1 | /*
|
---|
2 | * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdlib.h>
|
---|
11 | #include <stdarg.h>
|
---|
12 | #include <string.h>
|
---|
13 | #include <openssl/evp.h>
|
---|
14 | #include <openssl/kdf.h>
|
---|
15 | #include <openssl/err.h>
|
---|
16 | #include <openssl/core_names.h>
|
---|
17 | #include <openssl/proverr.h>
|
---|
18 | #include "crypto/evp.h"
|
---|
19 | #include "internal/numbers.h"
|
---|
20 | #include "prov/implementations.h"
|
---|
21 | #include "prov/provider_ctx.h"
|
---|
22 | #include "prov/providercommon.h"
|
---|
23 | #include "prov/provider_util.h"
|
---|
24 |
|
---|
25 | #ifndef OPENSSL_NO_SCRYPT
|
---|
26 |
|
---|
27 | static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
|
---|
28 | static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
|
---|
29 | static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
|
---|
30 | static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
|
---|
31 | static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
|
---|
32 | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
|
---|
33 | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
|
---|
34 | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
|
---|
35 | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
|
---|
36 |
|
---|
37 | static int scrypt_alg(const char *pass, size_t passlen,
|
---|
38 | const unsigned char *salt, size_t saltlen,
|
---|
39 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
|
---|
40 | unsigned char *key, size_t keylen, EVP_MD *sha256,
|
---|
41 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
42 |
|
---|
43 | typedef struct {
|
---|
44 | OSSL_LIB_CTX *libctx;
|
---|
45 | char *propq;
|
---|
46 | unsigned char *pass;
|
---|
47 | size_t pass_len;
|
---|
48 | unsigned char *salt;
|
---|
49 | size_t salt_len;
|
---|
50 | uint64_t N;
|
---|
51 | uint64_t r, p;
|
---|
52 | uint64_t maxmem_bytes;
|
---|
53 | EVP_MD *sha256;
|
---|
54 | } KDF_SCRYPT;
|
---|
55 |
|
---|
56 | static void kdf_scrypt_init(KDF_SCRYPT *ctx);
|
---|
57 |
|
---|
58 | static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
|
---|
59 | {
|
---|
60 | KDF_SCRYPT *ctx;
|
---|
61 |
|
---|
62 | if (!ossl_prov_is_running())
|
---|
63 | return NULL;
|
---|
64 |
|
---|
65 | ctx = OPENSSL_zalloc(sizeof(*ctx));
|
---|
66 | if (ctx == NULL) {
|
---|
67 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
|
---|
68 | return NULL;
|
---|
69 | }
|
---|
70 | ctx->libctx = libctx;
|
---|
71 | kdf_scrypt_init(ctx);
|
---|
72 | return ctx;
|
---|
73 | }
|
---|
74 |
|
---|
75 | static void *kdf_scrypt_new(void *provctx)
|
---|
76 | {
|
---|
77 | return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
|
---|
78 | }
|
---|
79 |
|
---|
80 | static void kdf_scrypt_free(void *vctx)
|
---|
81 | {
|
---|
82 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
|
---|
83 |
|
---|
84 | if (ctx != NULL) {
|
---|
85 | OPENSSL_free(ctx->propq);
|
---|
86 | EVP_MD_free(ctx->sha256);
|
---|
87 | kdf_scrypt_reset(ctx);
|
---|
88 | OPENSSL_free(ctx);
|
---|
89 | }
|
---|
90 | }
|
---|
91 |
|
---|
92 | static void kdf_scrypt_reset(void *vctx)
|
---|
93 | {
|
---|
94 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
|
---|
95 |
|
---|
96 | OPENSSL_free(ctx->salt);
|
---|
97 | OPENSSL_clear_free(ctx->pass, ctx->pass_len);
|
---|
98 | kdf_scrypt_init(ctx);
|
---|
99 | }
|
---|
100 |
|
---|
101 | static void *kdf_scrypt_dup(void *vctx)
|
---|
102 | {
|
---|
103 | const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
|
---|
104 | KDF_SCRYPT *dest;
|
---|
105 |
|
---|
106 | dest = kdf_scrypt_new_inner(src->libctx);
|
---|
107 | if (dest != NULL) {
|
---|
108 | if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
|
---|
109 | goto err;
|
---|
110 | if (src->propq != NULL) {
|
---|
111 | dest->propq = OPENSSL_strdup(src->propq);
|
---|
112 | if (dest->propq == NULL)
|
---|
113 | goto err;
|
---|
114 | }
|
---|
115 | if (!ossl_prov_memdup(src->salt, src->salt_len,
|
---|
116 | &dest->salt, &dest->salt_len)
|
---|
117 | || !ossl_prov_memdup(src->pass, src->pass_len,
|
---|
118 | &dest->pass , &dest->pass_len))
|
---|
119 | goto err;
|
---|
120 | dest->N = src->N;
|
---|
121 | dest->r = src->r;
|
---|
122 | dest->p = src->p;
|
---|
123 | dest->maxmem_bytes = src->maxmem_bytes;
|
---|
124 | dest->sha256 = src->sha256;
|
---|
125 | }
|
---|
126 | return dest;
|
---|
127 |
|
---|
128 | err:
|
---|
129 | kdf_scrypt_free(dest);
|
---|
130 | return NULL;
|
---|
131 | }
|
---|
132 |
|
---|
133 | static void kdf_scrypt_init(KDF_SCRYPT *ctx)
|
---|
134 | {
|
---|
135 | /* Default values are the most conservative recommendation given in the
|
---|
136 | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
|
---|
137 | * for this parameter choice (approx. 128 * r * N * p bytes).
|
---|
138 | */
|
---|
139 | ctx->N = 1 << 20;
|
---|
140 | ctx->r = 8;
|
---|
141 | ctx->p = 1;
|
---|
142 | ctx->maxmem_bytes = 1025 * 1024 * 1024;
|
---|
143 | }
|
---|
144 |
|
---|
145 | static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
|
---|
146 | const OSSL_PARAM *p)
|
---|
147 | {
|
---|
148 | OPENSSL_clear_free(*buffer, *buflen);
|
---|
149 | *buffer = NULL;
|
---|
150 | *buflen = 0;
|
---|
151 |
|
---|
152 | if (p->data_size == 0) {
|
---|
153 | if ((*buffer = OPENSSL_malloc(1)) == NULL) {
|
---|
154 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
|
---|
155 | return 0;
|
---|
156 | }
|
---|
157 | } else if (p->data != NULL) {
|
---|
158 | if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
|
---|
159 | return 0;
|
---|
160 | }
|
---|
161 | return 1;
|
---|
162 | }
|
---|
163 |
|
---|
164 | static int set_digest(KDF_SCRYPT *ctx)
|
---|
165 | {
|
---|
166 | EVP_MD_free(ctx->sha256);
|
---|
167 | ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
|
---|
168 | if (ctx->sha256 == NULL) {
|
---|
169 | OPENSSL_free(ctx);
|
---|
170 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
|
---|
171 | return 0;
|
---|
172 | }
|
---|
173 | return 1;
|
---|
174 | }
|
---|
175 |
|
---|
176 | static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
|
---|
177 | {
|
---|
178 | OPENSSL_free(ctx->propq);
|
---|
179 | ctx->propq = NULL;
|
---|
180 | if (propq != NULL) {
|
---|
181 | ctx->propq = OPENSSL_strdup(propq);
|
---|
182 | if (ctx->propq == NULL) {
|
---|
183 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
|
---|
184 | return 0;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | return 1;
|
---|
188 | }
|
---|
189 |
|
---|
190 | static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
|
---|
191 | const OSSL_PARAM params[])
|
---|
192 | {
|
---|
193 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
|
---|
194 |
|
---|
195 | if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
|
---|
196 | return 0;
|
---|
197 |
|
---|
198 | if (ctx->pass == NULL) {
|
---|
199 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
|
---|
200 | return 0;
|
---|
201 | }
|
---|
202 |
|
---|
203 | if (ctx->salt == NULL) {
|
---|
204 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
|
---|
205 | return 0;
|
---|
206 | }
|
---|
207 |
|
---|
208 | if (ctx->sha256 == NULL && !set_digest(ctx))
|
---|
209 | return 0;
|
---|
210 |
|
---|
211 | return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
|
---|
212 | ctx->salt_len, ctx->N, ctx->r, ctx->p,
|
---|
213 | ctx->maxmem_bytes, key, keylen, ctx->sha256,
|
---|
214 | ctx->libctx, ctx->propq);
|
---|
215 | }
|
---|
216 |
|
---|
217 | static int is_power_of_two(uint64_t value)
|
---|
218 | {
|
---|
219 | return (value != 0) && ((value & (value - 1)) == 0);
|
---|
220 | }
|
---|
221 |
|
---|
222 | static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
|
---|
223 | {
|
---|
224 | const OSSL_PARAM *p;
|
---|
225 | KDF_SCRYPT *ctx = vctx;
|
---|
226 | uint64_t u64_value;
|
---|
227 |
|
---|
228 | if (params == NULL)
|
---|
229 | return 1;
|
---|
230 |
|
---|
231 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
|
---|
232 | if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
|
---|
233 | return 0;
|
---|
234 |
|
---|
235 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
|
---|
236 | if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
|
---|
237 | return 0;
|
---|
238 |
|
---|
239 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
|
---|
240 | != NULL) {
|
---|
241 | if (!OSSL_PARAM_get_uint64(p, &u64_value)
|
---|
242 | || u64_value <= 1
|
---|
243 | || !is_power_of_two(u64_value))
|
---|
244 | return 0;
|
---|
245 | ctx->N = u64_value;
|
---|
246 | }
|
---|
247 |
|
---|
248 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
|
---|
249 | != NULL) {
|
---|
250 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
|
---|
251 | return 0;
|
---|
252 | ctx->r = u64_value;
|
---|
253 | }
|
---|
254 |
|
---|
255 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
|
---|
256 | != NULL) {
|
---|
257 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
|
---|
258 | return 0;
|
---|
259 | ctx->p = u64_value;
|
---|
260 | }
|
---|
261 |
|
---|
262 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
|
---|
263 | != NULL) {
|
---|
264 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
|
---|
265 | return 0;
|
---|
266 | ctx->maxmem_bytes = u64_value;
|
---|
267 | }
|
---|
268 |
|
---|
269 | p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
|
---|
270 | if (p != NULL) {
|
---|
271 | if (p->data_type != OSSL_PARAM_UTF8_STRING
|
---|
272 | || !set_property_query(ctx, p->data)
|
---|
273 | || !set_digest(ctx))
|
---|
274 | return 0;
|
---|
275 | }
|
---|
276 | return 1;
|
---|
277 | }
|
---|
278 |
|
---|
279 | static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
|
---|
280 | ossl_unused void *p_ctx)
|
---|
281 | {
|
---|
282 | static const OSSL_PARAM known_settable_ctx_params[] = {
|
---|
283 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
|
---|
284 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
|
---|
285 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
|
---|
286 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
|
---|
287 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
|
---|
288 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
|
---|
289 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
|
---|
290 | OSSL_PARAM_END
|
---|
291 | };
|
---|
292 | return known_settable_ctx_params;
|
---|
293 | }
|
---|
294 |
|
---|
295 | static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
|
---|
296 | {
|
---|
297 | OSSL_PARAM *p;
|
---|
298 |
|
---|
299 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
|
---|
300 | return OSSL_PARAM_set_size_t(p, SIZE_MAX);
|
---|
301 | return -2;
|
---|
302 | }
|
---|
303 |
|
---|
304 | static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
|
---|
305 | ossl_unused void *p_ctx)
|
---|
306 | {
|
---|
307 | static const OSSL_PARAM known_gettable_ctx_params[] = {
|
---|
308 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
|
---|
309 | OSSL_PARAM_END
|
---|
310 | };
|
---|
311 | return known_gettable_ctx_params;
|
---|
312 | }
|
---|
313 |
|
---|
314 | const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
|
---|
315 | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
|
---|
316 | { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
|
---|
317 | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
|
---|
318 | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
|
---|
319 | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
|
---|
320 | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
|
---|
321 | (void(*)(void))kdf_scrypt_settable_ctx_params },
|
---|
322 | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
|
---|
323 | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
|
---|
324 | (void(*)(void))kdf_scrypt_gettable_ctx_params },
|
---|
325 | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
|
---|
326 | { 0, NULL }
|
---|
327 | };
|
---|
328 |
|
---|
329 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
---|
330 | static void salsa208_word_specification(uint32_t inout[16])
|
---|
331 | {
|
---|
332 | int i;
|
---|
333 | uint32_t x[16];
|
---|
334 |
|
---|
335 | memcpy(x, inout, sizeof(x));
|
---|
336 | for (i = 8; i > 0; i -= 2) {
|
---|
337 | x[4] ^= R(x[0] + x[12], 7);
|
---|
338 | x[8] ^= R(x[4] + x[0], 9);
|
---|
339 | x[12] ^= R(x[8] + x[4], 13);
|
---|
340 | x[0] ^= R(x[12] + x[8], 18);
|
---|
341 | x[9] ^= R(x[5] + x[1], 7);
|
---|
342 | x[13] ^= R(x[9] + x[5], 9);
|
---|
343 | x[1] ^= R(x[13] + x[9], 13);
|
---|
344 | x[5] ^= R(x[1] + x[13], 18);
|
---|
345 | x[14] ^= R(x[10] + x[6], 7);
|
---|
346 | x[2] ^= R(x[14] + x[10], 9);
|
---|
347 | x[6] ^= R(x[2] + x[14], 13);
|
---|
348 | x[10] ^= R(x[6] + x[2], 18);
|
---|
349 | x[3] ^= R(x[15] + x[11], 7);
|
---|
350 | x[7] ^= R(x[3] + x[15], 9);
|
---|
351 | x[11] ^= R(x[7] + x[3], 13);
|
---|
352 | x[15] ^= R(x[11] + x[7], 18);
|
---|
353 | x[1] ^= R(x[0] + x[3], 7);
|
---|
354 | x[2] ^= R(x[1] + x[0], 9);
|
---|
355 | x[3] ^= R(x[2] + x[1], 13);
|
---|
356 | x[0] ^= R(x[3] + x[2], 18);
|
---|
357 | x[6] ^= R(x[5] + x[4], 7);
|
---|
358 | x[7] ^= R(x[6] + x[5], 9);
|
---|
359 | x[4] ^= R(x[7] + x[6], 13);
|
---|
360 | x[5] ^= R(x[4] + x[7], 18);
|
---|
361 | x[11] ^= R(x[10] + x[9], 7);
|
---|
362 | x[8] ^= R(x[11] + x[10], 9);
|
---|
363 | x[9] ^= R(x[8] + x[11], 13);
|
---|
364 | x[10] ^= R(x[9] + x[8], 18);
|
---|
365 | x[12] ^= R(x[15] + x[14], 7);
|
---|
366 | x[13] ^= R(x[12] + x[15], 9);
|
---|
367 | x[14] ^= R(x[13] + x[12], 13);
|
---|
368 | x[15] ^= R(x[14] + x[13], 18);
|
---|
369 | }
|
---|
370 | for (i = 0; i < 16; ++i)
|
---|
371 | inout[i] += x[i];
|
---|
372 | OPENSSL_cleanse(x, sizeof(x));
|
---|
373 | }
|
---|
374 |
|
---|
375 | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
|
---|
376 | {
|
---|
377 | uint64_t i, j;
|
---|
378 | uint32_t X[16], *pB;
|
---|
379 |
|
---|
380 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
|
---|
381 | pB = B;
|
---|
382 | for (i = 0; i < r * 2; i++) {
|
---|
383 | for (j = 0; j < 16; j++)
|
---|
384 | X[j] ^= *pB++;
|
---|
385 | salsa208_word_specification(X);
|
---|
386 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
|
---|
387 | }
|
---|
388 | OPENSSL_cleanse(X, sizeof(X));
|
---|
389 | }
|
---|
390 |
|
---|
391 | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
|
---|
392 | uint32_t *X, uint32_t *T, uint32_t *V)
|
---|
393 | {
|
---|
394 | unsigned char *pB;
|
---|
395 | uint32_t *pV;
|
---|
396 | uint64_t i, k;
|
---|
397 |
|
---|
398 | /* Convert from little endian input */
|
---|
399 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
|
---|
400 | *pV = *pB++;
|
---|
401 | *pV |= *pB++ << 8;
|
---|
402 | *pV |= *pB++ << 16;
|
---|
403 | *pV |= (uint32_t)*pB++ << 24;
|
---|
404 | }
|
---|
405 |
|
---|
406 | for (i = 1; i < N; i++, pV += 32 * r)
|
---|
407 | scryptBlockMix(pV, pV - 32 * r, r);
|
---|
408 |
|
---|
409 | scryptBlockMix(X, V + (N - 1) * 32 * r, r);
|
---|
410 |
|
---|
411 | for (i = 0; i < N; i++) {
|
---|
412 | uint32_t j;
|
---|
413 | j = X[16 * (2 * r - 1)] % N;
|
---|
414 | pV = V + 32 * r * j;
|
---|
415 | for (k = 0; k < 32 * r; k++)
|
---|
416 | T[k] = X[k] ^ *pV++;
|
---|
417 | scryptBlockMix(X, T, r);
|
---|
418 | }
|
---|
419 | /* Convert output to little endian */
|
---|
420 | for (i = 0, pB = B; i < 32 * r; i++) {
|
---|
421 | uint32_t xtmp = X[i];
|
---|
422 | *pB++ = xtmp & 0xff;
|
---|
423 | *pB++ = (xtmp >> 8) & 0xff;
|
---|
424 | *pB++ = (xtmp >> 16) & 0xff;
|
---|
425 | *pB++ = (xtmp >> 24) & 0xff;
|
---|
426 | }
|
---|
427 | }
|
---|
428 |
|
---|
429 | #ifndef SIZE_MAX
|
---|
430 | # define SIZE_MAX ((size_t)-1)
|
---|
431 | #endif
|
---|
432 |
|
---|
433 | /*
|
---|
434 | * Maximum power of two that will fit in uint64_t: this should work on
|
---|
435 | * most (all?) platforms.
|
---|
436 | */
|
---|
437 |
|
---|
438 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
|
---|
439 |
|
---|
440 | /*
|
---|
441 | * Maximum value of p * r:
|
---|
442 | * p <= ((2^32-1) * hLen) / MFLen =>
|
---|
443 | * p <= ((2^32-1) * 32) / (128 * r) =>
|
---|
444 | * p * r <= (2^30-1)
|
---|
445 | */
|
---|
446 |
|
---|
447 | #define SCRYPT_PR_MAX ((1 << 30) - 1)
|
---|
448 |
|
---|
449 | static int scrypt_alg(const char *pass, size_t passlen,
|
---|
450 | const unsigned char *salt, size_t saltlen,
|
---|
451 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
|
---|
452 | unsigned char *key, size_t keylen, EVP_MD *sha256,
|
---|
453 | OSSL_LIB_CTX *libctx, const char *propq)
|
---|
454 | {
|
---|
455 | int rv = 0;
|
---|
456 | unsigned char *B;
|
---|
457 | uint32_t *X, *V, *T;
|
---|
458 | uint64_t i, Blen, Vlen;
|
---|
459 |
|
---|
460 | /* Sanity check parameters */
|
---|
461 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
|
---|
462 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
|
---|
463 | return 0;
|
---|
464 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
|
---|
465 | if (p > SCRYPT_PR_MAX / r) {
|
---|
466 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
467 | return 0;
|
---|
468 | }
|
---|
469 |
|
---|
470 | /*
|
---|
471 | * Need to check N: if 2^(128 * r / 8) overflows limit this is
|
---|
472 | * automatically satisfied since N <= UINT64_MAX.
|
---|
473 | */
|
---|
474 |
|
---|
475 | if (16 * r <= LOG2_UINT64_MAX) {
|
---|
476 | if (N >= (((uint64_t)1) << (16 * r))) {
|
---|
477 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
478 | return 0;
|
---|
479 | }
|
---|
480 | }
|
---|
481 |
|
---|
482 | /* Memory checks: check total allocated buffer size fits in uint64_t */
|
---|
483 |
|
---|
484 | /*
|
---|
485 | * B size in section 5 step 1.S
|
---|
486 | * Note: we know p * 128 * r < UINT64_MAX because we already checked
|
---|
487 | * p * r < SCRYPT_PR_MAX
|
---|
488 | */
|
---|
489 | Blen = p * 128 * r;
|
---|
490 | /*
|
---|
491 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
|
---|
492 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
|
---|
493 | */
|
---|
494 | if (Blen > INT_MAX) {
|
---|
495 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
496 | return 0;
|
---|
497 | }
|
---|
498 |
|
---|
499 | /*
|
---|
500 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
|
---|
501 | * This is combined size V, X and T (section 4)
|
---|
502 | */
|
---|
503 | i = UINT64_MAX / (32 * sizeof(uint32_t));
|
---|
504 | if (N + 2 > i / r) {
|
---|
505 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
506 | return 0;
|
---|
507 | }
|
---|
508 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
|
---|
509 |
|
---|
510 | /* check total allocated size fits in uint64_t */
|
---|
511 | if (Blen > UINT64_MAX - Vlen) {
|
---|
512 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
513 | return 0;
|
---|
514 | }
|
---|
515 |
|
---|
516 | /* Check that the maximum memory doesn't exceed a size_t limits */
|
---|
517 | if (maxmem > SIZE_MAX)
|
---|
518 | maxmem = SIZE_MAX;
|
---|
519 |
|
---|
520 | if (Blen + Vlen > maxmem) {
|
---|
521 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
522 | return 0;
|
---|
523 | }
|
---|
524 |
|
---|
525 | /* If no key return to indicate parameters are OK */
|
---|
526 | if (key == NULL)
|
---|
527 | return 1;
|
---|
528 |
|
---|
529 | B = OPENSSL_malloc((size_t)(Blen + Vlen));
|
---|
530 | if (B == NULL) {
|
---|
531 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
532 | return 0;
|
---|
533 | }
|
---|
534 | X = (uint32_t *)(B + Blen);
|
---|
535 | T = X + 32 * r;
|
---|
536 | V = T + 32 * r;
|
---|
537 | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
|
---|
538 | (int)Blen, B, libctx, propq) == 0)
|
---|
539 | goto err;
|
---|
540 |
|
---|
541 | for (i = 0; i < p; i++)
|
---|
542 | scryptROMix(B + 128 * r * i, r, N, X, T, V);
|
---|
543 |
|
---|
544 | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
|
---|
545 | keylen, key, libctx, propq) == 0)
|
---|
546 | goto err;
|
---|
547 | rv = 1;
|
---|
548 | err:
|
---|
549 | if (rv == 0)
|
---|
550 | ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
|
---|
551 |
|
---|
552 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
|
---|
553 | return rv;
|
---|
554 | }
|
---|
555 |
|
---|
556 | #endif
|
---|