
3378}
3379
3380uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3381{
3382 return session->ext.max_fragment_len_mode;
3383}
3384
3385/*
3386 * Helper functions for HMAC access with legacy support included.
3387 */
3388SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3389{
3390 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3391 EVP_MAC *mac = NULL;
3392
3393 if (ret == NULL)
3394 return NULL;
3395#ifndef OPENSSL_NO_DEPRECATED_3_0
3396 if (ctx->ext.ticket_key_evp_cb == NULL
3397 && ctx->ext.ticket_key_cb != NULL) {
3398 if (!ssl_hmac_old_new(ret))
3399 goto err;
3400 return ret;
3401 }
3402#endif
3403 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3404 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3405 goto err;
3406 EVP_MAC_free(mac);
3407 return ret;
3408 err:
3409 EVP_MAC_CTX_free(ret->ctx);
3410 EVP_MAC_free(mac);
3411 OPENSSL_free(ret);
3412 return NULL;
3413}
3414
3415void ssl_hmac_free(SSL_HMAC *ctx)
3416{
3417 if (ctx != NULL) {
3418 EVP_MAC_CTX_free(ctx->ctx);
3419#ifndef OPENSSL_NO_DEPRECATED_3_0
3420 ssl_hmac_old_free(ctx);
3421#endif
3422 OPENSSL_free(ctx);
3423 }
3424}
3425
3426EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3427{
3428 return ctx->ctx;
3429}
3430
3431int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3432{
3433 OSSL_PARAM params[2], *p = params;
3434
3435 if (ctx->ctx != NULL) {
3436 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3437 *p = OSSL_PARAM_construct_end();
3438 if (EVP_MAC_init(ctx->ctx, key, len, params))
3439 return 1;
3440 }
3441#ifndef OPENSSL_NO_DEPRECATED_3_0
3442 if (ctx->old_ctx != NULL)
3443 return ssl_hmac_old_init(ctx, key, len, md);
3444#endif
3445 return 0;
3446}
3447
3448int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3449{
3450 if (ctx->ctx != NULL)
3451 return EVP_MAC_update(ctx->ctx, data, len);
3452#ifndef OPENSSL_NO_DEPRECATED_3_0
3453 if (ctx->old_ctx != NULL)
3454 return ssl_hmac_old_update(ctx, data, len);
3455#endif
3456 return 0;
3457}
3458
3459int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3460 size_t max_size)
3461{
3462 if (ctx->ctx != NULL)
3463 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3464#ifndef OPENSSL_NO_DEPRECATED_3_0
3465 if (ctx->old_ctx != NULL)
3466 return ssl_hmac_old_final(ctx, md, len);
3467#endif
3468 return 0;
3469}
3470
3471size_t ssl_hmac_size(const SSL_HMAC *ctx)
3472{
3473 if (ctx->ctx != NULL)
3474 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3475#ifndef OPENSSL_NO_DEPRECATED_3_0
3476 if (ctx->old_ctx != NULL)
3477 return ssl_hmac_old_size(ctx);
3478#endif
3479 return 0;
3480}
3481
3482int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3483{
3484 char gname[OSSL_MAX_NAME_SIZE];
3485
3486 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3487 return OBJ_txt2nid(gname);
3488
3489 return NID_undef;
3490}
3491
3492__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3493 const unsigned char *enckey,
3494 size_t enckeylen)
3495{
3496 if (EVP_PKEY_is_a(pkey, "DH")) {
3497 int bits = EVP_PKEY_get_bits(pkey);
3498
3499 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3500 /* the encoded key must be padded to the length of the p */
3501 return 0;
3502 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3503 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3504 || enckey[0] != 0x04)
3505 return 0;
3506 }
3507
3508 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3509}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette