1 | /*
|
---|
2 | * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * This file uses the low-level AES functions (which are deprecated for
|
---|
12 | * non-internal use) in order to implement the EVP AES ciphers.
|
---|
13 | */
|
---|
14 | #include "internal/deprecated.h"
|
---|
15 |
|
---|
16 | #include <string.h>
|
---|
17 | #include <assert.h>
|
---|
18 | #include <openssl/opensslconf.h>
|
---|
19 | #include <openssl/crypto.h>
|
---|
20 | #include <openssl/evp.h>
|
---|
21 | #include <openssl/err.h>
|
---|
22 | #include <openssl/aes.h>
|
---|
23 | #include <openssl/rand.h>
|
---|
24 | #include <openssl/cmac.h>
|
---|
25 | #include "crypto/evp.h"
|
---|
26 | #include "internal/cryptlib.h"
|
---|
27 | #include "crypto/modes.h"
|
---|
28 | #include "crypto/siv.h"
|
---|
29 | #include "crypto/aes_platform.h"
|
---|
30 | #include "evp_local.h"
|
---|
31 |
|
---|
32 | typedef struct {
|
---|
33 | union {
|
---|
34 | OSSL_UNION_ALIGN;
|
---|
35 | AES_KEY ks;
|
---|
36 | } ks;
|
---|
37 | block128_f block;
|
---|
38 | union {
|
---|
39 | cbc128_f cbc;
|
---|
40 | ctr128_f ctr;
|
---|
41 | } stream;
|
---|
42 | } EVP_AES_KEY;
|
---|
43 |
|
---|
44 | typedef struct {
|
---|
45 | union {
|
---|
46 | OSSL_UNION_ALIGN;
|
---|
47 | AES_KEY ks;
|
---|
48 | } ks; /* AES key schedule to use */
|
---|
49 | int key_set; /* Set if key initialised */
|
---|
50 | int iv_set; /* Set if an iv is set */
|
---|
51 | GCM128_CONTEXT gcm;
|
---|
52 | unsigned char *iv; /* Temporary IV store */
|
---|
53 | int ivlen; /* IV length */
|
---|
54 | int taglen;
|
---|
55 | int iv_gen; /* It is OK to generate IVs */
|
---|
56 | int iv_gen_rand; /* No IV was specified, so generate a rand IV */
|
---|
57 | int tls_aad_len; /* TLS AAD length */
|
---|
58 | uint64_t tls_enc_records; /* Number of TLS records encrypted */
|
---|
59 | ctr128_f ctr;
|
---|
60 | } EVP_AES_GCM_CTX;
|
---|
61 |
|
---|
62 | typedef struct {
|
---|
63 | union {
|
---|
64 | OSSL_UNION_ALIGN;
|
---|
65 | AES_KEY ks;
|
---|
66 | } ks1, ks2; /* AES key schedules to use */
|
---|
67 | XTS128_CONTEXT xts;
|
---|
68 | void (*stream) (const unsigned char *in,
|
---|
69 | unsigned char *out, size_t length,
|
---|
70 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
71 | const unsigned char iv[16]);
|
---|
72 | } EVP_AES_XTS_CTX;
|
---|
73 |
|
---|
74 | #ifdef FIPS_MODULE
|
---|
75 | static const int allow_insecure_decrypt = 0;
|
---|
76 | #else
|
---|
77 | static const int allow_insecure_decrypt = 1;
|
---|
78 | #endif
|
---|
79 |
|
---|
80 | typedef struct {
|
---|
81 | union {
|
---|
82 | OSSL_UNION_ALIGN;
|
---|
83 | AES_KEY ks;
|
---|
84 | } ks; /* AES key schedule to use */
|
---|
85 | int key_set; /* Set if key initialised */
|
---|
86 | int iv_set; /* Set if an iv is set */
|
---|
87 | int tag_set; /* Set if tag is valid */
|
---|
88 | int len_set; /* Set if message length set */
|
---|
89 | int L, M; /* L and M parameters from RFC3610 */
|
---|
90 | int tls_aad_len; /* TLS AAD length */
|
---|
91 | CCM128_CONTEXT ccm;
|
---|
92 | ccm128_f str;
|
---|
93 | } EVP_AES_CCM_CTX;
|
---|
94 |
|
---|
95 | #ifndef OPENSSL_NO_OCB
|
---|
96 | typedef struct {
|
---|
97 | union {
|
---|
98 | OSSL_UNION_ALIGN;
|
---|
99 | AES_KEY ks;
|
---|
100 | } ksenc; /* AES key schedule to use for encryption */
|
---|
101 | union {
|
---|
102 | OSSL_UNION_ALIGN;
|
---|
103 | AES_KEY ks;
|
---|
104 | } ksdec; /* AES key schedule to use for decryption */
|
---|
105 | int key_set; /* Set if key initialised */
|
---|
106 | int iv_set; /* Set if an iv is set */
|
---|
107 | OCB128_CONTEXT ocb;
|
---|
108 | unsigned char *iv; /* Temporary IV store */
|
---|
109 | unsigned char tag[16];
|
---|
110 | unsigned char data_buf[16]; /* Store partial data blocks */
|
---|
111 | unsigned char aad_buf[16]; /* Store partial AAD blocks */
|
---|
112 | int data_buf_len;
|
---|
113 | int aad_buf_len;
|
---|
114 | int ivlen; /* IV length */
|
---|
115 | int taglen;
|
---|
116 | } EVP_AES_OCB_CTX;
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
|
---|
120 |
|
---|
121 | /* increment counter (64-bit int) by 1 */
|
---|
122 | static void ctr64_inc(unsigned char *counter)
|
---|
123 | {
|
---|
124 | int n = 8;
|
---|
125 | unsigned char c;
|
---|
126 |
|
---|
127 | do {
|
---|
128 | --n;
|
---|
129 | c = counter[n];
|
---|
130 | ++c;
|
---|
131 | counter[n] = c;
|
---|
132 | if (c)
|
---|
133 | return;
|
---|
134 | } while (n);
|
---|
135 | }
|
---|
136 |
|
---|
137 | #if defined(AESNI_CAPABLE)
|
---|
138 | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
|
---|
139 | # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
|
---|
140 | gctx->gcm.ghash==gcm_ghash_avx)
|
---|
141 | # undef AES_GCM_ASM2 /* minor size optimization */
|
---|
142 | # endif
|
---|
143 |
|
---|
144 | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
145 | const unsigned char *iv, int enc)
|
---|
146 | {
|
---|
147 | int ret, mode;
|
---|
148 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
149 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
150 |
|
---|
151 | if (keylen <= 0) {
|
---|
152 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
153 | return 0;
|
---|
154 | }
|
---|
155 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
156 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
157 | && !enc) {
|
---|
158 | ret = aesni_set_decrypt_key(key, keylen, &dat->ks.ks);
|
---|
159 | dat->block = (block128_f) aesni_decrypt;
|
---|
160 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
161 | (cbc128_f) aesni_cbc_encrypt : NULL;
|
---|
162 | } else {
|
---|
163 | ret = aesni_set_encrypt_key(key, keylen, &dat->ks.ks);
|
---|
164 | dat->block = (block128_f) aesni_encrypt;
|
---|
165 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
166 | dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
|
---|
167 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
168 | dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
169 | else
|
---|
170 | dat->stream.cbc = NULL;
|
---|
171 | }
|
---|
172 |
|
---|
173 | if (ret < 0) {
|
---|
174 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
175 | return 0;
|
---|
176 | }
|
---|
177 |
|
---|
178 | return 1;
|
---|
179 | }
|
---|
180 |
|
---|
181 | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
182 | const unsigned char *in, size_t len)
|
---|
183 | {
|
---|
184 | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
185 | ctx->iv, EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
186 |
|
---|
187 | return 1;
|
---|
188 | }
|
---|
189 |
|
---|
190 | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
191 | const unsigned char *in, size_t len)
|
---|
192 | {
|
---|
193 | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);
|
---|
194 |
|
---|
195 | if (len < bl)
|
---|
196 | return 1;
|
---|
197 |
|
---|
198 | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
199 | EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
200 |
|
---|
201 | return 1;
|
---|
202 | }
|
---|
203 |
|
---|
204 | # define aesni_ofb_cipher aes_ofb_cipher
|
---|
205 | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
206 | const unsigned char *in, size_t len);
|
---|
207 |
|
---|
208 | # define aesni_cfb_cipher aes_cfb_cipher
|
---|
209 | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
210 | const unsigned char *in, size_t len);
|
---|
211 |
|
---|
212 | # define aesni_cfb8_cipher aes_cfb8_cipher
|
---|
213 | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
214 | const unsigned char *in, size_t len);
|
---|
215 |
|
---|
216 | # define aesni_cfb1_cipher aes_cfb1_cipher
|
---|
217 | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
218 | const unsigned char *in, size_t len);
|
---|
219 |
|
---|
220 | # define aesni_ctr_cipher aes_ctr_cipher
|
---|
221 | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
222 | const unsigned char *in, size_t len);
|
---|
223 |
|
---|
224 | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
225 | const unsigned char *iv, int enc)
|
---|
226 | {
|
---|
227 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx);
|
---|
228 |
|
---|
229 | if (iv == NULL && key == NULL)
|
---|
230 | return 1;
|
---|
231 |
|
---|
232 | if (key) {
|
---|
233 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
234 |
|
---|
235 | if (keylen <= 0) {
|
---|
236 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
237 | return 0;
|
---|
238 | }
|
---|
239 | aesni_set_encrypt_key(key, keylen, &gctx->ks.ks);
|
---|
240 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
|
---|
241 | gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
242 | /*
|
---|
243 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
244 | */
|
---|
245 | if (iv == NULL && gctx->iv_set)
|
---|
246 | iv = gctx->iv;
|
---|
247 | if (iv) {
|
---|
248 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
249 | gctx->iv_set = 1;
|
---|
250 | }
|
---|
251 | gctx->key_set = 1;
|
---|
252 | } else {
|
---|
253 | /* If key set use IV, otherwise copy */
|
---|
254 | if (gctx->key_set)
|
---|
255 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
256 | else
|
---|
257 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
258 | gctx->iv_set = 1;
|
---|
259 | gctx->iv_gen = 0;
|
---|
260 | }
|
---|
261 | return 1;
|
---|
262 | }
|
---|
263 |
|
---|
264 | # define aesni_gcm_cipher aes_gcm_cipher
|
---|
265 | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
266 | const unsigned char *in, size_t len);
|
---|
267 |
|
---|
268 | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
269 | const unsigned char *iv, int enc)
|
---|
270 | {
|
---|
271 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
272 |
|
---|
273 | if (iv == NULL && key == NULL)
|
---|
274 | return 1;
|
---|
275 |
|
---|
276 | if (key) {
|
---|
277 | /* The key is two half length keys in reality */
|
---|
278 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
279 | const int bytes = keylen / 2;
|
---|
280 | const int bits = bytes * 8;
|
---|
281 |
|
---|
282 | if (keylen <= 0) {
|
---|
283 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
284 | return 0;
|
---|
285 | }
|
---|
286 | /*
|
---|
287 | * Verify that the two keys are different.
|
---|
288 | *
|
---|
289 | * This addresses Rogaway's vulnerability.
|
---|
290 | * See comment in aes_xts_init_key() below.
|
---|
291 | */
|
---|
292 | if ((!allow_insecure_decrypt || enc)
|
---|
293 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
294 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
295 | return 0;
|
---|
296 | }
|
---|
297 |
|
---|
298 | /* key_len is two AES keys */
|
---|
299 | if (enc) {
|
---|
300 | aesni_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
301 | xctx->xts.block1 = (block128_f) aesni_encrypt;
|
---|
302 | xctx->stream = aesni_xts_encrypt;
|
---|
303 | } else {
|
---|
304 | aesni_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
305 | xctx->xts.block1 = (block128_f) aesni_decrypt;
|
---|
306 | xctx->stream = aesni_xts_decrypt;
|
---|
307 | }
|
---|
308 |
|
---|
309 | aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
310 | xctx->xts.block2 = (block128_f) aesni_encrypt;
|
---|
311 |
|
---|
312 | xctx->xts.key1 = &xctx->ks1;
|
---|
313 | }
|
---|
314 |
|
---|
315 | if (iv) {
|
---|
316 | xctx->xts.key2 = &xctx->ks2;
|
---|
317 | memcpy(ctx->iv, iv, 16);
|
---|
318 | }
|
---|
319 |
|
---|
320 | return 1;
|
---|
321 | }
|
---|
322 |
|
---|
323 | # define aesni_xts_cipher aes_xts_cipher
|
---|
324 | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
325 | const unsigned char *in, size_t len);
|
---|
326 |
|
---|
327 | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
328 | const unsigned char *iv, int enc)
|
---|
329 | {
|
---|
330 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
331 |
|
---|
332 | if (iv == NULL && key == NULL)
|
---|
333 | return 1;
|
---|
334 |
|
---|
335 | if (key != NULL) {
|
---|
336 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
337 |
|
---|
338 | if (keylen <= 0) {
|
---|
339 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
340 | return 0;
|
---|
341 | }
|
---|
342 | aesni_set_encrypt_key(key, keylen, &cctx->ks.ks);
|
---|
343 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
344 | &cctx->ks, (block128_f) aesni_encrypt);
|
---|
345 | cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
|
---|
346 | (ccm128_f) aesni_ccm64_decrypt_blocks;
|
---|
347 | cctx->key_set = 1;
|
---|
348 | }
|
---|
349 | if (iv) {
|
---|
350 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
351 | cctx->iv_set = 1;
|
---|
352 | }
|
---|
353 | return 1;
|
---|
354 | }
|
---|
355 |
|
---|
356 | # define aesni_ccm_cipher aes_ccm_cipher
|
---|
357 | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
358 | const unsigned char *in, size_t len);
|
---|
359 |
|
---|
360 | # ifndef OPENSSL_NO_OCB
|
---|
361 | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
362 | const unsigned char *iv, int enc)
|
---|
363 | {
|
---|
364 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
365 |
|
---|
366 | if (iv == NULL && key == NULL)
|
---|
367 | return 1;
|
---|
368 |
|
---|
369 | if (key != NULL) {
|
---|
370 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
371 |
|
---|
372 | if (keylen <= 0) {
|
---|
373 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
374 | return 0;
|
---|
375 | }
|
---|
376 | do {
|
---|
377 | /*
|
---|
378 | * We set both the encrypt and decrypt key here because decrypt
|
---|
379 | * needs both. We could possibly optimise to remove setting the
|
---|
380 | * decrypt for an encryption operation.
|
---|
381 | */
|
---|
382 | aesni_set_encrypt_key(key, keylen, &octx->ksenc.ks);
|
---|
383 | aesni_set_decrypt_key(key, keylen, &octx->ksdec.ks);
|
---|
384 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
385 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
386 | (block128_f) aesni_encrypt,
|
---|
387 | (block128_f) aesni_decrypt,
|
---|
388 | enc ? aesni_ocb_encrypt
|
---|
389 | : aesni_ocb_decrypt))
|
---|
390 | return 0;
|
---|
391 | }
|
---|
392 | while (0);
|
---|
393 |
|
---|
394 | /*
|
---|
395 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
396 | */
|
---|
397 | if (iv == NULL && octx->iv_set)
|
---|
398 | iv = octx->iv;
|
---|
399 | if (iv) {
|
---|
400 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
401 | != 1)
|
---|
402 | return 0;
|
---|
403 | octx->iv_set = 1;
|
---|
404 | }
|
---|
405 | octx->key_set = 1;
|
---|
406 | } else {
|
---|
407 | /* If key set use IV, otherwise copy */
|
---|
408 | if (octx->key_set)
|
---|
409 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
410 | else
|
---|
411 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
412 | octx->iv_set = 1;
|
---|
413 | }
|
---|
414 | return 1;
|
---|
415 | }
|
---|
416 |
|
---|
417 | # define aesni_ocb_cipher aes_ocb_cipher
|
---|
418 | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
419 | const unsigned char *in, size_t len);
|
---|
420 | # endif /* OPENSSL_NO_OCB */
|
---|
421 |
|
---|
422 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
423 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
424 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
425 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
426 | EVP_ORIG_GLOBAL, \
|
---|
427 | aesni_init_key, \
|
---|
428 | aesni_##mode##_cipher, \
|
---|
429 | NULL, \
|
---|
430 | sizeof(EVP_AES_KEY), \
|
---|
431 | NULL,NULL,NULL,NULL }; \
|
---|
432 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
433 | nid##_##keylen##_##nmode,blocksize, \
|
---|
434 | keylen/8,ivlen, \
|
---|
435 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
436 | EVP_ORIG_GLOBAL, \
|
---|
437 | aes_init_key, \
|
---|
438 | aes_##mode##_cipher, \
|
---|
439 | NULL, \
|
---|
440 | sizeof(EVP_AES_KEY), \
|
---|
441 | NULL,NULL,NULL,NULL }; \
|
---|
442 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
443 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
444 |
|
---|
445 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
446 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
447 | nid##_##keylen##_##mode,blocksize, \
|
---|
448 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
449 | ivlen, \
|
---|
450 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
451 | EVP_ORIG_GLOBAL, \
|
---|
452 | aesni_##mode##_init_key, \
|
---|
453 | aesni_##mode##_cipher, \
|
---|
454 | aes_##mode##_cleanup, \
|
---|
455 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
456 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
457 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
458 | nid##_##keylen##_##mode,blocksize, \
|
---|
459 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
460 | ivlen, \
|
---|
461 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
462 | EVP_ORIG_GLOBAL, \
|
---|
463 | aes_##mode##_init_key, \
|
---|
464 | aes_##mode##_cipher, \
|
---|
465 | aes_##mode##_cleanup, \
|
---|
466 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
467 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
468 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
469 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
470 |
|
---|
471 | #elif defined(SPARC_AES_CAPABLE)
|
---|
472 |
|
---|
473 | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
474 | const unsigned char *iv, int enc)
|
---|
475 | {
|
---|
476 | int ret, mode, bits;
|
---|
477 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
478 |
|
---|
479 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
480 | bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
481 | if (bits <= 0) {
|
---|
482 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
483 | return 0;
|
---|
484 | }
|
---|
485 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
486 | && !enc) {
|
---|
487 | ret = 0;
|
---|
488 | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
|
---|
489 | dat->block = (block128_f) aes_t4_decrypt;
|
---|
490 | switch (bits) {
|
---|
491 | case 128:
|
---|
492 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
493 | (cbc128_f) aes128_t4_cbc_decrypt : NULL;
|
---|
494 | break;
|
---|
495 | case 192:
|
---|
496 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
497 | (cbc128_f) aes192_t4_cbc_decrypt : NULL;
|
---|
498 | break;
|
---|
499 | case 256:
|
---|
500 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
501 | (cbc128_f) aes256_t4_cbc_decrypt : NULL;
|
---|
502 | break;
|
---|
503 | default:
|
---|
504 | ret = -1;
|
---|
505 | }
|
---|
506 | } else {
|
---|
507 | ret = 0;
|
---|
508 | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
|
---|
509 | dat->block = (block128_f) aes_t4_encrypt;
|
---|
510 | switch (bits) {
|
---|
511 | case 128:
|
---|
512 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
513 | dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
|
---|
514 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
515 | dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
516 | else
|
---|
517 | dat->stream.cbc = NULL;
|
---|
518 | break;
|
---|
519 | case 192:
|
---|
520 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
521 | dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
|
---|
522 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
523 | dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
524 | else
|
---|
525 | dat->stream.cbc = NULL;
|
---|
526 | break;
|
---|
527 | case 256:
|
---|
528 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
529 | dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
|
---|
530 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
531 | dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
532 | else
|
---|
533 | dat->stream.cbc = NULL;
|
---|
534 | break;
|
---|
535 | default:
|
---|
536 | ret = -1;
|
---|
537 | }
|
---|
538 | }
|
---|
539 |
|
---|
540 | if (ret < 0) {
|
---|
541 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
542 | return 0;
|
---|
543 | }
|
---|
544 |
|
---|
545 | return 1;
|
---|
546 | }
|
---|
547 |
|
---|
548 | # define aes_t4_cbc_cipher aes_cbc_cipher
|
---|
549 | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
550 | const unsigned char *in, size_t len);
|
---|
551 |
|
---|
552 | # define aes_t4_ecb_cipher aes_ecb_cipher
|
---|
553 | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
554 | const unsigned char *in, size_t len);
|
---|
555 |
|
---|
556 | # define aes_t4_ofb_cipher aes_ofb_cipher
|
---|
557 | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
558 | const unsigned char *in, size_t len);
|
---|
559 |
|
---|
560 | # define aes_t4_cfb_cipher aes_cfb_cipher
|
---|
561 | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
562 | const unsigned char *in, size_t len);
|
---|
563 |
|
---|
564 | # define aes_t4_cfb8_cipher aes_cfb8_cipher
|
---|
565 | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
566 | const unsigned char *in, size_t len);
|
---|
567 |
|
---|
568 | # define aes_t4_cfb1_cipher aes_cfb1_cipher
|
---|
569 | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
570 | const unsigned char *in, size_t len);
|
---|
571 |
|
---|
572 | # define aes_t4_ctr_cipher aes_ctr_cipher
|
---|
573 | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
574 | const unsigned char *in, size_t len);
|
---|
575 |
|
---|
576 | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
577 | const unsigned char *iv, int enc)
|
---|
578 | {
|
---|
579 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
580 |
|
---|
581 | if (iv == NULL && key == NULL)
|
---|
582 | return 1;
|
---|
583 | if (key) {
|
---|
584 | const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
585 |
|
---|
586 | if (bits <= 0) {
|
---|
587 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
588 | return 0;
|
---|
589 | }
|
---|
590 | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
|
---|
591 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
592 | (block128_f) aes_t4_encrypt);
|
---|
593 | switch (bits) {
|
---|
594 | case 128:
|
---|
595 | gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
596 | break;
|
---|
597 | case 192:
|
---|
598 | gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
599 | break;
|
---|
600 | case 256:
|
---|
601 | gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
602 | break;
|
---|
603 | default:
|
---|
604 | return 0;
|
---|
605 | }
|
---|
606 | /*
|
---|
607 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
608 | */
|
---|
609 | if (iv == NULL && gctx->iv_set)
|
---|
610 | iv = gctx->iv;
|
---|
611 | if (iv) {
|
---|
612 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
613 | gctx->iv_set = 1;
|
---|
614 | }
|
---|
615 | gctx->key_set = 1;
|
---|
616 | } else {
|
---|
617 | /* If key set use IV, otherwise copy */
|
---|
618 | if (gctx->key_set)
|
---|
619 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
620 | else
|
---|
621 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
622 | gctx->iv_set = 1;
|
---|
623 | gctx->iv_gen = 0;
|
---|
624 | }
|
---|
625 | return 1;
|
---|
626 | }
|
---|
627 |
|
---|
628 | # define aes_t4_gcm_cipher aes_gcm_cipher
|
---|
629 | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
630 | const unsigned char *in, size_t len);
|
---|
631 |
|
---|
632 | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
633 | const unsigned char *iv, int enc)
|
---|
634 | {
|
---|
635 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
636 |
|
---|
637 | if (!iv && !key)
|
---|
638 | return 1;
|
---|
639 |
|
---|
640 | if (key) {
|
---|
641 | /* The key is two half length keys in reality */
|
---|
642 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
643 | const int bytes = keylen / 2;
|
---|
644 | const int bits = bytes * 8;
|
---|
645 |
|
---|
646 | if (keylen <= 0) {
|
---|
647 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
648 | return 0;
|
---|
649 | }
|
---|
650 | /*
|
---|
651 | * Verify that the two keys are different.
|
---|
652 | *
|
---|
653 | * This addresses Rogaway's vulnerability.
|
---|
654 | * See comment in aes_xts_init_key() below.
|
---|
655 | */
|
---|
656 | if ((!allow_insecure_decrypt || enc)
|
---|
657 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
658 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
659 | return 0;
|
---|
660 | }
|
---|
661 |
|
---|
662 | xctx->stream = NULL;
|
---|
663 | /* key_len is two AES keys */
|
---|
664 | if (enc) {
|
---|
665 | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
666 | xctx->xts.block1 = (block128_f) aes_t4_encrypt;
|
---|
667 | switch (bits) {
|
---|
668 | case 128:
|
---|
669 | xctx->stream = aes128_t4_xts_encrypt;
|
---|
670 | break;
|
---|
671 | case 256:
|
---|
672 | xctx->stream = aes256_t4_xts_encrypt;
|
---|
673 | break;
|
---|
674 | default:
|
---|
675 | return 0;
|
---|
676 | }
|
---|
677 | } else {
|
---|
678 | aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
679 | xctx->xts.block1 = (block128_f) aes_t4_decrypt;
|
---|
680 | switch (bits) {
|
---|
681 | case 128:
|
---|
682 | xctx->stream = aes128_t4_xts_decrypt;
|
---|
683 | break;
|
---|
684 | case 256:
|
---|
685 | xctx->stream = aes256_t4_xts_decrypt;
|
---|
686 | break;
|
---|
687 | default:
|
---|
688 | return 0;
|
---|
689 | }
|
---|
690 | }
|
---|
691 |
|
---|
692 | aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
693 | xctx->xts.block2 = (block128_f) aes_t4_encrypt;
|
---|
694 |
|
---|
695 | xctx->xts.key1 = &xctx->ks1;
|
---|
696 | }
|
---|
697 |
|
---|
698 | if (iv) {
|
---|
699 | xctx->xts.key2 = &xctx->ks2;
|
---|
700 | memcpy(ctx->iv, iv, 16);
|
---|
701 | }
|
---|
702 |
|
---|
703 | return 1;
|
---|
704 | }
|
---|
705 |
|
---|
706 | # define aes_t4_xts_cipher aes_xts_cipher
|
---|
707 | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
708 | const unsigned char *in, size_t len);
|
---|
709 |
|
---|
710 | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
711 | const unsigned char *iv, int enc)
|
---|
712 | {
|
---|
713 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
714 |
|
---|
715 | if (iv == NULL && key == NULL)
|
---|
716 | return 1;
|
---|
717 |
|
---|
718 | if (key != NULL) {
|
---|
719 | const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
720 |
|
---|
721 | if (bits <= 0) {
|
---|
722 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
723 | return 0;
|
---|
724 | }
|
---|
725 | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
|
---|
726 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
727 | &cctx->ks, (block128_f) aes_t4_encrypt);
|
---|
728 | cctx->str = NULL;
|
---|
729 | cctx->key_set = 1;
|
---|
730 | }
|
---|
731 | if (iv) {
|
---|
732 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
733 | cctx->iv_set = 1;
|
---|
734 | }
|
---|
735 | return 1;
|
---|
736 | }
|
---|
737 |
|
---|
738 | # define aes_t4_ccm_cipher aes_ccm_cipher
|
---|
739 | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
740 | const unsigned char *in, size_t len);
|
---|
741 |
|
---|
742 | # ifndef OPENSSL_NO_OCB
|
---|
743 | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
744 | const unsigned char *iv, int enc)
|
---|
745 | {
|
---|
746 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
747 |
|
---|
748 | if (iv == NULL && key == NULL)
|
---|
749 | return 1;
|
---|
750 |
|
---|
751 | if (key != NULL) {
|
---|
752 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
753 |
|
---|
754 | if (keylen <= 0) {
|
---|
755 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
756 | return 0;
|
---|
757 | }
|
---|
758 | do {
|
---|
759 | /*
|
---|
760 | * We set both the encrypt and decrypt key here because decrypt
|
---|
761 | * needs both. We could possibly optimise to remove setting the
|
---|
762 | * decrypt for an encryption operation.
|
---|
763 | */
|
---|
764 | aes_t4_set_encrypt_key(key, keylen, &octx->ksenc.ks);
|
---|
765 | aes_t4_set_decrypt_key(key, keylen, &octx->ksdec.ks);
|
---|
766 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
767 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
768 | (block128_f) aes_t4_encrypt,
|
---|
769 | (block128_f) aes_t4_decrypt,
|
---|
770 | NULL))
|
---|
771 | return 0;
|
---|
772 | }
|
---|
773 | while (0);
|
---|
774 |
|
---|
775 | /*
|
---|
776 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
777 | */
|
---|
778 | if (iv == NULL && octx->iv_set)
|
---|
779 | iv = octx->iv;
|
---|
780 | if (iv) {
|
---|
781 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
782 | != 1)
|
---|
783 | return 0;
|
---|
784 | octx->iv_set = 1;
|
---|
785 | }
|
---|
786 | octx->key_set = 1;
|
---|
787 | } else {
|
---|
788 | /* If key set use IV, otherwise copy */
|
---|
789 | if (octx->key_set)
|
---|
790 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
791 | else
|
---|
792 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
793 | octx->iv_set = 1;
|
---|
794 | }
|
---|
795 | return 1;
|
---|
796 | }
|
---|
797 |
|
---|
798 | # define aes_t4_ocb_cipher aes_ocb_cipher
|
---|
799 | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
800 | const unsigned char *in, size_t len);
|
---|
801 | # endif /* OPENSSL_NO_OCB */
|
---|
802 |
|
---|
803 | # ifndef OPENSSL_NO_SIV
|
---|
804 | # define aes_t4_siv_init_key aes_siv_init_key
|
---|
805 | # define aes_t4_siv_cipher aes_siv_cipher
|
---|
806 | # endif /* OPENSSL_NO_SIV */
|
---|
807 |
|
---|
808 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
809 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
810 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
811 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
812 | EVP_ORIG_GLOBAL, \
|
---|
813 | aes_t4_init_key, \
|
---|
814 | aes_t4_##mode##_cipher, \
|
---|
815 | NULL, \
|
---|
816 | sizeof(EVP_AES_KEY), \
|
---|
817 | NULL,NULL,NULL,NULL }; \
|
---|
818 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
819 | nid##_##keylen##_##nmode,blocksize, \
|
---|
820 | keylen/8,ivlen, \
|
---|
821 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
822 | EVP_ORIG_GLOBAL, \
|
---|
823 | aes_init_key, \
|
---|
824 | aes_##mode##_cipher, \
|
---|
825 | NULL, \
|
---|
826 | sizeof(EVP_AES_KEY), \
|
---|
827 | NULL,NULL,NULL,NULL }; \
|
---|
828 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
829 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
830 |
|
---|
831 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
832 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
833 | nid##_##keylen##_##mode,blocksize, \
|
---|
834 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
835 | ivlen, \
|
---|
836 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
837 | EVP_ORIG_GLOBAL, \
|
---|
838 | aes_t4_##mode##_init_key, \
|
---|
839 | aes_t4_##mode##_cipher, \
|
---|
840 | aes_##mode##_cleanup, \
|
---|
841 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
842 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
843 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
844 | nid##_##keylen##_##mode,blocksize, \
|
---|
845 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
846 | ivlen, \
|
---|
847 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
848 | EVP_ORIG_GLOBAL, \
|
---|
849 | aes_##mode##_init_key, \
|
---|
850 | aes_##mode##_cipher, \
|
---|
851 | aes_##mode##_cleanup, \
|
---|
852 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
853 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
854 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
855 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
856 |
|
---|
857 | #elif defined(S390X_aes_128_CAPABLE)
|
---|
858 | /* IBM S390X support */
|
---|
859 | typedef struct {
|
---|
860 | union {
|
---|
861 | OSSL_UNION_ALIGN;
|
---|
862 | /*-
|
---|
863 | * KM-AES parameter block - begin
|
---|
864 | * (see z/Architecture Principles of Operation >= SA22-7832-06)
|
---|
865 | */
|
---|
866 | struct {
|
---|
867 | unsigned char k[32];
|
---|
868 | } param;
|
---|
869 | /* KM-AES parameter block - end */
|
---|
870 | } km;
|
---|
871 | unsigned int fc;
|
---|
872 | } S390X_AES_ECB_CTX;
|
---|
873 |
|
---|
874 | typedef struct {
|
---|
875 | union {
|
---|
876 | OSSL_UNION_ALIGN;
|
---|
877 | /*-
|
---|
878 | * KMO-AES parameter block - begin
|
---|
879 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
880 | */
|
---|
881 | struct {
|
---|
882 | unsigned char cv[16];
|
---|
883 | unsigned char k[32];
|
---|
884 | } param;
|
---|
885 | /* KMO-AES parameter block - end */
|
---|
886 | } kmo;
|
---|
887 | unsigned int fc;
|
---|
888 |
|
---|
889 | int res;
|
---|
890 | } S390X_AES_OFB_CTX;
|
---|
891 |
|
---|
892 | typedef struct {
|
---|
893 | union {
|
---|
894 | OSSL_UNION_ALIGN;
|
---|
895 | /*-
|
---|
896 | * KMF-AES parameter block - begin
|
---|
897 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
898 | */
|
---|
899 | struct {
|
---|
900 | unsigned char cv[16];
|
---|
901 | unsigned char k[32];
|
---|
902 | } param;
|
---|
903 | /* KMF-AES parameter block - end */
|
---|
904 | } kmf;
|
---|
905 | unsigned int fc;
|
---|
906 |
|
---|
907 | int res;
|
---|
908 | } S390X_AES_CFB_CTX;
|
---|
909 |
|
---|
910 | typedef struct {
|
---|
911 | union {
|
---|
912 | OSSL_UNION_ALIGN;
|
---|
913 | /*-
|
---|
914 | * KMA-GCM-AES parameter block - begin
|
---|
915 | * (see z/Architecture Principles of Operation >= SA22-7832-11)
|
---|
916 | */
|
---|
917 | struct {
|
---|
918 | unsigned char reserved[12];
|
---|
919 | union {
|
---|
920 | unsigned int w;
|
---|
921 | unsigned char b[4];
|
---|
922 | } cv;
|
---|
923 | union {
|
---|
924 | unsigned long long g[2];
|
---|
925 | unsigned char b[16];
|
---|
926 | } t;
|
---|
927 | unsigned char h[16];
|
---|
928 | unsigned long long taadl;
|
---|
929 | unsigned long long tpcl;
|
---|
930 | union {
|
---|
931 | unsigned long long g[2];
|
---|
932 | unsigned int w[4];
|
---|
933 | } j0;
|
---|
934 | unsigned char k[32];
|
---|
935 | } param;
|
---|
936 | /* KMA-GCM-AES parameter block - end */
|
---|
937 | } kma;
|
---|
938 | unsigned int fc;
|
---|
939 | int key_set;
|
---|
940 |
|
---|
941 | unsigned char *iv;
|
---|
942 | int ivlen;
|
---|
943 | int iv_set;
|
---|
944 | int iv_gen;
|
---|
945 |
|
---|
946 | int taglen;
|
---|
947 |
|
---|
948 | unsigned char ares[16];
|
---|
949 | unsigned char mres[16];
|
---|
950 | unsigned char kres[16];
|
---|
951 | int areslen;
|
---|
952 | int mreslen;
|
---|
953 | int kreslen;
|
---|
954 |
|
---|
955 | int tls_aad_len;
|
---|
956 | uint64_t tls_enc_records; /* Number of TLS records encrypted */
|
---|
957 | } S390X_AES_GCM_CTX;
|
---|
958 |
|
---|
959 | typedef struct {
|
---|
960 | union {
|
---|
961 | OSSL_UNION_ALIGN;
|
---|
962 | /*-
|
---|
963 | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
|
---|
964 | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
|
---|
965 | * rounds field is used to store the function code and that the key
|
---|
966 | * schedule is not stored (if aes hardware support is detected).
|
---|
967 | */
|
---|
968 | struct {
|
---|
969 | unsigned char pad[16];
|
---|
970 | AES_KEY k;
|
---|
971 | } key;
|
---|
972 |
|
---|
973 | struct {
|
---|
974 | /*-
|
---|
975 | * KMAC-AES parameter block - begin
|
---|
976 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
977 | */
|
---|
978 | struct {
|
---|
979 | union {
|
---|
980 | unsigned long long g[2];
|
---|
981 | unsigned char b[16];
|
---|
982 | } icv;
|
---|
983 | unsigned char k[32];
|
---|
984 | } kmac_param;
|
---|
985 | /* KMAC-AES parameter block - end */
|
---|
986 |
|
---|
987 | union {
|
---|
988 | unsigned long long g[2];
|
---|
989 | unsigned char b[16];
|
---|
990 | } nonce;
|
---|
991 | union {
|
---|
992 | unsigned long long g[2];
|
---|
993 | unsigned char b[16];
|
---|
994 | } buf;
|
---|
995 |
|
---|
996 | unsigned long long blocks;
|
---|
997 | int l;
|
---|
998 | int m;
|
---|
999 | int tls_aad_len;
|
---|
1000 | int iv_set;
|
---|
1001 | int tag_set;
|
---|
1002 | int len_set;
|
---|
1003 | int key_set;
|
---|
1004 |
|
---|
1005 | unsigned char pad[140];
|
---|
1006 | unsigned int fc;
|
---|
1007 | } ccm;
|
---|
1008 | } aes;
|
---|
1009 | } S390X_AES_CCM_CTX;
|
---|
1010 |
|
---|
1011 | # define s390x_aes_init_key aes_init_key
|
---|
1012 | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
1013 | const unsigned char *iv, int enc);
|
---|
1014 |
|
---|
1015 | # define S390X_AES_CBC_CTX EVP_AES_KEY
|
---|
1016 |
|
---|
1017 | # define s390x_aes_cbc_init_key aes_init_key
|
---|
1018 |
|
---|
1019 | # define s390x_aes_cbc_cipher aes_cbc_cipher
|
---|
1020 | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1021 | const unsigned char *in, size_t len);
|
---|
1022 |
|
---|
1023 | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1024 | const unsigned char *key,
|
---|
1025 | const unsigned char *iv, int enc)
|
---|
1026 | {
|
---|
1027 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
1028 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1029 |
|
---|
1030 | if (keylen <= 0) {
|
---|
1031 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1032 | return 0;
|
---|
1033 | }
|
---|
1034 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1035 | if (!enc)
|
---|
1036 | cctx->fc |= S390X_DECRYPT;
|
---|
1037 |
|
---|
1038 | memcpy(cctx->km.param.k, key, keylen);
|
---|
1039 | return 1;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1043 | const unsigned char *in, size_t len)
|
---|
1044 | {
|
---|
1045 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
1046 |
|
---|
1047 | s390x_km(in, len, out, cctx->fc, &cctx->km.param);
|
---|
1048 | return 1;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1052 | const unsigned char *key,
|
---|
1053 | const unsigned char *ivec, int enc)
|
---|
1054 | {
|
---|
1055 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
1056 | const unsigned char *iv = ctx->oiv;
|
---|
1057 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1058 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1059 |
|
---|
1060 | if (keylen <= 0) {
|
---|
1061 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1062 | return 0;
|
---|
1063 | }
|
---|
1064 | if (ivlen <= 0) {
|
---|
1065 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
|
---|
1066 | return 0;
|
---|
1067 | }
|
---|
1068 | memcpy(cctx->kmo.param.cv, iv, ivlen);
|
---|
1069 | memcpy(cctx->kmo.param.k, key, keylen);
|
---|
1070 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1071 | cctx->res = 0;
|
---|
1072 | return 1;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1076 | const unsigned char *in, size_t len)
|
---|
1077 | {
|
---|
1078 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
1079 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1080 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1081 | int n = cctx->res;
|
---|
1082 | int rem;
|
---|
1083 |
|
---|
1084 | memcpy(cctx->kmo.param.cv, iv, ivlen);
|
---|
1085 | while (n && len) {
|
---|
1086 | *out = *in ^ cctx->kmo.param.cv[n];
|
---|
1087 | n = (n + 1) & 0xf;
|
---|
1088 | --len;
|
---|
1089 | ++in;
|
---|
1090 | ++out;
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | rem = len & 0xf;
|
---|
1094 |
|
---|
1095 | len &= ~(size_t)0xf;
|
---|
1096 | if (len) {
|
---|
1097 | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
|
---|
1098 |
|
---|
1099 | out += len;
|
---|
1100 | in += len;
|
---|
1101 | }
|
---|
1102 |
|
---|
1103 | if (rem) {
|
---|
1104 | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
|
---|
1105 | cctx->kmo.param.k);
|
---|
1106 |
|
---|
1107 | while (rem--) {
|
---|
1108 | out[n] = in[n] ^ cctx->kmo.param.cv[n];
|
---|
1109 | ++n;
|
---|
1110 | }
|
---|
1111 | }
|
---|
1112 |
|
---|
1113 | memcpy(iv, cctx->kmo.param.cv, ivlen);
|
---|
1114 | cctx->res = n;
|
---|
1115 | return 1;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1119 | const unsigned char *key,
|
---|
1120 | const unsigned char *ivec, int enc)
|
---|
1121 | {
|
---|
1122 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1123 | const unsigned char *iv = ctx->oiv;
|
---|
1124 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1125 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1126 |
|
---|
1127 | if (keylen <= 0) {
|
---|
1128 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1129 | return 0;
|
---|
1130 | }
|
---|
1131 | if (ivlen <= 0) {
|
---|
1132 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
|
---|
1133 | return 0;
|
---|
1134 | }
|
---|
1135 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1136 | cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
|
---|
1137 | if (!enc)
|
---|
1138 | cctx->fc |= S390X_DECRYPT;
|
---|
1139 |
|
---|
1140 | cctx->res = 0;
|
---|
1141 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1142 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1143 | return 1;
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1147 | const unsigned char *in, size_t len)
|
---|
1148 | {
|
---|
1149 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1150 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1151 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1152 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1153 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1154 | int n = cctx->res;
|
---|
1155 | int rem;
|
---|
1156 | unsigned char tmp;
|
---|
1157 |
|
---|
1158 | if (keylen <= 0) {
|
---|
1159 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1160 | return 0;
|
---|
1161 | }
|
---|
1162 | if (ivlen <= 0) {
|
---|
1163 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
|
---|
1164 | return 0;
|
---|
1165 | }
|
---|
1166 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1167 | while (n && len) {
|
---|
1168 | tmp = *in;
|
---|
1169 | *out = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1170 | cctx->kmf.param.cv[n] = enc ? *out : tmp;
|
---|
1171 | n = (n + 1) & 0xf;
|
---|
1172 | --len;
|
---|
1173 | ++in;
|
---|
1174 | ++out;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | rem = len & 0xf;
|
---|
1178 |
|
---|
1179 | len &= ~(size_t)0xf;
|
---|
1180 | if (len) {
|
---|
1181 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1182 |
|
---|
1183 | out += len;
|
---|
1184 | in += len;
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | if (rem) {
|
---|
1188 | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
|
---|
1189 | S390X_AES_FC(keylen), cctx->kmf.param.k);
|
---|
1190 |
|
---|
1191 | while (rem--) {
|
---|
1192 | tmp = in[n];
|
---|
1193 | out[n] = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1194 | cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
|
---|
1195 | ++n;
|
---|
1196 | }
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | memcpy(iv, cctx->kmf.param.cv, ivlen);
|
---|
1200 | cctx->res = n;
|
---|
1201 | return 1;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1205 | const unsigned char *key,
|
---|
1206 | const unsigned char *ivec, int enc)
|
---|
1207 | {
|
---|
1208 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1209 | const unsigned char *iv = ctx->oiv;
|
---|
1210 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1211 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1212 |
|
---|
1213 | if (keylen <= 0) {
|
---|
1214 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1215 | return 0;
|
---|
1216 | }
|
---|
1217 | if (ivlen <= 0) {
|
---|
1218 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);
|
---|
1219 | return 0;
|
---|
1220 | }
|
---|
1221 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1222 | cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
|
---|
1223 | if (!enc)
|
---|
1224 | cctx->fc |= S390X_DECRYPT;
|
---|
1225 |
|
---|
1226 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1227 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1228 | return 1;
|
---|
1229 | }
|
---|
1230 |
|
---|
1231 | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1232 | const unsigned char *in, size_t len)
|
---|
1233 | {
|
---|
1234 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1235 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1236 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1237 |
|
---|
1238 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1239 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1240 | memcpy(iv, cctx->kmf.param.cv, ivlen);
|
---|
1241 | return 1;
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | # define s390x_aes_cfb1_init_key aes_init_key
|
---|
1245 |
|
---|
1246 | # define s390x_aes_cfb1_cipher aes_cfb1_cipher
|
---|
1247 | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1248 | const unsigned char *in, size_t len);
|
---|
1249 |
|
---|
1250 | # define S390X_AES_CTR_CTX EVP_AES_KEY
|
---|
1251 |
|
---|
1252 | # define s390x_aes_ctr_init_key aes_init_key
|
---|
1253 |
|
---|
1254 | # define s390x_aes_ctr_cipher aes_ctr_cipher
|
---|
1255 | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1256 | const unsigned char *in, size_t len);
|
---|
1257 |
|
---|
1258 | /* iv + padding length for iv lengths != 12 */
|
---|
1259 | # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
|
---|
1260 |
|
---|
1261 | /*-
|
---|
1262 | * Process additional authenticated data. Returns 0 on success. Code is
|
---|
1263 | * big-endian.
|
---|
1264 | */
|
---|
1265 | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
|
---|
1266 | size_t len)
|
---|
1267 | {
|
---|
1268 | unsigned long long alen;
|
---|
1269 | int n, rem;
|
---|
1270 |
|
---|
1271 | if (ctx->kma.param.tpcl)
|
---|
1272 | return -2;
|
---|
1273 |
|
---|
1274 | alen = ctx->kma.param.taadl + len;
|
---|
1275 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
---|
1276 | return -1;
|
---|
1277 | ctx->kma.param.taadl = alen;
|
---|
1278 |
|
---|
1279 | n = ctx->areslen;
|
---|
1280 | if (n) {
|
---|
1281 | while (n && len) {
|
---|
1282 | ctx->ares[n] = *aad;
|
---|
1283 | n = (n + 1) & 0xf;
|
---|
1284 | ++aad;
|
---|
1285 | --len;
|
---|
1286 | }
|
---|
1287 | /* ctx->ares contains a complete block if offset has wrapped around */
|
---|
1288 | if (!n) {
|
---|
1289 | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1290 | ctx->fc |= S390X_KMA_HS;
|
---|
1291 | }
|
---|
1292 | ctx->areslen = n;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | rem = len & 0xf;
|
---|
1296 |
|
---|
1297 | len &= ~(size_t)0xf;
|
---|
1298 | if (len) {
|
---|
1299 | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1300 | aad += len;
|
---|
1301 | ctx->fc |= S390X_KMA_HS;
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | if (rem) {
|
---|
1305 | ctx->areslen = rem;
|
---|
1306 |
|
---|
1307 | do {
|
---|
1308 | --rem;
|
---|
1309 | ctx->ares[rem] = aad[rem];
|
---|
1310 | } while (rem);
|
---|
1311 | }
|
---|
1312 | return 0;
|
---|
1313 | }
|
---|
1314 |
|
---|
1315 | /*-
|
---|
1316 | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
|
---|
1317 | * success. Code is big-endian.
|
---|
1318 | */
|
---|
1319 | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
|
---|
1320 | unsigned char *out, size_t len)
|
---|
1321 | {
|
---|
1322 | const unsigned char *inptr;
|
---|
1323 | unsigned long long mlen;
|
---|
1324 | union {
|
---|
1325 | unsigned int w[4];
|
---|
1326 | unsigned char b[16];
|
---|
1327 | } buf;
|
---|
1328 | size_t inlen;
|
---|
1329 | int n, rem, i;
|
---|
1330 |
|
---|
1331 | mlen = ctx->kma.param.tpcl + len;
|
---|
1332 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
---|
1333 | return -1;
|
---|
1334 | ctx->kma.param.tpcl = mlen;
|
---|
1335 |
|
---|
1336 | n = ctx->mreslen;
|
---|
1337 | if (n) {
|
---|
1338 | inptr = in;
|
---|
1339 | inlen = len;
|
---|
1340 | while (n && inlen) {
|
---|
1341 | ctx->mres[n] = *inptr;
|
---|
1342 | n = (n + 1) & 0xf;
|
---|
1343 | ++inptr;
|
---|
1344 | --inlen;
|
---|
1345 | }
|
---|
1346 | /* ctx->mres contains a complete block if offset has wrapped around */
|
---|
1347 | if (!n) {
|
---|
1348 | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
|
---|
1349 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1350 | ctx->fc |= S390X_KMA_HS;
|
---|
1351 | ctx->areslen = 0;
|
---|
1352 |
|
---|
1353 | /* previous call already encrypted/decrypted its remainder,
|
---|
1354 | * see comment below */
|
---|
1355 | n = ctx->mreslen;
|
---|
1356 | while (n) {
|
---|
1357 | *out = buf.b[n];
|
---|
1358 | n = (n + 1) & 0xf;
|
---|
1359 | ++out;
|
---|
1360 | ++in;
|
---|
1361 | --len;
|
---|
1362 | }
|
---|
1363 | ctx->mreslen = 0;
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 | rem = len & 0xf;
|
---|
1368 |
|
---|
1369 | len &= ~(size_t)0xf;
|
---|
1370 | if (len) {
|
---|
1371 | s390x_kma(ctx->ares, ctx->areslen, in, len, out,
|
---|
1372 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1373 | in += len;
|
---|
1374 | out += len;
|
---|
1375 | ctx->fc |= S390X_KMA_HS;
|
---|
1376 | ctx->areslen = 0;
|
---|
1377 | }
|
---|
1378 |
|
---|
1379 | /*-
|
---|
1380 | * If there is a remainder, it has to be saved such that it can be
|
---|
1381 | * processed by kma later. However, we also have to do the for-now
|
---|
1382 | * unauthenticated encryption/decryption part here and now...
|
---|
1383 | */
|
---|
1384 | if (rem) {
|
---|
1385 | if (!ctx->mreslen) {
|
---|
1386 | buf.w[0] = ctx->kma.param.j0.w[0];
|
---|
1387 | buf.w[1] = ctx->kma.param.j0.w[1];
|
---|
1388 | buf.w[2] = ctx->kma.param.j0.w[2];
|
---|
1389 | buf.w[3] = ctx->kma.param.cv.w + 1;
|
---|
1390 | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | n = ctx->mreslen;
|
---|
1394 | for (i = 0; i < rem; i++) {
|
---|
1395 | ctx->mres[n + i] = in[i];
|
---|
1396 | out[i] = in[i] ^ ctx->kres[n + i];
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | ctx->mreslen += rem;
|
---|
1400 | }
|
---|
1401 | return 0;
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 | /*-
|
---|
1405 | * Initialize context structure. Code is big-endian.
|
---|
1406 | */
|
---|
1407 | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
|
---|
1408 | const unsigned char *iv)
|
---|
1409 | {
|
---|
1410 | ctx->kma.param.t.g[0] = 0;
|
---|
1411 | ctx->kma.param.t.g[1] = 0;
|
---|
1412 | ctx->kma.param.tpcl = 0;
|
---|
1413 | ctx->kma.param.taadl = 0;
|
---|
1414 | ctx->mreslen = 0;
|
---|
1415 | ctx->areslen = 0;
|
---|
1416 | ctx->kreslen = 0;
|
---|
1417 |
|
---|
1418 | if (ctx->ivlen == 12) {
|
---|
1419 | memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
|
---|
1420 | ctx->kma.param.j0.w[3] = 1;
|
---|
1421 | ctx->kma.param.cv.w = 1;
|
---|
1422 | } else {
|
---|
1423 | /* ctx->iv has the right size and is already padded. */
|
---|
1424 | memcpy(ctx->iv, iv, ctx->ivlen);
|
---|
1425 | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
|
---|
1426 | ctx->fc, &ctx->kma.param);
|
---|
1427 | ctx->fc |= S390X_KMA_HS;
|
---|
1428 |
|
---|
1429 | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
|
---|
1430 | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
|
---|
1431 | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
|
---|
1432 | ctx->kma.param.t.g[0] = 0;
|
---|
1433 | ctx->kma.param.t.g[1] = 0;
|
---|
1434 | }
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | /*-
|
---|
1438 | * Performs various operations on the context structure depending on control
|
---|
1439 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
1440 | * Code is big-endian.
|
---|
1441 | */
|
---|
1442 | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
1443 | {
|
---|
1444 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1445 | S390X_AES_GCM_CTX *gctx_out;
|
---|
1446 | EVP_CIPHER_CTX *out;
|
---|
1447 | unsigned char *buf;
|
---|
1448 | int ivlen, enc, len;
|
---|
1449 |
|
---|
1450 | switch (type) {
|
---|
1451 | case EVP_CTRL_INIT:
|
---|
1452 | ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
1453 | gctx->key_set = 0;
|
---|
1454 | gctx->iv_set = 0;
|
---|
1455 | gctx->ivlen = ivlen;
|
---|
1456 | gctx->iv = c->iv;
|
---|
1457 | gctx->taglen = -1;
|
---|
1458 | gctx->iv_gen = 0;
|
---|
1459 | gctx->tls_aad_len = -1;
|
---|
1460 | return 1;
|
---|
1461 |
|
---|
1462 | case EVP_CTRL_GET_IVLEN:
|
---|
1463 | *(int *)ptr = gctx->ivlen;
|
---|
1464 | return 1;
|
---|
1465 |
|
---|
1466 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
1467 | if (arg <= 0)
|
---|
1468 | return 0;
|
---|
1469 |
|
---|
1470 | if (arg != 12) {
|
---|
1471 | len = S390X_gcm_ivpadlen(arg);
|
---|
1472 |
|
---|
1473 | /* Allocate memory for iv if needed. */
|
---|
1474 | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
|
---|
1475 | if (gctx->iv != c->iv)
|
---|
1476 | OPENSSL_free(gctx->iv);
|
---|
1477 |
|
---|
1478 | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1479 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
1480 | return 0;
|
---|
1481 | }
|
---|
1482 | }
|
---|
1483 | /* Add padding. */
|
---|
1484 | memset(gctx->iv + arg, 0, len - arg - 8);
|
---|
1485 | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
|
---|
1486 | }
|
---|
1487 | gctx->ivlen = arg;
|
---|
1488 | return 1;
|
---|
1489 |
|
---|
1490 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
1491 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1492 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1493 | if (arg <= 0 || arg > 16 || enc)
|
---|
1494 | return 0;
|
---|
1495 |
|
---|
1496 | memcpy(buf, ptr, arg);
|
---|
1497 | gctx->taglen = arg;
|
---|
1498 | return 1;
|
---|
1499 |
|
---|
1500 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
1501 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1502 | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
|
---|
1503 | return 0;
|
---|
1504 |
|
---|
1505 | memcpy(ptr, gctx->kma.param.t.b, arg);
|
---|
1506 | return 1;
|
---|
1507 |
|
---|
1508 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
1509 | /* Special case: -1 length restores whole iv */
|
---|
1510 | if (arg == -1) {
|
---|
1511 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
1512 | gctx->iv_gen = 1;
|
---|
1513 | return 1;
|
---|
1514 | }
|
---|
1515 | /*
|
---|
1516 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
1517 | * 8.
|
---|
1518 | */
|
---|
1519 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
1520 | return 0;
|
---|
1521 |
|
---|
1522 | if (arg)
|
---|
1523 | memcpy(gctx->iv, ptr, arg);
|
---|
1524 |
|
---|
1525 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1526 | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
1527 | return 0;
|
---|
1528 |
|
---|
1529 | gctx->iv_gen = 1;
|
---|
1530 | return 1;
|
---|
1531 |
|
---|
1532 | case EVP_CTRL_GCM_IV_GEN:
|
---|
1533 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
1534 | return 0;
|
---|
1535 |
|
---|
1536 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1537 |
|
---|
1538 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
1539 | arg = gctx->ivlen;
|
---|
1540 |
|
---|
1541 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
1542 | /*
|
---|
1543 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
1544 | * to check wrap around or increment more than last 8 bytes.
|
---|
1545 | */
|
---|
1546 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
1547 | gctx->iv_set = 1;
|
---|
1548 | return 1;
|
---|
1549 |
|
---|
1550 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
1551 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1552 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
|
---|
1553 | return 0;
|
---|
1554 |
|
---|
1555 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
1556 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1557 | gctx->iv_set = 1;
|
---|
1558 | return 1;
|
---|
1559 |
|
---|
1560 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
1561 | /* Save the aad for later use. */
|
---|
1562 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
1563 | return 0;
|
---|
1564 |
|
---|
1565 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1566 | memcpy(buf, ptr, arg);
|
---|
1567 | gctx->tls_aad_len = arg;
|
---|
1568 | gctx->tls_enc_records = 0;
|
---|
1569 |
|
---|
1570 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
1571 | /* Correct length for explicit iv. */
|
---|
1572 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
1573 | return 0;
|
---|
1574 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1575 |
|
---|
1576 | /* If decrypting correct for tag too. */
|
---|
1577 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1578 | if (!enc) {
|
---|
1579 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
1580 | return 0;
|
---|
1581 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
1582 | }
|
---|
1583 | buf[arg - 2] = len >> 8;
|
---|
1584 | buf[arg - 1] = len & 0xff;
|
---|
1585 | /* Extra padding: tag appended to record. */
|
---|
1586 | return EVP_GCM_TLS_TAG_LEN;
|
---|
1587 |
|
---|
1588 | case EVP_CTRL_COPY:
|
---|
1589 | out = ptr;
|
---|
1590 | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
|
---|
1591 |
|
---|
1592 | if (gctx->iv == c->iv) {
|
---|
1593 | gctx_out->iv = out->iv;
|
---|
1594 | } else {
|
---|
1595 | len = S390X_gcm_ivpadlen(gctx->ivlen);
|
---|
1596 |
|
---|
1597 | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1598 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
1599 | return 0;
|
---|
1600 | }
|
---|
1601 |
|
---|
1602 | memcpy(gctx_out->iv, gctx->iv, len);
|
---|
1603 | }
|
---|
1604 | return 1;
|
---|
1605 |
|
---|
1606 | default:
|
---|
1607 | return -1;
|
---|
1608 | }
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | /*-
|
---|
1612 | * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
|
---|
1613 | */
|
---|
1614 | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1615 | const unsigned char *key,
|
---|
1616 | const unsigned char *iv, int enc)
|
---|
1617 | {
|
---|
1618 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1619 | int keylen;
|
---|
1620 |
|
---|
1621 | if (iv == NULL && key == NULL)
|
---|
1622 | return 1;
|
---|
1623 |
|
---|
1624 | if (key != NULL) {
|
---|
1625 | keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1626 | if (keylen <= 0) {
|
---|
1627 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
1628 | return 0;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | memcpy(&gctx->kma.param.k, key, keylen);
|
---|
1632 |
|
---|
1633 | gctx->fc = S390X_AES_FC(keylen);
|
---|
1634 | if (!enc)
|
---|
1635 | gctx->fc |= S390X_DECRYPT;
|
---|
1636 |
|
---|
1637 | if (iv == NULL && gctx->iv_set)
|
---|
1638 | iv = gctx->iv;
|
---|
1639 |
|
---|
1640 | if (iv != NULL) {
|
---|
1641 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1642 | gctx->iv_set = 1;
|
---|
1643 | }
|
---|
1644 | gctx->key_set = 1;
|
---|
1645 | } else {
|
---|
1646 | if (gctx->key_set)
|
---|
1647 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1648 | else
|
---|
1649 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
1650 |
|
---|
1651 | gctx->iv_set = 1;
|
---|
1652 | gctx->iv_gen = 0;
|
---|
1653 | }
|
---|
1654 | return 1;
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | /*-
|
---|
1658 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
1659 | * if successful. Otherwise -1 is returned. Code is big-endian.
|
---|
1660 | */
|
---|
1661 | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1662 | const unsigned char *in, size_t len)
|
---|
1663 | {
|
---|
1664 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1665 | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1666 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1667 | int rv = -1;
|
---|
1668 |
|
---|
1669 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
1670 | return -1;
|
---|
1671 |
|
---|
1672 | /*
|
---|
1673 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
|
---|
1674 | * Requirements from SP 800-38D". The requirements is for one party to the
|
---|
1675 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting
|
---|
1676 | * side only.
|
---|
1677 | */
|
---|
1678 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
|
---|
1679 | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);
|
---|
1680 | goto err;
|
---|
1681 | }
|
---|
1682 |
|
---|
1683 | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
|
---|
1684 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
1685 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
1686 | goto err;
|
---|
1687 |
|
---|
1688 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1689 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1690 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1691 |
|
---|
1692 | gctx->kma.param.taadl = gctx->tls_aad_len << 3;
|
---|
1693 | gctx->kma.param.tpcl = len << 3;
|
---|
1694 | s390x_kma(buf, gctx->tls_aad_len, in, len, out,
|
---|
1695 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1696 |
|
---|
1697 | if (enc) {
|
---|
1698 | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
|
---|
1699 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1700 | } else {
|
---|
1701 | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
|
---|
1702 | EVP_GCM_TLS_TAG_LEN)) {
|
---|
1703 | OPENSSL_cleanse(out, len);
|
---|
1704 | goto err;
|
---|
1705 | }
|
---|
1706 | rv = len;
|
---|
1707 | }
|
---|
1708 | err:
|
---|
1709 | gctx->iv_set = 0;
|
---|
1710 | gctx->tls_aad_len = -1;
|
---|
1711 | return rv;
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | /*-
|
---|
1715 | * Called from EVP layer to initialize context, process additional
|
---|
1716 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
1717 | * ciphertext or process a TLS packet, depending on context. Returns bytes
|
---|
1718 | * written on success. Otherwise -1 is returned. Code is big-endian.
|
---|
1719 | */
|
---|
1720 | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1721 | const unsigned char *in, size_t len)
|
---|
1722 | {
|
---|
1723 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1724 | unsigned char *buf, tmp[16];
|
---|
1725 | int enc;
|
---|
1726 |
|
---|
1727 | if (!gctx->key_set)
|
---|
1728 | return -1;
|
---|
1729 |
|
---|
1730 | if (gctx->tls_aad_len >= 0)
|
---|
1731 | return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
1732 |
|
---|
1733 | if (!gctx->iv_set)
|
---|
1734 | return -1;
|
---|
1735 |
|
---|
1736 | if (in != NULL) {
|
---|
1737 | if (out == NULL) {
|
---|
1738 | if (s390x_aes_gcm_aad(gctx, in, len))
|
---|
1739 | return -1;
|
---|
1740 | } else {
|
---|
1741 | if (s390x_aes_gcm(gctx, in, out, len))
|
---|
1742 | return -1;
|
---|
1743 | }
|
---|
1744 | return len;
|
---|
1745 | } else {
|
---|
1746 | gctx->kma.param.taadl <<= 3;
|
---|
1747 | gctx->kma.param.tpcl <<= 3;
|
---|
1748 | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
|
---|
1749 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1750 | /* recall that we already did en-/decrypt gctx->mres
|
---|
1751 | * and returned it to caller... */
|
---|
1752 | OPENSSL_cleanse(tmp, gctx->mreslen);
|
---|
1753 | gctx->iv_set = 0;
|
---|
1754 |
|
---|
1755 | enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1756 | if (enc) {
|
---|
1757 | gctx->taglen = 16;
|
---|
1758 | } else {
|
---|
1759 | if (gctx->taglen < 0)
|
---|
1760 | return -1;
|
---|
1761 |
|
---|
1762 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1763 | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
|
---|
1764 | return -1;
|
---|
1765 | }
|
---|
1766 | return 0;
|
---|
1767 | }
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
1771 | {
|
---|
1772 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1773 |
|
---|
1774 | if (gctx == NULL)
|
---|
1775 | return 0;
|
---|
1776 |
|
---|
1777 | if (gctx->iv != c->iv)
|
---|
1778 | OPENSSL_free(gctx->iv);
|
---|
1779 |
|
---|
1780 | OPENSSL_cleanse(gctx, sizeof(*gctx));
|
---|
1781 | return 1;
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
|
---|
1785 |
|
---|
1786 | # define s390x_aes_xts_init_key aes_xts_init_key
|
---|
1787 | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1788 | const unsigned char *key,
|
---|
1789 | const unsigned char *iv, int enc);
|
---|
1790 | # define s390x_aes_xts_cipher aes_xts_cipher
|
---|
1791 | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1792 | const unsigned char *in, size_t len);
|
---|
1793 | # define s390x_aes_xts_ctrl aes_xts_ctrl
|
---|
1794 | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
1795 | # define s390x_aes_xts_cleanup aes_xts_cleanup
|
---|
1796 |
|
---|
1797 | /*-
|
---|
1798 | * Set nonce and length fields. Code is big-endian.
|
---|
1799 | */
|
---|
1800 | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
|
---|
1801 | const unsigned char *nonce,
|
---|
1802 | size_t mlen)
|
---|
1803 | {
|
---|
1804 | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
|
---|
1805 | ctx->aes.ccm.nonce.g[1] = mlen;
|
---|
1806 | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
|
---|
1807 | }
|
---|
1808 |
|
---|
1809 | /*-
|
---|
1810 | * Process additional authenticated data. Code is big-endian.
|
---|
1811 | */
|
---|
1812 | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
|
---|
1813 | size_t alen)
|
---|
1814 | {
|
---|
1815 | unsigned char *ptr;
|
---|
1816 | int i, rem;
|
---|
1817 |
|
---|
1818 | if (!alen)
|
---|
1819 | return;
|
---|
1820 |
|
---|
1821 | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
|
---|
1822 |
|
---|
1823 | /* Suppress 'type-punned pointer dereference' warning. */
|
---|
1824 | ptr = ctx->aes.ccm.buf.b;
|
---|
1825 |
|
---|
1826 | if (alen < ((1 << 16) - (1 << 8))) {
|
---|
1827 | *(uint16_t *)ptr = alen;
|
---|
1828 | i = 2;
|
---|
1829 | } else if (sizeof(alen) == 8
|
---|
1830 | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
|
---|
1831 | *(uint16_t *)ptr = 0xffff;
|
---|
1832 | *(uint64_t *)(ptr + 2) = alen;
|
---|
1833 | i = 10;
|
---|
1834 | } else {
|
---|
1835 | *(uint16_t *)ptr = 0xfffe;
|
---|
1836 | *(uint32_t *)(ptr + 2) = alen;
|
---|
1837 | i = 6;
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 | while (i < 16 && alen) {
|
---|
1841 | ctx->aes.ccm.buf.b[i] = *aad;
|
---|
1842 | ++aad;
|
---|
1843 | --alen;
|
---|
1844 | ++i;
|
---|
1845 | }
|
---|
1846 | while (i < 16) {
|
---|
1847 | ctx->aes.ccm.buf.b[i] = 0;
|
---|
1848 | ++i;
|
---|
1849 | }
|
---|
1850 |
|
---|
1851 | ctx->aes.ccm.kmac_param.icv.g[0] = 0;
|
---|
1852 | ctx->aes.ccm.kmac_param.icv.g[1] = 0;
|
---|
1853 | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
|
---|
1854 | &ctx->aes.ccm.kmac_param);
|
---|
1855 | ctx->aes.ccm.blocks += 2;
|
---|
1856 |
|
---|
1857 | rem = alen & 0xf;
|
---|
1858 | alen &= ~(size_t)0xf;
|
---|
1859 | if (alen) {
|
---|
1860 | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1861 | ctx->aes.ccm.blocks += alen >> 4;
|
---|
1862 | aad += alen;
|
---|
1863 | }
|
---|
1864 | if (rem) {
|
---|
1865 | for (i = 0; i < rem; i++)
|
---|
1866 | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
|
---|
1867 |
|
---|
1868 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1869 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1870 | ctx->aes.ccm.kmac_param.k);
|
---|
1871 | ctx->aes.ccm.blocks++;
|
---|
1872 | }
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | /*-
|
---|
1876 | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
|
---|
1877 | * success.
|
---|
1878 | */
|
---|
1879 | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
|
---|
1880 | unsigned char *out, size_t len, int enc)
|
---|
1881 | {
|
---|
1882 | size_t n, rem;
|
---|
1883 | unsigned int i, l, num;
|
---|
1884 | unsigned char flags;
|
---|
1885 |
|
---|
1886 | flags = ctx->aes.ccm.nonce.b[0];
|
---|
1887 | if (!(flags & S390X_CCM_AAD_FLAG)) {
|
---|
1888 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
|
---|
1889 | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
|
---|
1890 | ctx->aes.ccm.blocks++;
|
---|
1891 | }
|
---|
1892 | l = flags & 0x7;
|
---|
1893 | ctx->aes.ccm.nonce.b[0] = l;
|
---|
1894 |
|
---|
1895 | /*-
|
---|
1896 | * Reconstruct length from encoded length field
|
---|
1897 | * and initialize it with counter value.
|
---|
1898 | */
|
---|
1899 | n = 0;
|
---|
1900 | for (i = 15 - l; i < 15; i++) {
|
---|
1901 | n |= ctx->aes.ccm.nonce.b[i];
|
---|
1902 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
1903 | n <<= 8;
|
---|
1904 | }
|
---|
1905 | n |= ctx->aes.ccm.nonce.b[15];
|
---|
1906 | ctx->aes.ccm.nonce.b[15] = 1;
|
---|
1907 |
|
---|
1908 | if (n != len)
|
---|
1909 | return -1; /* length mismatch */
|
---|
1910 |
|
---|
1911 | if (enc) {
|
---|
1912 | /* Two operations per block plus one for tag encryption */
|
---|
1913 | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
|
---|
1914 | if (ctx->aes.ccm.blocks > (1ULL << 61))
|
---|
1915 | return -2; /* too much data */
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | num = 0;
|
---|
1919 | rem = len & 0xf;
|
---|
1920 | len &= ~(size_t)0xf;
|
---|
1921 |
|
---|
1922 | if (enc) {
|
---|
1923 | /* mac-then-encrypt */
|
---|
1924 | if (len)
|
---|
1925 | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1926 | if (rem) {
|
---|
1927 | for (i = 0; i < rem; i++)
|
---|
1928 | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
|
---|
1929 |
|
---|
1930 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1931 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1932 | ctx->aes.ccm.kmac_param.k);
|
---|
1933 | }
|
---|
1934 |
|
---|
1935 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
1936 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
1937 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
1938 | } else {
|
---|
1939 | /* decrypt-then-mac */
|
---|
1940 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
1941 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
1942 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
1943 |
|
---|
1944 | if (len)
|
---|
1945 | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1946 | if (rem) {
|
---|
1947 | for (i = 0; i < rem; i++)
|
---|
1948 | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
|
---|
1949 |
|
---|
1950 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1951 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1952 | ctx->aes.ccm.kmac_param.k);
|
---|
1953 | }
|
---|
1954 | }
|
---|
1955 | /* encrypt tag */
|
---|
1956 | for (i = 15 - l; i < 16; i++)
|
---|
1957 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
1958 |
|
---|
1959 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
|
---|
1960 | ctx->aes.ccm.kmac_param.k);
|
---|
1961 | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
|
---|
1962 | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
|
---|
1963 |
|
---|
1964 | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
|
---|
1965 | return 0;
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 | /*-
|
---|
1969 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
1970 | * if successful. Otherwise -1 is returned.
|
---|
1971 | */
|
---|
1972 | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1973 | const unsigned char *in, size_t len)
|
---|
1974 | {
|
---|
1975 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
1976 | unsigned char *ivec = ctx->iv;
|
---|
1977 | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1978 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1979 |
|
---|
1980 | if (out != in
|
---|
1981 | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
|
---|
1982 | return -1;
|
---|
1983 |
|
---|
1984 | if (enc) {
|
---|
1985 | /* Set explicit iv (sequence number). */
|
---|
1986 | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
1987 | }
|
---|
1988 |
|
---|
1989 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
1990 | /*-
|
---|
1991 | * Get explicit iv (sequence number). We already have fixed iv
|
---|
1992 | * (server/client_write_iv) here.
|
---|
1993 | */
|
---|
1994 | memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
1995 | s390x_aes_ccm_setiv(cctx, ivec, len);
|
---|
1996 |
|
---|
1997 | /* Process aad (sequence number|type|version|length) */
|
---|
1998 | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
|
---|
1999 |
|
---|
2000 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2001 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2002 |
|
---|
2003 | if (enc) {
|
---|
2004 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
2005 | return -1;
|
---|
2006 |
|
---|
2007 | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
2008 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
2009 | } else {
|
---|
2010 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
2011 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
|
---|
2012 | cctx->aes.ccm.m))
|
---|
2013 | return len;
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | OPENSSL_cleanse(out, len);
|
---|
2017 | return -1;
|
---|
2018 | }
|
---|
2019 | }
|
---|
2020 |
|
---|
2021 | /*-
|
---|
2022 | * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
|
---|
2023 | * returned.
|
---|
2024 | */
|
---|
2025 | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
2026 | const unsigned char *key,
|
---|
2027 | const unsigned char *iv, int enc)
|
---|
2028 | {
|
---|
2029 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
2030 | int keylen;
|
---|
2031 |
|
---|
2032 | if (iv == NULL && key == NULL)
|
---|
2033 | return 1;
|
---|
2034 |
|
---|
2035 | if (key != NULL) {
|
---|
2036 | keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
2037 | if (keylen <= 0) {
|
---|
2038 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
2039 | return 0;
|
---|
2040 | }
|
---|
2041 |
|
---|
2042 | cctx->aes.ccm.fc = S390X_AES_FC(keylen);
|
---|
2043 | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
|
---|
2044 |
|
---|
2045 | /* Store encoded m and l. */
|
---|
2046 | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
|
---|
2047 | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
|
---|
2048 | memset(cctx->aes.ccm.nonce.b + 1, 0,
|
---|
2049 | sizeof(cctx->aes.ccm.nonce.b));
|
---|
2050 | cctx->aes.ccm.blocks = 0;
|
---|
2051 |
|
---|
2052 | cctx->aes.ccm.key_set = 1;
|
---|
2053 | }
|
---|
2054 |
|
---|
2055 | if (iv != NULL) {
|
---|
2056 | memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l);
|
---|
2057 |
|
---|
2058 | cctx->aes.ccm.iv_set = 1;
|
---|
2059 | }
|
---|
2060 |
|
---|
2061 | return 1;
|
---|
2062 | }
|
---|
2063 |
|
---|
2064 | /*-
|
---|
2065 | * Called from EVP layer to initialize context, process additional
|
---|
2066 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
2067 | * plaintext or process a TLS packet, depending on context. Returns bytes
|
---|
2068 | * written on success. Otherwise -1 is returned.
|
---|
2069 | */
|
---|
2070 | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2071 | const unsigned char *in, size_t len)
|
---|
2072 | {
|
---|
2073 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
2074 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
2075 | int rv;
|
---|
2076 | unsigned char *buf;
|
---|
2077 |
|
---|
2078 | if (!cctx->aes.ccm.key_set)
|
---|
2079 | return -1;
|
---|
2080 |
|
---|
2081 | if (cctx->aes.ccm.tls_aad_len >= 0)
|
---|
2082 | return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
2083 |
|
---|
2084 | /*-
|
---|
2085 | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
|
---|
2086 | * so integrity must be checked already at Update() i.e., before
|
---|
2087 | * potentially corrupted data is output.
|
---|
2088 | */
|
---|
2089 | if (in == NULL && out != NULL)
|
---|
2090 | return 0;
|
---|
2091 |
|
---|
2092 | if (!cctx->aes.ccm.iv_set)
|
---|
2093 | return -1;
|
---|
2094 |
|
---|
2095 | if (out == NULL) {
|
---|
2096 | /* Update(): Pass message length. */
|
---|
2097 | if (in == NULL) {
|
---|
2098 | s390x_aes_ccm_setiv(cctx, ctx->iv, len);
|
---|
2099 |
|
---|
2100 | cctx->aes.ccm.len_set = 1;
|
---|
2101 | return len;
|
---|
2102 | }
|
---|
2103 |
|
---|
2104 | /* Update(): Process aad. */
|
---|
2105 | if (!cctx->aes.ccm.len_set && len)
|
---|
2106 | return -1;
|
---|
2107 |
|
---|
2108 | s390x_aes_ccm_aad(cctx, in, len);
|
---|
2109 | return len;
|
---|
2110 | }
|
---|
2111 |
|
---|
2112 | /* The tag must be set before actually decrypting data */
|
---|
2113 | if (!enc && !cctx->aes.ccm.tag_set)
|
---|
2114 | return -1;
|
---|
2115 |
|
---|
2116 | /* Update(): Process message. */
|
---|
2117 |
|
---|
2118 | if (!cctx->aes.ccm.len_set) {
|
---|
2119 | /*-
|
---|
2120 | * In case message length was not previously set explicitly via
|
---|
2121 | * Update(), set it now.
|
---|
2122 | */
|
---|
2123 | s390x_aes_ccm_setiv(cctx, ctx->iv, len);
|
---|
2124 |
|
---|
2125 | cctx->aes.ccm.len_set = 1;
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | if (enc) {
|
---|
2129 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
2130 | return -1;
|
---|
2131 |
|
---|
2132 | cctx->aes.ccm.tag_set = 1;
|
---|
2133 | return len;
|
---|
2134 | } else {
|
---|
2135 | rv = -1;
|
---|
2136 |
|
---|
2137 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
2138 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
2139 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
|
---|
2140 | cctx->aes.ccm.m))
|
---|
2141 | rv = len;
|
---|
2142 | }
|
---|
2143 |
|
---|
2144 | if (rv == -1)
|
---|
2145 | OPENSSL_cleanse(out, len);
|
---|
2146 |
|
---|
2147 | cctx->aes.ccm.iv_set = 0;
|
---|
2148 | cctx->aes.ccm.tag_set = 0;
|
---|
2149 | cctx->aes.ccm.len_set = 0;
|
---|
2150 | return rv;
|
---|
2151 | }
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 | /*-
|
---|
2155 | * Performs various operations on the context structure depending on control
|
---|
2156 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
2157 | * Code is big-endian.
|
---|
2158 | */
|
---|
2159 | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2160 | {
|
---|
2161 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
|
---|
2162 | unsigned char *buf;
|
---|
2163 | int enc, len;
|
---|
2164 |
|
---|
2165 | switch (type) {
|
---|
2166 | case EVP_CTRL_INIT:
|
---|
2167 | cctx->aes.ccm.key_set = 0;
|
---|
2168 | cctx->aes.ccm.iv_set = 0;
|
---|
2169 | cctx->aes.ccm.l = 8;
|
---|
2170 | cctx->aes.ccm.m = 12;
|
---|
2171 | cctx->aes.ccm.tag_set = 0;
|
---|
2172 | cctx->aes.ccm.len_set = 0;
|
---|
2173 | cctx->aes.ccm.tls_aad_len = -1;
|
---|
2174 | return 1;
|
---|
2175 |
|
---|
2176 | case EVP_CTRL_GET_IVLEN:
|
---|
2177 | *(int *)ptr = 15 - cctx->aes.ccm.l;
|
---|
2178 | return 1;
|
---|
2179 |
|
---|
2180 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2181 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2182 | return 0;
|
---|
2183 |
|
---|
2184 | /* Save the aad for later use. */
|
---|
2185 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2186 | memcpy(buf, ptr, arg);
|
---|
2187 | cctx->aes.ccm.tls_aad_len = arg;
|
---|
2188 |
|
---|
2189 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
2190 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
2191 | return 0;
|
---|
2192 |
|
---|
2193 | /* Correct length for explicit iv. */
|
---|
2194 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2195 |
|
---|
2196 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2197 | if (!enc) {
|
---|
2198 | if (len < cctx->aes.ccm.m)
|
---|
2199 | return 0;
|
---|
2200 |
|
---|
2201 | /* Correct length for tag. */
|
---|
2202 | len -= cctx->aes.ccm.m;
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 | buf[arg - 2] = len >> 8;
|
---|
2206 | buf[arg - 1] = len & 0xff;
|
---|
2207 |
|
---|
2208 | /* Extra padding: tag appended to record. */
|
---|
2209 | return cctx->aes.ccm.m;
|
---|
2210 |
|
---|
2211 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
2212 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
2213 | return 0;
|
---|
2214 |
|
---|
2215 | /* Copy to first part of the iv. */
|
---|
2216 | memcpy(c->iv, ptr, arg);
|
---|
2217 | return 1;
|
---|
2218 |
|
---|
2219 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2220 | arg = 15 - arg;
|
---|
2221 | /* fall-through */
|
---|
2222 |
|
---|
2223 | case EVP_CTRL_CCM_SET_L:
|
---|
2224 | if (arg < 2 || arg > 8)
|
---|
2225 | return 0;
|
---|
2226 |
|
---|
2227 | cctx->aes.ccm.l = arg;
|
---|
2228 | return 1;
|
---|
2229 |
|
---|
2230 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2231 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
2232 | return 0;
|
---|
2233 |
|
---|
2234 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2235 | if (enc && ptr)
|
---|
2236 | return 0;
|
---|
2237 |
|
---|
2238 | if (ptr) {
|
---|
2239 | cctx->aes.ccm.tag_set = 1;
|
---|
2240 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2241 | memcpy(buf, ptr, arg);
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | cctx->aes.ccm.m = arg;
|
---|
2245 | return 1;
|
---|
2246 |
|
---|
2247 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2248 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2249 | if (!enc || !cctx->aes.ccm.tag_set)
|
---|
2250 | return 0;
|
---|
2251 |
|
---|
2252 | if(arg < cctx->aes.ccm.m)
|
---|
2253 | return 0;
|
---|
2254 |
|
---|
2255 | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
2256 | cctx->aes.ccm.tag_set = 0;
|
---|
2257 | cctx->aes.ccm.iv_set = 0;
|
---|
2258 | cctx->aes.ccm.len_set = 0;
|
---|
2259 | return 1;
|
---|
2260 |
|
---|
2261 | case EVP_CTRL_COPY:
|
---|
2262 | return 1;
|
---|
2263 |
|
---|
2264 | default:
|
---|
2265 | return -1;
|
---|
2266 | }
|
---|
2267 | }
|
---|
2268 |
|
---|
2269 | # define s390x_aes_ccm_cleanup aes_ccm_cleanup
|
---|
2270 |
|
---|
2271 | # ifndef OPENSSL_NO_OCB
|
---|
2272 | # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
|
---|
2273 |
|
---|
2274 | # define s390x_aes_ocb_init_key aes_ocb_init_key
|
---|
2275 | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2276 | const unsigned char *iv, int enc);
|
---|
2277 | # define s390x_aes_ocb_cipher aes_ocb_cipher
|
---|
2278 | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2279 | const unsigned char *in, size_t len);
|
---|
2280 | # define s390x_aes_ocb_cleanup aes_ocb_cleanup
|
---|
2281 | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
|
---|
2282 | # define s390x_aes_ocb_ctrl aes_ocb_ctrl
|
---|
2283 | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
2284 | # endif
|
---|
2285 |
|
---|
2286 | # ifndef OPENSSL_NO_SIV
|
---|
2287 | # define S390X_AES_SIV_CTX EVP_AES_SIV_CTX
|
---|
2288 |
|
---|
2289 | # define s390x_aes_siv_init_key aes_siv_init_key
|
---|
2290 | # define s390x_aes_siv_cipher aes_siv_cipher
|
---|
2291 | # define s390x_aes_siv_cleanup aes_siv_cleanup
|
---|
2292 | # define s390x_aes_siv_ctrl aes_siv_ctrl
|
---|
2293 | # endif
|
---|
2294 |
|
---|
2295 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
|
---|
2296 | MODE,flags) \
|
---|
2297 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2298 | nid##_##keylen##_##nmode,blocksize, \
|
---|
2299 | keylen / 8, \
|
---|
2300 | ivlen, \
|
---|
2301 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2302 | EVP_ORIG_GLOBAL, \
|
---|
2303 | s390x_aes_##mode##_init_key, \
|
---|
2304 | s390x_aes_##mode##_cipher, \
|
---|
2305 | NULL, \
|
---|
2306 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2307 | NULL, \
|
---|
2308 | NULL, \
|
---|
2309 | NULL, \
|
---|
2310 | NULL \
|
---|
2311 | }; \
|
---|
2312 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2313 | nid##_##keylen##_##nmode, \
|
---|
2314 | blocksize, \
|
---|
2315 | keylen / 8, \
|
---|
2316 | ivlen, \
|
---|
2317 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2318 | EVP_ORIG_GLOBAL, \
|
---|
2319 | aes_init_key, \
|
---|
2320 | aes_##mode##_cipher, \
|
---|
2321 | NULL, \
|
---|
2322 | sizeof(EVP_AES_KEY), \
|
---|
2323 | NULL, \
|
---|
2324 | NULL, \
|
---|
2325 | NULL, \
|
---|
2326 | NULL \
|
---|
2327 | }; \
|
---|
2328 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2329 | { \
|
---|
2330 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2331 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
|
---|
2335 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2336 | nid##_##keylen##_##mode, \
|
---|
2337 | blocksize, \
|
---|
2338 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
|
---|
2339 | ivlen, \
|
---|
2340 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2341 | EVP_ORIG_GLOBAL, \
|
---|
2342 | s390x_aes_##mode##_init_key, \
|
---|
2343 | s390x_aes_##mode##_cipher, \
|
---|
2344 | s390x_aes_##mode##_cleanup, \
|
---|
2345 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2346 | NULL, \
|
---|
2347 | NULL, \
|
---|
2348 | s390x_aes_##mode##_ctrl, \
|
---|
2349 | NULL \
|
---|
2350 | }; \
|
---|
2351 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2352 | nid##_##keylen##_##mode,blocksize, \
|
---|
2353 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
|
---|
2354 | ivlen, \
|
---|
2355 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2356 | EVP_ORIG_GLOBAL, \
|
---|
2357 | aes_##mode##_init_key, \
|
---|
2358 | aes_##mode##_cipher, \
|
---|
2359 | aes_##mode##_cleanup, \
|
---|
2360 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2361 | NULL, \
|
---|
2362 | NULL, \
|
---|
2363 | aes_##mode##_ctrl, \
|
---|
2364 | NULL \
|
---|
2365 | }; \
|
---|
2366 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2367 | { \
|
---|
2368 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2369 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2370 | }
|
---|
2371 |
|
---|
2372 | #else
|
---|
2373 |
|
---|
2374 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
2375 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2376 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
2377 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2378 | EVP_ORIG_GLOBAL, \
|
---|
2379 | aes_init_key, \
|
---|
2380 | aes_##mode##_cipher, \
|
---|
2381 | NULL, \
|
---|
2382 | sizeof(EVP_AES_KEY), \
|
---|
2383 | NULL,NULL,NULL,NULL }; \
|
---|
2384 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2385 | { return &aes_##keylen##_##mode; }
|
---|
2386 |
|
---|
2387 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
2388 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2389 | nid##_##keylen##_##mode,blocksize, \
|
---|
2390 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
2391 | ivlen, \
|
---|
2392 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2393 | EVP_ORIG_GLOBAL, \
|
---|
2394 | aes_##mode##_init_key, \
|
---|
2395 | aes_##mode##_cipher, \
|
---|
2396 | aes_##mode##_cleanup, \
|
---|
2397 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2398 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
2399 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2400 | { return &aes_##keylen##_##mode; }
|
---|
2401 |
|
---|
2402 | #endif
|
---|
2403 |
|
---|
2404 | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
|
---|
2405 | BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2406 | BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2407 | BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2408 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2409 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
|
---|
2410 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
|
---|
2411 | BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
|
---|
2412 |
|
---|
2413 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2414 | const unsigned char *iv, int enc)
|
---|
2415 | {
|
---|
2416 | int ret, mode;
|
---|
2417 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2418 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
2419 |
|
---|
2420 | if (keylen <= 0) {
|
---|
2421 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
2422 | return 0;
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
2426 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
2427 | && !enc) {
|
---|
2428 | #ifdef HWAES_CAPABLE
|
---|
2429 | if (HWAES_CAPABLE) {
|
---|
2430 | ret = HWAES_set_decrypt_key(key, keylen, &dat->ks.ks);
|
---|
2431 | dat->block = (block128_f) HWAES_decrypt;
|
---|
2432 | dat->stream.cbc = NULL;
|
---|
2433 | # ifdef HWAES_cbc_encrypt
|
---|
2434 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2435 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2436 | # endif
|
---|
2437 | } else
|
---|
2438 | #endif
|
---|
2439 | #ifdef BSAES_CAPABLE
|
---|
2440 | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
|
---|
2441 | ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);
|
---|
2442 | dat->block = (block128_f) AES_decrypt;
|
---|
2443 | dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt;
|
---|
2444 | } else
|
---|
2445 | #endif
|
---|
2446 | #ifdef VPAES_CAPABLE
|
---|
2447 | if (VPAES_CAPABLE) {
|
---|
2448 | ret = vpaes_set_decrypt_key(key, keylen, &dat->ks.ks);
|
---|
2449 | dat->block = (block128_f) vpaes_decrypt;
|
---|
2450 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2451 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2452 | } else
|
---|
2453 | #endif
|
---|
2454 | {
|
---|
2455 | ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);
|
---|
2456 | dat->block = (block128_f) AES_decrypt;
|
---|
2457 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2458 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2459 | }
|
---|
2460 | } else
|
---|
2461 | #ifdef HWAES_CAPABLE
|
---|
2462 | if (HWAES_CAPABLE) {
|
---|
2463 | ret = HWAES_set_encrypt_key(key, keylen, &dat->ks.ks);
|
---|
2464 | dat->block = (block128_f) HWAES_encrypt;
|
---|
2465 | dat->stream.cbc = NULL;
|
---|
2466 | # ifdef HWAES_cbc_encrypt
|
---|
2467 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2468 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2469 | else
|
---|
2470 | # endif
|
---|
2471 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
2472 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2473 | dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
2474 | else
|
---|
2475 | # endif
|
---|
2476 | (void)0; /* terminate potentially open 'else' */
|
---|
2477 | } else
|
---|
2478 | #endif
|
---|
2479 | #ifdef BSAES_CAPABLE
|
---|
2480 | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
|
---|
2481 | ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);
|
---|
2482 | dat->block = (block128_f) AES_encrypt;
|
---|
2483 | dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
|
---|
2484 | } else
|
---|
2485 | #endif
|
---|
2486 | #ifdef VPAES_CAPABLE
|
---|
2487 | if (VPAES_CAPABLE) {
|
---|
2488 | ret = vpaes_set_encrypt_key(key, keylen, &dat->ks.ks);
|
---|
2489 | dat->block = (block128_f) vpaes_encrypt;
|
---|
2490 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2491 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2492 | } else
|
---|
2493 | #endif
|
---|
2494 | {
|
---|
2495 | ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);
|
---|
2496 | dat->block = (block128_f) AES_encrypt;
|
---|
2497 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2498 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2499 | #ifdef AES_CTR_ASM
|
---|
2500 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2501 | dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
2502 | #endif
|
---|
2503 | }
|
---|
2504 |
|
---|
2505 | if (ret < 0) {
|
---|
2506 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
2507 | return 0;
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | return 1;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2514 | const unsigned char *in, size_t len)
|
---|
2515 | {
|
---|
2516 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2517 |
|
---|
2518 | if (dat->stream.cbc)
|
---|
2519 | (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv,
|
---|
2520 | EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
2521 | else if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
2522 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
|
---|
2523 | dat->block);
|
---|
2524 | else
|
---|
2525 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
|
---|
2526 | ctx->iv, dat->block);
|
---|
2527 |
|
---|
2528 | return 1;
|
---|
2529 | }
|
---|
2530 |
|
---|
2531 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2532 | const unsigned char *in, size_t len)
|
---|
2533 | {
|
---|
2534 | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);
|
---|
2535 | size_t i;
|
---|
2536 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2537 |
|
---|
2538 | if (len < bl)
|
---|
2539 | return 1;
|
---|
2540 |
|
---|
2541 | for (i = 0, len -= bl; i <= len; i += bl)
|
---|
2542 | (*dat->block) (in + i, out + i, &dat->ks);
|
---|
2543 |
|
---|
2544 | return 1;
|
---|
2545 | }
|
---|
2546 |
|
---|
2547 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2548 | const unsigned char *in, size_t len)
|
---|
2549 | {
|
---|
2550 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2551 |
|
---|
2552 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2553 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
|
---|
2554 | ctx->iv, &num, dat->block);
|
---|
2555 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2556 | return 1;
|
---|
2557 | }
|
---|
2558 |
|
---|
2559 | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2560 | const unsigned char *in, size_t len)
|
---|
2561 | {
|
---|
2562 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2563 |
|
---|
2564 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2565 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
|
---|
2566 | ctx->iv, &num,
|
---|
2567 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2568 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2569 | return 1;
|
---|
2570 | }
|
---|
2571 |
|
---|
2572 | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2573 | const unsigned char *in, size_t len)
|
---|
2574 | {
|
---|
2575 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2576 |
|
---|
2577 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2578 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
|
---|
2579 | ctx->iv, &num,
|
---|
2580 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2581 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2582 | return 1;
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2586 | const unsigned char *in, size_t len)
|
---|
2587 | {
|
---|
2588 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2589 |
|
---|
2590 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
|
---|
2591 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2592 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
|
---|
2593 | ctx->iv, &num,
|
---|
2594 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2595 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2596 | return 1;
|
---|
2597 | }
|
---|
2598 |
|
---|
2599 | while (len >= MAXBITCHUNK) {
|
---|
2600 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2601 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
|
---|
2602 | ctx->iv, &num,
|
---|
2603 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2604 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2605 | len -= MAXBITCHUNK;
|
---|
2606 | out += MAXBITCHUNK;
|
---|
2607 | in += MAXBITCHUNK;
|
---|
2608 | }
|
---|
2609 | if (len) {
|
---|
2610 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2611 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
|
---|
2612 | ctx->iv, &num,
|
---|
2613 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2614 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2615 | }
|
---|
2616 |
|
---|
2617 | return 1;
|
---|
2618 | }
|
---|
2619 |
|
---|
2620 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2621 | const unsigned char *in, size_t len)
|
---|
2622 | {
|
---|
2623 | int n = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2624 | unsigned int num;
|
---|
2625 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2626 |
|
---|
2627 | if (n < 0)
|
---|
2628 | return 0;
|
---|
2629 | num = (unsigned int)n;
|
---|
2630 |
|
---|
2631 | if (dat->stream.ctr)
|
---|
2632 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
|
---|
2633 | ctx->iv,
|
---|
2634 | EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
2635 | &num, dat->stream.ctr);
|
---|
2636 | else
|
---|
2637 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
|
---|
2638 | ctx->iv,
|
---|
2639 | EVP_CIPHER_CTX_buf_noconst(ctx), &num,
|
---|
2640 | dat->block);
|
---|
2641 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2642 | return 1;
|
---|
2643 | }
|
---|
2644 |
|
---|
2645 | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
|
---|
2646 | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
|
---|
2647 | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
|
---|
2648 |
|
---|
2649 | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
2650 | {
|
---|
2651 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2652 | if (gctx == NULL)
|
---|
2653 | return 0;
|
---|
2654 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
---|
2655 | if (gctx->iv != c->iv)
|
---|
2656 | OPENSSL_free(gctx->iv);
|
---|
2657 | return 1;
|
---|
2658 | }
|
---|
2659 |
|
---|
2660 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2661 | {
|
---|
2662 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2663 | switch (type) {
|
---|
2664 | case EVP_CTRL_INIT:
|
---|
2665 | gctx->key_set = 0;
|
---|
2666 | gctx->iv_set = 0;
|
---|
2667 | gctx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
2668 | gctx->iv = c->iv;
|
---|
2669 | gctx->taglen = -1;
|
---|
2670 | gctx->iv_gen = 0;
|
---|
2671 | gctx->tls_aad_len = -1;
|
---|
2672 | return 1;
|
---|
2673 |
|
---|
2674 | case EVP_CTRL_GET_IVLEN:
|
---|
2675 | *(int *)ptr = gctx->ivlen;
|
---|
2676 | return 1;
|
---|
2677 |
|
---|
2678 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2679 | if (arg <= 0)
|
---|
2680 | return 0;
|
---|
2681 | /* Allocate memory for IV if needed */
|
---|
2682 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
|
---|
2683 | if (gctx->iv != c->iv)
|
---|
2684 | OPENSSL_free(gctx->iv);
|
---|
2685 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
|
---|
2686 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
2687 | return 0;
|
---|
2688 | }
|
---|
2689 | }
|
---|
2690 | gctx->ivlen = arg;
|
---|
2691 | return 1;
|
---|
2692 |
|
---|
2693 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2694 | if (arg <= 0 || arg > 16 || c->encrypt)
|
---|
2695 | return 0;
|
---|
2696 | memcpy(c->buf, ptr, arg);
|
---|
2697 | gctx->taglen = arg;
|
---|
2698 | return 1;
|
---|
2699 |
|
---|
2700 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2701 | if (arg <= 0 || arg > 16 || !c->encrypt
|
---|
2702 | || gctx->taglen < 0)
|
---|
2703 | return 0;
|
---|
2704 | memcpy(ptr, c->buf, arg);
|
---|
2705 | return 1;
|
---|
2706 |
|
---|
2707 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
2708 | /* Special case: -1 length restores whole IV */
|
---|
2709 | if (arg == -1) {
|
---|
2710 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
2711 | gctx->iv_gen = 1;
|
---|
2712 | return 1;
|
---|
2713 | }
|
---|
2714 | /*
|
---|
2715 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
2716 | * 8.
|
---|
2717 | */
|
---|
2718 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
2719 | return 0;
|
---|
2720 | if (arg)
|
---|
2721 | memcpy(gctx->iv, ptr, arg);
|
---|
2722 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
2723 | return 0;
|
---|
2724 | gctx->iv_gen = 1;
|
---|
2725 | return 1;
|
---|
2726 |
|
---|
2727 | case EVP_CTRL_GCM_IV_GEN:
|
---|
2728 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
2729 | return 0;
|
---|
2730 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2731 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
2732 | arg = gctx->ivlen;
|
---|
2733 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
2734 | /*
|
---|
2735 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
2736 | * to check wrap around or increment more than last 8 bytes.
|
---|
2737 | */
|
---|
2738 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
2739 | gctx->iv_set = 1;
|
---|
2740 | return 1;
|
---|
2741 |
|
---|
2742 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
2743 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
|
---|
2744 | return 0;
|
---|
2745 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
2746 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2747 | gctx->iv_set = 1;
|
---|
2748 | return 1;
|
---|
2749 |
|
---|
2750 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2751 | /* Save the AAD for later use */
|
---|
2752 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2753 | return 0;
|
---|
2754 | memcpy(c->buf, ptr, arg);
|
---|
2755 | gctx->tls_aad_len = arg;
|
---|
2756 | gctx->tls_enc_records = 0;
|
---|
2757 | {
|
---|
2758 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
|
---|
2759 | /* Correct length for explicit IV */
|
---|
2760 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
2761 | return 0;
|
---|
2762 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2763 | /* If decrypting correct for tag too */
|
---|
2764 | if (!c->encrypt) {
|
---|
2765 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
2766 | return 0;
|
---|
2767 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
2768 | }
|
---|
2769 | c->buf[arg - 2] = len >> 8;
|
---|
2770 | c->buf[arg - 1] = len & 0xff;
|
---|
2771 | }
|
---|
2772 | /* Extra padding: tag appended to record */
|
---|
2773 | return EVP_GCM_TLS_TAG_LEN;
|
---|
2774 |
|
---|
2775 | case EVP_CTRL_COPY:
|
---|
2776 | {
|
---|
2777 | EVP_CIPHER_CTX *out = ptr;
|
---|
2778 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
|
---|
2779 | if (gctx->gcm.key) {
|
---|
2780 | if (gctx->gcm.key != &gctx->ks)
|
---|
2781 | return 0;
|
---|
2782 | gctx_out->gcm.key = &gctx_out->ks;
|
---|
2783 | }
|
---|
2784 | if (gctx->iv == c->iv)
|
---|
2785 | gctx_out->iv = out->iv;
|
---|
2786 | else {
|
---|
2787 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
|
---|
2788 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
2789 | return 0;
|
---|
2790 | }
|
---|
2791 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
---|
2792 | }
|
---|
2793 | return 1;
|
---|
2794 | }
|
---|
2795 |
|
---|
2796 | default:
|
---|
2797 | return -1;
|
---|
2798 |
|
---|
2799 | }
|
---|
2800 | }
|
---|
2801 |
|
---|
2802 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2803 | const unsigned char *iv, int enc)
|
---|
2804 | {
|
---|
2805 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2806 |
|
---|
2807 | if (iv == NULL && key == NULL)
|
---|
2808 | return 1;
|
---|
2809 |
|
---|
2810 | if (key != NULL) {
|
---|
2811 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
2812 |
|
---|
2813 | if (keylen <= 0) {
|
---|
2814 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
2815 | return 0;
|
---|
2816 | }
|
---|
2817 | do {
|
---|
2818 | #ifdef HWAES_CAPABLE
|
---|
2819 | if (HWAES_CAPABLE) {
|
---|
2820 | HWAES_set_encrypt_key(key, keylen, &gctx->ks.ks);
|
---|
2821 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2822 | (block128_f) HWAES_encrypt);
|
---|
2823 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
2824 | gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
2825 | # else
|
---|
2826 | gctx->ctr = NULL;
|
---|
2827 | # endif
|
---|
2828 | break;
|
---|
2829 | } else
|
---|
2830 | #endif
|
---|
2831 | #ifdef BSAES_CAPABLE
|
---|
2832 | if (BSAES_CAPABLE) {
|
---|
2833 | AES_set_encrypt_key(key, keylen, &gctx->ks.ks);
|
---|
2834 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2835 | (block128_f) AES_encrypt);
|
---|
2836 | gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
|
---|
2837 | break;
|
---|
2838 | } else
|
---|
2839 | #endif
|
---|
2840 | #ifdef VPAES_CAPABLE
|
---|
2841 | if (VPAES_CAPABLE) {
|
---|
2842 | vpaes_set_encrypt_key(key, keylen, &gctx->ks.ks);
|
---|
2843 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2844 | (block128_f) vpaes_encrypt);
|
---|
2845 | gctx->ctr = NULL;
|
---|
2846 | break;
|
---|
2847 | } else
|
---|
2848 | #endif
|
---|
2849 | (void)0; /* terminate potentially open 'else' */
|
---|
2850 |
|
---|
2851 | AES_set_encrypt_key(key, keylen, &gctx->ks.ks);
|
---|
2852 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2853 | (block128_f) AES_encrypt);
|
---|
2854 | #ifdef AES_CTR_ASM
|
---|
2855 | gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
2856 | #else
|
---|
2857 | gctx->ctr = NULL;
|
---|
2858 | #endif
|
---|
2859 | } while (0);
|
---|
2860 |
|
---|
2861 | /*
|
---|
2862 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
2863 | */
|
---|
2864 | if (iv == NULL && gctx->iv_set)
|
---|
2865 | iv = gctx->iv;
|
---|
2866 | if (iv) {
|
---|
2867 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
2868 | gctx->iv_set = 1;
|
---|
2869 | }
|
---|
2870 | gctx->key_set = 1;
|
---|
2871 | } else {
|
---|
2872 | /* If key set use IV, otherwise copy */
|
---|
2873 | if (gctx->key_set)
|
---|
2874 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
2875 | else
|
---|
2876 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
2877 | gctx->iv_set = 1;
|
---|
2878 | gctx->iv_gen = 0;
|
---|
2879 | }
|
---|
2880 | return 1;
|
---|
2881 | }
|
---|
2882 |
|
---|
2883 | /*
|
---|
2884 | * Handle TLS GCM packet format. This consists of the last portion of the IV
|
---|
2885 | * followed by the payload and finally the tag. On encrypt generate IV,
|
---|
2886 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
|
---|
2887 | * and verify tag.
|
---|
2888 | */
|
---|
2889 |
|
---|
2890 | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2891 | const unsigned char *in, size_t len)
|
---|
2892 | {
|
---|
2893 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2894 | int rv = -1;
|
---|
2895 | /* Encrypt/decrypt must be performed in place */
|
---|
2896 | if (out != in
|
---|
2897 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
2898 | return -1;
|
---|
2899 |
|
---|
2900 | /*
|
---|
2901 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
|
---|
2902 | * Requirements from SP 800-38D". The requirements is for one party to the
|
---|
2903 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting
|
---|
2904 | * side only.
|
---|
2905 | */
|
---|
2906 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
|
---|
2907 | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);
|
---|
2908 | goto err;
|
---|
2909 | }
|
---|
2910 |
|
---|
2911 | /*
|
---|
2912 | * Set IV from start of buffer or generate IV and write to start of
|
---|
2913 | * buffer.
|
---|
2914 | */
|
---|
2915 | if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
|
---|
2916 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
2917 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
2918 | goto err;
|
---|
2919 | /* Use saved AAD */
|
---|
2920 | if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
|
---|
2921 | goto err;
|
---|
2922 | /* Fix buffer and length to point to payload */
|
---|
2923 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2924 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2925 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
2926 | if (ctx->encrypt) {
|
---|
2927 | /* Encrypt payload */
|
---|
2928 | if (gctx->ctr) {
|
---|
2929 | size_t bulk = 0;
|
---|
2930 | #if defined(AES_GCM_ASM)
|
---|
2931 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
2932 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2933 | return -1;
|
---|
2934 |
|
---|
2935 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
2936 | gctx->gcm.key,
|
---|
2937 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2938 | gctx->gcm.len.u[1] += bulk;
|
---|
2939 | }
|
---|
2940 | #endif
|
---|
2941 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
2942 | in + bulk,
|
---|
2943 | out + bulk,
|
---|
2944 | len - bulk, gctx->ctr))
|
---|
2945 | goto err;
|
---|
2946 | } else {
|
---|
2947 | size_t bulk = 0;
|
---|
2948 | #if defined(AES_GCM_ASM2)
|
---|
2949 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
2950 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2951 | return -1;
|
---|
2952 |
|
---|
2953 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
2954 | gctx->gcm.key,
|
---|
2955 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2956 | gctx->gcm.len.u[1] += bulk;
|
---|
2957 | }
|
---|
2958 | #endif
|
---|
2959 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
2960 | in + bulk, out + bulk, len - bulk))
|
---|
2961 | goto err;
|
---|
2962 | }
|
---|
2963 | out += len;
|
---|
2964 | /* Finally write tag */
|
---|
2965 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
|
---|
2966 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
2967 | } else {
|
---|
2968 | /* Decrypt */
|
---|
2969 | if (gctx->ctr) {
|
---|
2970 | size_t bulk = 0;
|
---|
2971 | #if defined(AES_GCM_ASM)
|
---|
2972 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
2973 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2974 | return -1;
|
---|
2975 |
|
---|
2976 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
2977 | gctx->gcm.key,
|
---|
2978 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2979 | gctx->gcm.len.u[1] += bulk;
|
---|
2980 | }
|
---|
2981 | #endif
|
---|
2982 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
2983 | in + bulk,
|
---|
2984 | out + bulk,
|
---|
2985 | len - bulk, gctx->ctr))
|
---|
2986 | goto err;
|
---|
2987 | } else {
|
---|
2988 | size_t bulk = 0;
|
---|
2989 | #if defined(AES_GCM_ASM2)
|
---|
2990 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
2991 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2992 | return -1;
|
---|
2993 |
|
---|
2994 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
2995 | gctx->gcm.key,
|
---|
2996 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2997 | gctx->gcm.len.u[1] += bulk;
|
---|
2998 | }
|
---|
2999 | #endif
|
---|
3000 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
3001 | in + bulk, out + bulk, len - bulk))
|
---|
3002 | goto err;
|
---|
3003 | }
|
---|
3004 | /* Retrieve tag */
|
---|
3005 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
|
---|
3006 | /* If tag mismatch wipe buffer */
|
---|
3007 | if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
|
---|
3008 | OPENSSL_cleanse(out, len);
|
---|
3009 | goto err;
|
---|
3010 | }
|
---|
3011 | rv = len;
|
---|
3012 | }
|
---|
3013 |
|
---|
3014 | err:
|
---|
3015 | gctx->iv_set = 0;
|
---|
3016 | gctx->tls_aad_len = -1;
|
---|
3017 | return rv;
|
---|
3018 | }
|
---|
3019 |
|
---|
3020 | #ifdef FIPS_MODULE
|
---|
3021 | /*
|
---|
3022 | * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys"
|
---|
3023 | *
|
---|
3024 | * See also 8.2.2 RBG-based construction.
|
---|
3025 | * Random construction consists of a free field (which can be NULL) and a
|
---|
3026 | * random field which will use a DRBG that can return at least 96 bits of
|
---|
3027 | * entropy strength. (The DRBG must be seeded by the FIPS module).
|
---|
3028 | */
|
---|
3029 | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset)
|
---|
3030 | {
|
---|
3031 | int sz = gctx->ivlen - offset;
|
---|
3032 |
|
---|
3033 | /* Must be at least 96 bits */
|
---|
3034 | if (sz <= 0 || gctx->ivlen < 12)
|
---|
3035 | return 0;
|
---|
3036 |
|
---|
3037 | /* Use DRBG to generate random iv */
|
---|
3038 | if (RAND_bytes(gctx->iv + offset, sz) <= 0)
|
---|
3039 | return 0;
|
---|
3040 | return 1;
|
---|
3041 | }
|
---|
3042 | #endif /* FIPS_MODULE */
|
---|
3043 |
|
---|
3044 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3045 | const unsigned char *in, size_t len)
|
---|
3046 | {
|
---|
3047 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
3048 |
|
---|
3049 | /* If not set up, return error */
|
---|
3050 | if (!gctx->key_set)
|
---|
3051 | return -1;
|
---|
3052 |
|
---|
3053 | if (gctx->tls_aad_len >= 0)
|
---|
3054 | return aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
3055 |
|
---|
3056 | #ifdef FIPS_MODULE
|
---|
3057 | /*
|
---|
3058 | * FIPS requires generation of AES-GCM IV's inside the FIPS module.
|
---|
3059 | * The IV can still be set externally (the security policy will state that
|
---|
3060 | * this is not FIPS compliant). There are some applications
|
---|
3061 | * where setting the IV externally is the only option available.
|
---|
3062 | */
|
---|
3063 | if (!gctx->iv_set) {
|
---|
3064 | if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0))
|
---|
3065 | return -1;
|
---|
3066 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
3067 | gctx->iv_set = 1;
|
---|
3068 | gctx->iv_gen_rand = 1;
|
---|
3069 | }
|
---|
3070 | #else
|
---|
3071 | if (!gctx->iv_set)
|
---|
3072 | return -1;
|
---|
3073 | #endif /* FIPS_MODULE */
|
---|
3074 |
|
---|
3075 | if (in) {
|
---|
3076 | if (out == NULL) {
|
---|
3077 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
|
---|
3078 | return -1;
|
---|
3079 | } else if (ctx->encrypt) {
|
---|
3080 | if (gctx->ctr) {
|
---|
3081 | size_t bulk = 0;
|
---|
3082 | #if defined(AES_GCM_ASM)
|
---|
3083 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
3084 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3085 |
|
---|
3086 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
3087 | return -1;
|
---|
3088 |
|
---|
3089 | bulk = AES_gcm_encrypt(in + res,
|
---|
3090 | out + res, len - res,
|
---|
3091 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
3092 | gctx->gcm.Xi.u);
|
---|
3093 | gctx->gcm.len.u[1] += bulk;
|
---|
3094 | bulk += res;
|
---|
3095 | }
|
---|
3096 | #endif
|
---|
3097 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
3098 | in + bulk,
|
---|
3099 | out + bulk,
|
---|
3100 | len - bulk, gctx->ctr))
|
---|
3101 | return -1;
|
---|
3102 | } else {
|
---|
3103 | size_t bulk = 0;
|
---|
3104 | #if defined(AES_GCM_ASM2)
|
---|
3105 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
3106 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3107 |
|
---|
3108 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
3109 | return -1;
|
---|
3110 |
|
---|
3111 | bulk = AES_gcm_encrypt(in + res,
|
---|
3112 | out + res, len - res,
|
---|
3113 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
3114 | gctx->gcm.Xi.u);
|
---|
3115 | gctx->gcm.len.u[1] += bulk;
|
---|
3116 | bulk += res;
|
---|
3117 | }
|
---|
3118 | #endif
|
---|
3119 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
3120 | in + bulk, out + bulk, len - bulk))
|
---|
3121 | return -1;
|
---|
3122 | }
|
---|
3123 | } else {
|
---|
3124 | if (gctx->ctr) {
|
---|
3125 | size_t bulk = 0;
|
---|
3126 | #if defined(AES_GCM_ASM)
|
---|
3127 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
3128 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3129 |
|
---|
3130 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3131 | return -1;
|
---|
3132 |
|
---|
3133 | bulk = AES_gcm_decrypt(in + res,
|
---|
3134 | out + res, len - res,
|
---|
3135 | gctx->gcm.key,
|
---|
3136 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3137 | gctx->gcm.len.u[1] += bulk;
|
---|
3138 | bulk += res;
|
---|
3139 | }
|
---|
3140 | #endif
|
---|
3141 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
3142 | in + bulk,
|
---|
3143 | out + bulk,
|
---|
3144 | len - bulk, gctx->ctr))
|
---|
3145 | return -1;
|
---|
3146 | } else {
|
---|
3147 | size_t bulk = 0;
|
---|
3148 | #if defined(AES_GCM_ASM2)
|
---|
3149 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
3150 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3151 |
|
---|
3152 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3153 | return -1;
|
---|
3154 |
|
---|
3155 | bulk = AES_gcm_decrypt(in + res,
|
---|
3156 | out + res, len - res,
|
---|
3157 | gctx->gcm.key,
|
---|
3158 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3159 | gctx->gcm.len.u[1] += bulk;
|
---|
3160 | bulk += res;
|
---|
3161 | }
|
---|
3162 | #endif
|
---|
3163 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
3164 | in + bulk, out + bulk, len - bulk))
|
---|
3165 | return -1;
|
---|
3166 | }
|
---|
3167 | }
|
---|
3168 | return len;
|
---|
3169 | } else {
|
---|
3170 | if (!ctx->encrypt) {
|
---|
3171 | if (gctx->taglen < 0)
|
---|
3172 | return -1;
|
---|
3173 | if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
|
---|
3174 | return -1;
|
---|
3175 | gctx->iv_set = 0;
|
---|
3176 | return 0;
|
---|
3177 | }
|
---|
3178 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
---|
3179 | gctx->taglen = 16;
|
---|
3180 | /* Don't reuse the IV */
|
---|
3181 | gctx->iv_set = 0;
|
---|
3182 | return 0;
|
---|
3183 | }
|
---|
3184 |
|
---|
3185 | }
|
---|
3186 |
|
---|
3187 | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
|
---|
3188 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3189 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3190 | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
|
---|
3191 |
|
---|
3192 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
|
---|
3193 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3194 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
|
---|
3195 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3196 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
|
---|
3197 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3198 |
|
---|
3199 | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3200 | {
|
---|
3201 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
|
---|
3202 |
|
---|
3203 | if (type == EVP_CTRL_COPY) {
|
---|
3204 | EVP_CIPHER_CTX *out = ptr;
|
---|
3205 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
|
---|
3206 |
|
---|
3207 | if (xctx->xts.key1) {
|
---|
3208 | if (xctx->xts.key1 != &xctx->ks1)
|
---|
3209 | return 0;
|
---|
3210 | xctx_out->xts.key1 = &xctx_out->ks1;
|
---|
3211 | }
|
---|
3212 | if (xctx->xts.key2) {
|
---|
3213 | if (xctx->xts.key2 != &xctx->ks2)
|
---|
3214 | return 0;
|
---|
3215 | xctx_out->xts.key2 = &xctx_out->ks2;
|
---|
3216 | }
|
---|
3217 | return 1;
|
---|
3218 | } else if (type != EVP_CTRL_INIT)
|
---|
3219 | return -1;
|
---|
3220 | /* key1 and key2 are used as an indicator both key and IV are set */
|
---|
3221 | xctx->xts.key1 = NULL;
|
---|
3222 | xctx->xts.key2 = NULL;
|
---|
3223 | return 1;
|
---|
3224 | }
|
---|
3225 |
|
---|
3226 | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3227 | const unsigned char *iv, int enc)
|
---|
3228 | {
|
---|
3229 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3230 |
|
---|
3231 | if (iv == NULL && key == NULL)
|
---|
3232 | return 1;
|
---|
3233 |
|
---|
3234 | if (key != NULL) {
|
---|
3235 | do {
|
---|
3236 | /* The key is two half length keys in reality */
|
---|
3237 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
3238 | const int bytes = keylen / 2;
|
---|
3239 | const int bits = bytes * 8;
|
---|
3240 |
|
---|
3241 | if (keylen <= 0) {
|
---|
3242 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
3243 | return 0;
|
---|
3244 | }
|
---|
3245 | /*
|
---|
3246 | * Verify that the two keys are different.
|
---|
3247 | *
|
---|
3248 | * This addresses the vulnerability described in Rogaway's
|
---|
3249 | * September 2004 paper:
|
---|
3250 | *
|
---|
3251 | * "Efficient Instantiations of Tweakable Blockciphers and
|
---|
3252 | * Refinements to Modes OCB and PMAC".
|
---|
3253 | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
|
---|
3254 | *
|
---|
3255 | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
|
---|
3256 | * that:
|
---|
3257 | * "The check for Key_1 != Key_2 shall be done at any place
|
---|
3258 | * BEFORE using the keys in the XTS-AES algorithm to process
|
---|
3259 | * data with them."
|
---|
3260 | */
|
---|
3261 | if ((!allow_insecure_decrypt || enc)
|
---|
3262 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
3263 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
3264 | return 0;
|
---|
3265 | }
|
---|
3266 |
|
---|
3267 | #ifdef AES_XTS_ASM
|
---|
3268 | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
|
---|
3269 | #else
|
---|
3270 | xctx->stream = NULL;
|
---|
3271 | #endif
|
---|
3272 | /* key_len is two AES keys */
|
---|
3273 | #ifdef HWAES_CAPABLE
|
---|
3274 | if (HWAES_CAPABLE) {
|
---|
3275 | if (enc) {
|
---|
3276 | HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3277 | xctx->xts.block1 = (block128_f) HWAES_encrypt;
|
---|
3278 | # ifdef HWAES_xts_encrypt
|
---|
3279 | xctx->stream = HWAES_xts_encrypt;
|
---|
3280 | # endif
|
---|
3281 | } else {
|
---|
3282 | HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3283 | xctx->xts.block1 = (block128_f) HWAES_decrypt;
|
---|
3284 | # ifdef HWAES_xts_decrypt
|
---|
3285 | xctx->stream = HWAES_xts_decrypt;
|
---|
3286 | #endif
|
---|
3287 | }
|
---|
3288 |
|
---|
3289 | HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3290 | xctx->xts.block2 = (block128_f) HWAES_encrypt;
|
---|
3291 |
|
---|
3292 | xctx->xts.key1 = &xctx->ks1;
|
---|
3293 | break;
|
---|
3294 | } else
|
---|
3295 | #endif
|
---|
3296 | #ifdef BSAES_CAPABLE
|
---|
3297 | if (BSAES_CAPABLE)
|
---|
3298 | xctx->stream = enc ? ossl_bsaes_xts_encrypt : ossl_bsaes_xts_decrypt;
|
---|
3299 | else
|
---|
3300 | #endif
|
---|
3301 | #ifdef VPAES_CAPABLE
|
---|
3302 | if (VPAES_CAPABLE) {
|
---|
3303 | if (enc) {
|
---|
3304 | vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3305 | xctx->xts.block1 = (block128_f) vpaes_encrypt;
|
---|
3306 | } else {
|
---|
3307 | vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3308 | xctx->xts.block1 = (block128_f) vpaes_decrypt;
|
---|
3309 | }
|
---|
3310 |
|
---|
3311 | vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3312 | xctx->xts.block2 = (block128_f) vpaes_encrypt;
|
---|
3313 |
|
---|
3314 | xctx->xts.key1 = &xctx->ks1;
|
---|
3315 | break;
|
---|
3316 | } else
|
---|
3317 | #endif
|
---|
3318 | (void)0; /* terminate potentially open 'else' */
|
---|
3319 |
|
---|
3320 | if (enc) {
|
---|
3321 | AES_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3322 | xctx->xts.block1 = (block128_f) AES_encrypt;
|
---|
3323 | } else {
|
---|
3324 | AES_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3325 | xctx->xts.block1 = (block128_f) AES_decrypt;
|
---|
3326 | }
|
---|
3327 |
|
---|
3328 | AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3329 | xctx->xts.block2 = (block128_f) AES_encrypt;
|
---|
3330 |
|
---|
3331 | xctx->xts.key1 = &xctx->ks1;
|
---|
3332 | } while (0);
|
---|
3333 | }
|
---|
3334 |
|
---|
3335 | if (iv) {
|
---|
3336 | xctx->xts.key2 = &xctx->ks2;
|
---|
3337 | memcpy(ctx->iv, iv, 16);
|
---|
3338 | }
|
---|
3339 |
|
---|
3340 | return 1;
|
---|
3341 | }
|
---|
3342 |
|
---|
3343 | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3344 | const unsigned char *in, size_t len)
|
---|
3345 | {
|
---|
3346 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3347 |
|
---|
3348 | if (xctx->xts.key1 == NULL
|
---|
3349 | || xctx->xts.key2 == NULL
|
---|
3350 | || out == NULL
|
---|
3351 | || in == NULL
|
---|
3352 | || len < AES_BLOCK_SIZE)
|
---|
3353 | return 0;
|
---|
3354 |
|
---|
3355 | /*
|
---|
3356 | * Impose a limit of 2^20 blocks per data unit as specified by
|
---|
3357 | * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007
|
---|
3358 | * indicated that this was a SHOULD NOT rather than a MUST NOT.
|
---|
3359 | * NIST SP 800-38E mandates the same limit.
|
---|
3360 | */
|
---|
3361 | if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) {
|
---|
3362 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE);
|
---|
3363 | return 0;
|
---|
3364 | }
|
---|
3365 |
|
---|
3366 | if (xctx->stream)
|
---|
3367 | (*xctx->stream) (in, out, len,
|
---|
3368 | xctx->xts.key1, xctx->xts.key2,
|
---|
3369 | ctx->iv);
|
---|
3370 | else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
|
---|
3371 | EVP_CIPHER_CTX_is_encrypting(ctx)))
|
---|
3372 | return 0;
|
---|
3373 | return 1;
|
---|
3374 | }
|
---|
3375 |
|
---|
3376 | #define aes_xts_cleanup NULL
|
---|
3377 |
|
---|
3378 | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
|
---|
3379 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3380 | | EVP_CIPH_CUSTOM_COPY)
|
---|
3381 |
|
---|
3382 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3383 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3384 |
|
---|
3385 | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3386 | {
|
---|
3387 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
|
---|
3388 | switch (type) {
|
---|
3389 | case EVP_CTRL_INIT:
|
---|
3390 | cctx->key_set = 0;
|
---|
3391 | cctx->iv_set = 0;
|
---|
3392 | cctx->L = 8;
|
---|
3393 | cctx->M = 12;
|
---|
3394 | cctx->tag_set = 0;
|
---|
3395 | cctx->len_set = 0;
|
---|
3396 | cctx->tls_aad_len = -1;
|
---|
3397 | return 1;
|
---|
3398 |
|
---|
3399 | case EVP_CTRL_GET_IVLEN:
|
---|
3400 | *(int *)ptr = 15 - cctx->L;
|
---|
3401 | return 1;
|
---|
3402 |
|
---|
3403 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
3404 | /* Save the AAD for later use */
|
---|
3405 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
3406 | return 0;
|
---|
3407 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3408 | cctx->tls_aad_len = arg;
|
---|
3409 | {
|
---|
3410 | uint16_t len =
|
---|
3411 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
|
---|
3412 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
|
---|
3413 | /* Correct length for explicit IV */
|
---|
3414 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
3415 | return 0;
|
---|
3416 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3417 | /* If decrypting correct for tag too */
|
---|
3418 | if (!EVP_CIPHER_CTX_is_encrypting(c)) {
|
---|
3419 | if (len < cctx->M)
|
---|
3420 | return 0;
|
---|
3421 | len -= cctx->M;
|
---|
3422 | }
|
---|
3423 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
|
---|
3424 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
|
---|
3425 | }
|
---|
3426 | /* Extra padding: tag appended to record */
|
---|
3427 | return cctx->M;
|
---|
3428 |
|
---|
3429 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
3430 | /* Sanity check length */
|
---|
3431 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
3432 | return 0;
|
---|
3433 | /* Just copy to first part of IV */
|
---|
3434 | memcpy(c->iv, ptr, arg);
|
---|
3435 | return 1;
|
---|
3436 |
|
---|
3437 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3438 | arg = 15 - arg;
|
---|
3439 | /* fall through */
|
---|
3440 | case EVP_CTRL_CCM_SET_L:
|
---|
3441 | if (arg < 2 || arg > 8)
|
---|
3442 | return 0;
|
---|
3443 | cctx->L = arg;
|
---|
3444 | return 1;
|
---|
3445 |
|
---|
3446 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3447 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
3448 | return 0;
|
---|
3449 | if (EVP_CIPHER_CTX_is_encrypting(c) && ptr)
|
---|
3450 | return 0;
|
---|
3451 | if (ptr) {
|
---|
3452 | cctx->tag_set = 1;
|
---|
3453 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3454 | }
|
---|
3455 | cctx->M = arg;
|
---|
3456 | return 1;
|
---|
3457 |
|
---|
3458 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
3459 | if (!EVP_CIPHER_CTX_is_encrypting(c) || !cctx->tag_set)
|
---|
3460 | return 0;
|
---|
3461 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
|
---|
3462 | return 0;
|
---|
3463 | cctx->tag_set = 0;
|
---|
3464 | cctx->iv_set = 0;
|
---|
3465 | cctx->len_set = 0;
|
---|
3466 | return 1;
|
---|
3467 |
|
---|
3468 | case EVP_CTRL_COPY:
|
---|
3469 | {
|
---|
3470 | EVP_CIPHER_CTX *out = ptr;
|
---|
3471 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
|
---|
3472 | if (cctx->ccm.key) {
|
---|
3473 | if (cctx->ccm.key != &cctx->ks)
|
---|
3474 | return 0;
|
---|
3475 | cctx_out->ccm.key = &cctx_out->ks;
|
---|
3476 | }
|
---|
3477 | return 1;
|
---|
3478 | }
|
---|
3479 |
|
---|
3480 | default:
|
---|
3481 | return -1;
|
---|
3482 |
|
---|
3483 | }
|
---|
3484 | }
|
---|
3485 |
|
---|
3486 | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3487 | const unsigned char *iv, int enc)
|
---|
3488 | {
|
---|
3489 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3490 |
|
---|
3491 | if (iv == NULL && key == NULL)
|
---|
3492 | return 1;
|
---|
3493 |
|
---|
3494 | if (key != NULL) {
|
---|
3495 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
3496 |
|
---|
3497 | if (keylen <= 0) {
|
---|
3498 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
3499 | return 0;
|
---|
3500 | }
|
---|
3501 | do {
|
---|
3502 | #ifdef HWAES_CAPABLE
|
---|
3503 | if (HWAES_CAPABLE) {
|
---|
3504 | HWAES_set_encrypt_key(key, keylen, &cctx->ks.ks);
|
---|
3505 |
|
---|
3506 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3507 | &cctx->ks, (block128_f) HWAES_encrypt);
|
---|
3508 | cctx->str = NULL;
|
---|
3509 | cctx->key_set = 1;
|
---|
3510 | break;
|
---|
3511 | } else
|
---|
3512 | #endif
|
---|
3513 | #ifdef VPAES_CAPABLE
|
---|
3514 | if (VPAES_CAPABLE) {
|
---|
3515 | vpaes_set_encrypt_key(key, keylen, &cctx->ks.ks);
|
---|
3516 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3517 | &cctx->ks, (block128_f) vpaes_encrypt);
|
---|
3518 | cctx->str = NULL;
|
---|
3519 | cctx->key_set = 1;
|
---|
3520 | break;
|
---|
3521 | }
|
---|
3522 | #endif
|
---|
3523 | AES_set_encrypt_key(key, keylen, &cctx->ks.ks);
|
---|
3524 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3525 | &cctx->ks, (block128_f) AES_encrypt);
|
---|
3526 | cctx->str = NULL;
|
---|
3527 | cctx->key_set = 1;
|
---|
3528 | } while (0);
|
---|
3529 | }
|
---|
3530 | if (iv != NULL) {
|
---|
3531 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
3532 | cctx->iv_set = 1;
|
---|
3533 | }
|
---|
3534 | return 1;
|
---|
3535 | }
|
---|
3536 |
|
---|
3537 | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3538 | const unsigned char *in, size_t len)
|
---|
3539 | {
|
---|
3540 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3541 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3542 | /* Encrypt/decrypt must be performed in place */
|
---|
3543 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
|
---|
3544 | return -1;
|
---|
3545 | /* If encrypting set explicit IV from sequence number (start of AAD) */
|
---|
3546 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3547 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3548 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3549 | /* Get rest of IV from explicit IV */
|
---|
3550 | memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in,
|
---|
3551 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3552 | /* Correct length value */
|
---|
3553 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3554 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
|
---|
3555 | len))
|
---|
3556 | return -1;
|
---|
3557 | /* Use saved AAD */
|
---|
3558 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3559 | cctx->tls_aad_len);
|
---|
3560 | /* Fix buffer to point to payload */
|
---|
3561 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3562 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3563 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3564 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3565 | cctx->str) :
|
---|
3566 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3567 | return -1;
|
---|
3568 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
|
---|
3569 | return -1;
|
---|
3570 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3571 | } else {
|
---|
3572 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3573 | cctx->str) :
|
---|
3574 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3575 | unsigned char tag[16];
|
---|
3576 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3577 | if (!CRYPTO_memcmp(tag, in + len, cctx->M))
|
---|
3578 | return len;
|
---|
3579 | }
|
---|
3580 | }
|
---|
3581 | OPENSSL_cleanse(out, len);
|
---|
3582 | return -1;
|
---|
3583 | }
|
---|
3584 | }
|
---|
3585 |
|
---|
3586 | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3587 | const unsigned char *in, size_t len)
|
---|
3588 | {
|
---|
3589 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3590 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3591 | /* If not set up, return error */
|
---|
3592 | if (!cctx->key_set)
|
---|
3593 | return -1;
|
---|
3594 |
|
---|
3595 | if (cctx->tls_aad_len >= 0)
|
---|
3596 | return aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
3597 |
|
---|
3598 | /* EVP_*Final() doesn't return any data */
|
---|
3599 | if (in == NULL && out != NULL)
|
---|
3600 | return 0;
|
---|
3601 |
|
---|
3602 | if (!cctx->iv_set)
|
---|
3603 | return -1;
|
---|
3604 |
|
---|
3605 | if (!out) {
|
---|
3606 | if (!in) {
|
---|
3607 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv,
|
---|
3608 | 15 - cctx->L, len))
|
---|
3609 | return -1;
|
---|
3610 | cctx->len_set = 1;
|
---|
3611 | return len;
|
---|
3612 | }
|
---|
3613 | /* If have AAD need message length */
|
---|
3614 | if (!cctx->len_set && len)
|
---|
3615 | return -1;
|
---|
3616 | CRYPTO_ccm128_aad(ccm, in, len);
|
---|
3617 | return len;
|
---|
3618 | }
|
---|
3619 |
|
---|
3620 | /* The tag must be set before actually decrypting data */
|
---|
3621 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && !cctx->tag_set)
|
---|
3622 | return -1;
|
---|
3623 |
|
---|
3624 | /* If not set length yet do it */
|
---|
3625 | if (!cctx->len_set) {
|
---|
3626 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
|
---|
3627 | return -1;
|
---|
3628 | cctx->len_set = 1;
|
---|
3629 | }
|
---|
3630 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3631 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3632 | cctx->str) :
|
---|
3633 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3634 | return -1;
|
---|
3635 | cctx->tag_set = 1;
|
---|
3636 | return len;
|
---|
3637 | } else {
|
---|
3638 | int rv = -1;
|
---|
3639 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3640 | cctx->str) :
|
---|
3641 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3642 | unsigned char tag[16];
|
---|
3643 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3644 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3645 | cctx->M))
|
---|
3646 | rv = len;
|
---|
3647 | }
|
---|
3648 | }
|
---|
3649 | if (rv == -1)
|
---|
3650 | OPENSSL_cleanse(out, len);
|
---|
3651 | cctx->iv_set = 0;
|
---|
3652 | cctx->tag_set = 0;
|
---|
3653 | cctx->len_set = 0;
|
---|
3654 | return rv;
|
---|
3655 | }
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 | #define aes_ccm_cleanup NULL
|
---|
3659 |
|
---|
3660 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
|
---|
3661 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3662 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
|
---|
3663 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3664 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
|
---|
3665 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3666 |
|
---|
3667 | typedef struct {
|
---|
3668 | union {
|
---|
3669 | OSSL_UNION_ALIGN;
|
---|
3670 | AES_KEY ks;
|
---|
3671 | } ks;
|
---|
3672 | /* Indicates if IV has been set */
|
---|
3673 | unsigned char *iv;
|
---|
3674 | } EVP_AES_WRAP_CTX;
|
---|
3675 |
|
---|
3676 | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3677 | const unsigned char *iv, int enc)
|
---|
3678 | {
|
---|
3679 | int len;
|
---|
3680 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3681 |
|
---|
3682 | if (iv == NULL && key == NULL)
|
---|
3683 | return 1;
|
---|
3684 | if (key != NULL) {
|
---|
3685 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
3686 |
|
---|
3687 | if (keylen <= 0) {
|
---|
3688 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
3689 | return 0;
|
---|
3690 | }
|
---|
3691 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3692 | AES_set_encrypt_key(key, keylen, &wctx->ks.ks);
|
---|
3693 | else
|
---|
3694 | AES_set_decrypt_key(key, keylen, &wctx->ks.ks);
|
---|
3695 | if (iv == NULL)
|
---|
3696 | wctx->iv = NULL;
|
---|
3697 | }
|
---|
3698 | if (iv != NULL) {
|
---|
3699 | if ((len = EVP_CIPHER_CTX_get_iv_length(ctx)) < 0)
|
---|
3700 | return 0;
|
---|
3701 | memcpy(ctx->iv, iv, len);
|
---|
3702 | wctx->iv = ctx->iv;
|
---|
3703 | }
|
---|
3704 | return 1;
|
---|
3705 | }
|
---|
3706 |
|
---|
3707 | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3708 | const unsigned char *in, size_t inlen)
|
---|
3709 | {
|
---|
3710 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3711 | size_t rv;
|
---|
3712 | /* AES wrap with padding has IV length of 4, without padding 8 */
|
---|
3713 | int pad = EVP_CIPHER_CTX_get_iv_length(ctx) == 4;
|
---|
3714 | /* No final operation so always return zero length */
|
---|
3715 | if (!in)
|
---|
3716 | return 0;
|
---|
3717 | /* Input length must always be non-zero */
|
---|
3718 | if (!inlen)
|
---|
3719 | return -1;
|
---|
3720 | /* If decrypting need at least 16 bytes and multiple of 8 */
|
---|
3721 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
|
---|
3722 | return -1;
|
---|
3723 | /* If not padding input must be multiple of 8 */
|
---|
3724 | if (!pad && inlen & 0x7)
|
---|
3725 | return -1;
|
---|
3726 | if (ossl_is_partially_overlapping(out, in, inlen)) {
|
---|
3727 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
3728 | return 0;
|
---|
3729 | }
|
---|
3730 | if (!out) {
|
---|
3731 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3732 | /* If padding round up to multiple of 8 */
|
---|
3733 | if (pad)
|
---|
3734 | inlen = (inlen + 7) / 8 * 8;
|
---|
3735 | /* 8 byte prefix */
|
---|
3736 | return inlen + 8;
|
---|
3737 | } else {
|
---|
3738 | /*
|
---|
3739 | * If not padding output will be exactly 8 bytes smaller than
|
---|
3740 | * input. If padding it will be at least 8 bytes smaller but we
|
---|
3741 | * don't know how much.
|
---|
3742 | */
|
---|
3743 | return inlen - 8;
|
---|
3744 | }
|
---|
3745 | }
|
---|
3746 | if (pad) {
|
---|
3747 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3748 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3749 | out, in, inlen,
|
---|
3750 | (block128_f) AES_encrypt);
|
---|
3751 | else
|
---|
3752 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3753 | out, in, inlen,
|
---|
3754 | (block128_f) AES_decrypt);
|
---|
3755 | } else {
|
---|
3756 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3757 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
|
---|
3758 | out, in, inlen, (block128_f) AES_encrypt);
|
---|
3759 | else
|
---|
3760 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
|
---|
3761 | out, in, inlen, (block128_f) AES_decrypt);
|
---|
3762 | }
|
---|
3763 | return rv ? (int)rv : -1;
|
---|
3764 | }
|
---|
3765 |
|
---|
3766 | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
|
---|
3767 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3768 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
|
---|
3769 |
|
---|
3770 | static const EVP_CIPHER aes_128_wrap = {
|
---|
3771 | NID_id_aes128_wrap,
|
---|
3772 | 8, 16, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3773 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3774 | NULL,
|
---|
3775 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3776 | NULL, NULL, NULL, NULL
|
---|
3777 | };
|
---|
3778 |
|
---|
3779 | const EVP_CIPHER *EVP_aes_128_wrap(void)
|
---|
3780 | {
|
---|
3781 | return &aes_128_wrap;
|
---|
3782 | }
|
---|
3783 |
|
---|
3784 | static const EVP_CIPHER aes_192_wrap = {
|
---|
3785 | NID_id_aes192_wrap,
|
---|
3786 | 8, 24, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3787 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3788 | NULL,
|
---|
3789 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3790 | NULL, NULL, NULL, NULL
|
---|
3791 | };
|
---|
3792 |
|
---|
3793 | const EVP_CIPHER *EVP_aes_192_wrap(void)
|
---|
3794 | {
|
---|
3795 | return &aes_192_wrap;
|
---|
3796 | }
|
---|
3797 |
|
---|
3798 | static const EVP_CIPHER aes_256_wrap = {
|
---|
3799 | NID_id_aes256_wrap,
|
---|
3800 | 8, 32, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3801 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3802 | NULL,
|
---|
3803 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3804 | NULL, NULL, NULL, NULL
|
---|
3805 | };
|
---|
3806 |
|
---|
3807 | const EVP_CIPHER *EVP_aes_256_wrap(void)
|
---|
3808 | {
|
---|
3809 | return &aes_256_wrap;
|
---|
3810 | }
|
---|
3811 |
|
---|
3812 | static const EVP_CIPHER aes_128_wrap_pad = {
|
---|
3813 | NID_id_aes128_wrap_pad,
|
---|
3814 | 8, 16, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3815 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3816 | NULL,
|
---|
3817 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3818 | NULL, NULL, NULL, NULL
|
---|
3819 | };
|
---|
3820 |
|
---|
3821 | const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
|
---|
3822 | {
|
---|
3823 | return &aes_128_wrap_pad;
|
---|
3824 | }
|
---|
3825 |
|
---|
3826 | static const EVP_CIPHER aes_192_wrap_pad = {
|
---|
3827 | NID_id_aes192_wrap_pad,
|
---|
3828 | 8, 24, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3829 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3830 | NULL,
|
---|
3831 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3832 | NULL, NULL, NULL, NULL
|
---|
3833 | };
|
---|
3834 |
|
---|
3835 | const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
|
---|
3836 | {
|
---|
3837 | return &aes_192_wrap_pad;
|
---|
3838 | }
|
---|
3839 |
|
---|
3840 | static const EVP_CIPHER aes_256_wrap_pad = {
|
---|
3841 | NID_id_aes256_wrap_pad,
|
---|
3842 | 8, 32, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3843 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3844 | NULL,
|
---|
3845 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3846 | NULL, NULL, NULL, NULL
|
---|
3847 | };
|
---|
3848 |
|
---|
3849 | const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
|
---|
3850 | {
|
---|
3851 | return &aes_256_wrap_pad;
|
---|
3852 | }
|
---|
3853 |
|
---|
3854 | #ifndef OPENSSL_NO_OCB
|
---|
3855 | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3856 | {
|
---|
3857 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
3858 | EVP_CIPHER_CTX *newc;
|
---|
3859 | EVP_AES_OCB_CTX *new_octx;
|
---|
3860 |
|
---|
3861 | switch (type) {
|
---|
3862 | case EVP_CTRL_INIT:
|
---|
3863 | octx->key_set = 0;
|
---|
3864 | octx->iv_set = 0;
|
---|
3865 | octx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
3866 | octx->iv = c->iv;
|
---|
3867 | octx->taglen = 16;
|
---|
3868 | octx->data_buf_len = 0;
|
---|
3869 | octx->aad_buf_len = 0;
|
---|
3870 | return 1;
|
---|
3871 |
|
---|
3872 | case EVP_CTRL_GET_IVLEN:
|
---|
3873 | *(int *)ptr = octx->ivlen;
|
---|
3874 | return 1;
|
---|
3875 |
|
---|
3876 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3877 | /* IV len must be 1 to 15 */
|
---|
3878 | if (arg <= 0 || arg > 15)
|
---|
3879 | return 0;
|
---|
3880 |
|
---|
3881 | octx->ivlen = arg;
|
---|
3882 | return 1;
|
---|
3883 |
|
---|
3884 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3885 | if (ptr == NULL) {
|
---|
3886 | /* Tag len must be 0 to 16 */
|
---|
3887 | if (arg < 0 || arg > 16)
|
---|
3888 | return 0;
|
---|
3889 |
|
---|
3890 | octx->taglen = arg;
|
---|
3891 | return 1;
|
---|
3892 | }
|
---|
3893 | if (arg != octx->taglen || EVP_CIPHER_CTX_is_encrypting(c))
|
---|
3894 | return 0;
|
---|
3895 | memcpy(octx->tag, ptr, arg);
|
---|
3896 | return 1;
|
---|
3897 |
|
---|
3898 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
3899 | if (arg != octx->taglen || !EVP_CIPHER_CTX_is_encrypting(c))
|
---|
3900 | return 0;
|
---|
3901 |
|
---|
3902 | memcpy(ptr, octx->tag, arg);
|
---|
3903 | return 1;
|
---|
3904 |
|
---|
3905 | case EVP_CTRL_COPY:
|
---|
3906 | newc = (EVP_CIPHER_CTX *)ptr;
|
---|
3907 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
|
---|
3908 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
|
---|
3909 | &new_octx->ksenc.ks,
|
---|
3910 | &new_octx->ksdec.ks);
|
---|
3911 |
|
---|
3912 | default:
|
---|
3913 | return -1;
|
---|
3914 |
|
---|
3915 | }
|
---|
3916 | }
|
---|
3917 |
|
---|
3918 | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3919 | const unsigned char *iv, int enc)
|
---|
3920 | {
|
---|
3921 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
3922 |
|
---|
3923 | if (iv == NULL && key == NULL)
|
---|
3924 | return 1;
|
---|
3925 |
|
---|
3926 | if (key != NULL) {
|
---|
3927 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
3928 |
|
---|
3929 | if (keylen <= 0) {
|
---|
3930 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
|
---|
3931 | return 0;
|
---|
3932 | }
|
---|
3933 | do {
|
---|
3934 | /*
|
---|
3935 | * We set both the encrypt and decrypt key here because decrypt
|
---|
3936 | * needs both. We could possibly optimise to remove setting the
|
---|
3937 | * decrypt for an encryption operation.
|
---|
3938 | */
|
---|
3939 | # ifdef HWAES_CAPABLE
|
---|
3940 | if (HWAES_CAPABLE) {
|
---|
3941 | HWAES_set_encrypt_key(key, keylen, &octx->ksenc.ks);
|
---|
3942 | HWAES_set_decrypt_key(key, keylen, &octx->ksdec.ks);
|
---|
3943 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3944 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3945 | (block128_f) HWAES_encrypt,
|
---|
3946 | (block128_f) HWAES_decrypt,
|
---|
3947 | enc ? HWAES_ocb_encrypt
|
---|
3948 | : HWAES_ocb_decrypt))
|
---|
3949 | return 0;
|
---|
3950 | break;
|
---|
3951 | }
|
---|
3952 | # endif
|
---|
3953 | # ifdef VPAES_CAPABLE
|
---|
3954 | if (VPAES_CAPABLE) {
|
---|
3955 | vpaes_set_encrypt_key(key, keylen, &octx->ksenc.ks);
|
---|
3956 | vpaes_set_decrypt_key(key, keylen, &octx->ksdec.ks);
|
---|
3957 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3958 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3959 | (block128_f) vpaes_encrypt,
|
---|
3960 | (block128_f) vpaes_decrypt,
|
---|
3961 | NULL))
|
---|
3962 | return 0;
|
---|
3963 | break;
|
---|
3964 | }
|
---|
3965 | # endif
|
---|
3966 | AES_set_encrypt_key(key, keylen, &octx->ksenc.ks);
|
---|
3967 | AES_set_decrypt_key(key, keylen, &octx->ksdec.ks);
|
---|
3968 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3969 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3970 | (block128_f) AES_encrypt,
|
---|
3971 | (block128_f) AES_decrypt,
|
---|
3972 | NULL))
|
---|
3973 | return 0;
|
---|
3974 | }
|
---|
3975 | while (0);
|
---|
3976 |
|
---|
3977 | /*
|
---|
3978 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
3979 | */
|
---|
3980 | if (iv == NULL && octx->iv_set)
|
---|
3981 | iv = octx->iv;
|
---|
3982 | if (iv) {
|
---|
3983 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
3984 | != 1)
|
---|
3985 | return 0;
|
---|
3986 | octx->iv_set = 1;
|
---|
3987 | }
|
---|
3988 | octx->key_set = 1;
|
---|
3989 | } else {
|
---|
3990 | /* If key set use IV, otherwise copy */
|
---|
3991 | if (octx->key_set)
|
---|
3992 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
3993 | else
|
---|
3994 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
3995 | octx->iv_set = 1;
|
---|
3996 | }
|
---|
3997 | return 1;
|
---|
3998 | }
|
---|
3999 |
|
---|
4000 | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
4001 | const unsigned char *in, size_t len)
|
---|
4002 | {
|
---|
4003 | unsigned char *buf;
|
---|
4004 | int *buf_len;
|
---|
4005 | int written_len = 0;
|
---|
4006 | size_t trailing_len;
|
---|
4007 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
4008 |
|
---|
4009 | /* If IV or Key not set then return error */
|
---|
4010 | if (!octx->iv_set)
|
---|
4011 | return -1;
|
---|
4012 |
|
---|
4013 | if (!octx->key_set)
|
---|
4014 | return -1;
|
---|
4015 |
|
---|
4016 | if (in != NULL) {
|
---|
4017 | /*
|
---|
4018 | * Need to ensure we are only passing full blocks to low-level OCB
|
---|
4019 | * routines. We do it here rather than in EVP_EncryptUpdate/
|
---|
4020 | * EVP_DecryptUpdate because we need to pass full blocks of AAD too
|
---|
4021 | * and those routines don't support that
|
---|
4022 | */
|
---|
4023 |
|
---|
4024 | /* Are we dealing with AAD or normal data here? */
|
---|
4025 | if (out == NULL) {
|
---|
4026 | buf = octx->aad_buf;
|
---|
4027 | buf_len = &(octx->aad_buf_len);
|
---|
4028 | } else {
|
---|
4029 | buf = octx->data_buf;
|
---|
4030 | buf_len = &(octx->data_buf_len);
|
---|
4031 |
|
---|
4032 | if (ossl_is_partially_overlapping(out + *buf_len, in, len)) {
|
---|
4033 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
4034 | return 0;
|
---|
4035 | }
|
---|
4036 | }
|
---|
4037 |
|
---|
4038 | /*
|
---|
4039 | * If we've got a partially filled buffer from a previous call then
|
---|
4040 | * use that data first
|
---|
4041 | */
|
---|
4042 | if (*buf_len > 0) {
|
---|
4043 | unsigned int remaining;
|
---|
4044 |
|
---|
4045 | remaining = AES_BLOCK_SIZE - (*buf_len);
|
---|
4046 | if (remaining > len) {
|
---|
4047 | memcpy(buf + (*buf_len), in, len);
|
---|
4048 | *(buf_len) += len;
|
---|
4049 | return 0;
|
---|
4050 | }
|
---|
4051 | memcpy(buf + (*buf_len), in, remaining);
|
---|
4052 |
|
---|
4053 | /*
|
---|
4054 | * If we get here we've filled the buffer, so process it
|
---|
4055 | */
|
---|
4056 | len -= remaining;
|
---|
4057 | in += remaining;
|
---|
4058 | if (out == NULL) {
|
---|
4059 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
|
---|
4060 | return -1;
|
---|
4061 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4062 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
|
---|
4063 | AES_BLOCK_SIZE))
|
---|
4064 | return -1;
|
---|
4065 | } else {
|
---|
4066 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
|
---|
4067 | AES_BLOCK_SIZE))
|
---|
4068 | return -1;
|
---|
4069 | }
|
---|
4070 | written_len = AES_BLOCK_SIZE;
|
---|
4071 | *buf_len = 0;
|
---|
4072 | if (out != NULL)
|
---|
4073 | out += AES_BLOCK_SIZE;
|
---|
4074 | }
|
---|
4075 |
|
---|
4076 | /* Do we have a partial block to handle at the end? */
|
---|
4077 | trailing_len = len % AES_BLOCK_SIZE;
|
---|
4078 |
|
---|
4079 | /*
|
---|
4080 | * If we've got some full blocks to handle, then process these first
|
---|
4081 | */
|
---|
4082 | if (len != trailing_len) {
|
---|
4083 | if (out == NULL) {
|
---|
4084 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
|
---|
4085 | return -1;
|
---|
4086 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4087 | if (!CRYPTO_ocb128_encrypt
|
---|
4088 | (&octx->ocb, in, out, len - trailing_len))
|
---|
4089 | return -1;
|
---|
4090 | } else {
|
---|
4091 | if (!CRYPTO_ocb128_decrypt
|
---|
4092 | (&octx->ocb, in, out, len - trailing_len))
|
---|
4093 | return -1;
|
---|
4094 | }
|
---|
4095 | written_len += len - trailing_len;
|
---|
4096 | in += len - trailing_len;
|
---|
4097 | }
|
---|
4098 |
|
---|
4099 | /* Handle any trailing partial block */
|
---|
4100 | if (trailing_len > 0) {
|
---|
4101 | memcpy(buf, in, trailing_len);
|
---|
4102 | *buf_len = trailing_len;
|
---|
4103 | }
|
---|
4104 |
|
---|
4105 | return written_len;
|
---|
4106 | } else {
|
---|
4107 | /*
|
---|
4108 | * First of all empty the buffer of any partial block that we might
|
---|
4109 | * have been provided - both for data and AAD
|
---|
4110 | */
|
---|
4111 | if (octx->data_buf_len > 0) {
|
---|
4112 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4113 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
|
---|
4114 | octx->data_buf_len))
|
---|
4115 | return -1;
|
---|
4116 | } else {
|
---|
4117 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
|
---|
4118 | octx->data_buf_len))
|
---|
4119 | return -1;
|
---|
4120 | }
|
---|
4121 | written_len = octx->data_buf_len;
|
---|
4122 | octx->data_buf_len = 0;
|
---|
4123 | }
|
---|
4124 | if (octx->aad_buf_len > 0) {
|
---|
4125 | if (!CRYPTO_ocb128_aad
|
---|
4126 | (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
|
---|
4127 | return -1;
|
---|
4128 | octx->aad_buf_len = 0;
|
---|
4129 | }
|
---|
4130 | /* If decrypting then verify */
|
---|
4131 | if (!EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4132 | if (octx->taglen < 0)
|
---|
4133 | return -1;
|
---|
4134 | if (CRYPTO_ocb128_finish(&octx->ocb,
|
---|
4135 | octx->tag, octx->taglen) != 0)
|
---|
4136 | return -1;
|
---|
4137 | octx->iv_set = 0;
|
---|
4138 | return written_len;
|
---|
4139 | }
|
---|
4140 | /* If encrypting then just get the tag */
|
---|
4141 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
|
---|
4142 | return -1;
|
---|
4143 | /* Don't reuse the IV */
|
---|
4144 | octx->iv_set = 0;
|
---|
4145 | return written_len;
|
---|
4146 | }
|
---|
4147 | }
|
---|
4148 |
|
---|
4149 | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
|
---|
4150 | {
|
---|
4151 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
4152 | CRYPTO_ocb128_cleanup(&octx->ocb);
|
---|
4153 | return 1;
|
---|
4154 | }
|
---|
4155 |
|
---|
4156 | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
|
---|
4157 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4158 | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
|
---|
4159 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4160 | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
|
---|
4161 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4162 | #endif /* OPENSSL_NO_OCB */
|
---|