1 | /*
|
---|
2 | * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * This file has no dependencies on the rest of libssl because it is shared
|
---|
12 | * with the providers. It contains functions for low level MAC calculations.
|
---|
13 | * Responsibility for this lies with the HMAC implementation in the
|
---|
14 | * providers. However there are legacy code paths in libssl which also need to
|
---|
15 | * do this. In time those legacy code paths can be removed and this file can be
|
---|
16 | * moved out of libssl.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
|
---|
22 | * internal use.
|
---|
23 | */
|
---|
24 | #include "internal/deprecated.h"
|
---|
25 |
|
---|
26 | #include "internal/constant_time.h"
|
---|
27 | #include "internal/cryptlib.h"
|
---|
28 |
|
---|
29 | #include <openssl/evp.h>
|
---|
30 | #ifndef FIPS_MODULE
|
---|
31 | # include <openssl/md5.h>
|
---|
32 | #endif
|
---|
33 | #include <openssl/sha.h>
|
---|
34 |
|
---|
35 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
|
---|
36 | int ssl3_cbc_digest_record(const EVP_MD *md,
|
---|
37 | unsigned char *md_out,
|
---|
38 | size_t *md_out_size,
|
---|
39 | const unsigned char *header,
|
---|
40 | const unsigned char *data,
|
---|
41 | size_t data_size,
|
---|
42 | size_t data_plus_mac_plus_padding_size,
|
---|
43 | const unsigned char *mac_secret,
|
---|
44 | size_t mac_secret_length, char is_sslv3);
|
---|
45 |
|
---|
46 | # define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
---|
47 | *((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
---|
48 | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
---|
49 | *((c)++)=(unsigned char)(((l) )&0xff))
|
---|
50 |
|
---|
51 | # define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
|
---|
52 | *((c)++)=(unsigned char)(((l)>>32)&0xff), \
|
---|
53 | *((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
---|
54 | *((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
---|
55 | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
---|
56 | *((c)++)=(unsigned char)(((l) )&0xff))
|
---|
57 |
|
---|
58 | # define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
|
---|
59 | *((c)++)=(unsigned char)(((l)>>48)&0xff), \
|
---|
60 | *((c)++)=(unsigned char)(((l)>>40)&0xff), \
|
---|
61 | *((c)++)=(unsigned char)(((l)>>32)&0xff), \
|
---|
62 | *((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
---|
63 | *((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
---|
64 | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
---|
65 | *((c)++)=(unsigned char)(((l) )&0xff))
|
---|
66 |
|
---|
67 | /*
|
---|
68 | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
|
---|
69 | * length field. (SHA-384/512 have 128-bit length.)
|
---|
70 | */
|
---|
71 | #define MAX_HASH_BIT_COUNT_BYTES 16
|
---|
72 |
|
---|
73 | /*
|
---|
74 | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
|
---|
75 | * Currently SHA-384/512 has a 128-byte block size and that's the largest
|
---|
76 | * supported by TLS.)
|
---|
77 | */
|
---|
78 | #define MAX_HASH_BLOCK_SIZE 128
|
---|
79 |
|
---|
80 | #ifndef FIPS_MODULE
|
---|
81 | /*
|
---|
82 | * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
|
---|
83 | * little-endian order. The value of p is advanced by four.
|
---|
84 | */
|
---|
85 | # define u32toLE(n, p) \
|
---|
86 | (*((p)++)=(unsigned char)(n), \
|
---|
87 | *((p)++)=(unsigned char)(n>>8), \
|
---|
88 | *((p)++)=(unsigned char)(n>>16), \
|
---|
89 | *((p)++)=(unsigned char)(n>>24))
|
---|
90 |
|
---|
91 | /*
|
---|
92 | * These functions serialize the state of a hash and thus perform the
|
---|
93 | * standard "final" operation without adding the padding and length that such
|
---|
94 | * a function typically does.
|
---|
95 | */
|
---|
96 | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
|
---|
97 | {
|
---|
98 | MD5_CTX *md5 = ctx;
|
---|
99 | u32toLE(md5->A, md_out);
|
---|
100 | u32toLE(md5->B, md_out);
|
---|
101 | u32toLE(md5->C, md_out);
|
---|
102 | u32toLE(md5->D, md_out);
|
---|
103 | }
|
---|
104 | #endif /* FIPS_MODULE */
|
---|
105 |
|
---|
106 | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
|
---|
107 | {
|
---|
108 | SHA_CTX *sha1 = ctx;
|
---|
109 | l2n(sha1->h0, md_out);
|
---|
110 | l2n(sha1->h1, md_out);
|
---|
111 | l2n(sha1->h2, md_out);
|
---|
112 | l2n(sha1->h3, md_out);
|
---|
113 | l2n(sha1->h4, md_out);
|
---|
114 | }
|
---|
115 |
|
---|
116 | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
|
---|
117 | {
|
---|
118 | SHA256_CTX *sha256 = ctx;
|
---|
119 | unsigned i;
|
---|
120 |
|
---|
121 | for (i = 0; i < 8; i++) {
|
---|
122 | l2n(sha256->h[i], md_out);
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
|
---|
127 | {
|
---|
128 | SHA512_CTX *sha512 = ctx;
|
---|
129 | unsigned i;
|
---|
130 |
|
---|
131 | for (i = 0; i < 8; i++) {
|
---|
132 | l2n8(sha512->h[i], md_out);
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | #undef LARGEST_DIGEST_CTX
|
---|
137 | #define LARGEST_DIGEST_CTX SHA512_CTX
|
---|
138 |
|
---|
139 | /*-
|
---|
140 | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
|
---|
141 | * record.
|
---|
142 | *
|
---|
143 | * ctx: the EVP_MD_CTX from which we take the hash function.
|
---|
144 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
|
---|
145 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
|
---|
146 | * md_out_size: if non-NULL, the number of output bytes is written here.
|
---|
147 | * header: the 13-byte, TLS record header.
|
---|
148 | * data: the record data itself, less any preceding explicit IV.
|
---|
149 | * data_size: the secret, reported length of the data once the MAC and padding
|
---|
150 | * has been removed.
|
---|
151 | * data_plus_mac_plus_padding_size: the public length of the whole
|
---|
152 | * record, including MAC and padding.
|
---|
153 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
|
---|
154 | *
|
---|
155 | * On entry: we know that data is data_plus_mac_plus_padding_size in length
|
---|
156 | * Returns 1 on success or 0 on error
|
---|
157 | */
|
---|
158 | int ssl3_cbc_digest_record(const EVP_MD *md,
|
---|
159 | unsigned char *md_out,
|
---|
160 | size_t *md_out_size,
|
---|
161 | const unsigned char *header,
|
---|
162 | const unsigned char *data,
|
---|
163 | size_t data_size,
|
---|
164 | size_t data_plus_mac_plus_padding_size,
|
---|
165 | const unsigned char *mac_secret,
|
---|
166 | size_t mac_secret_length, char is_sslv3)
|
---|
167 | {
|
---|
168 | union {
|
---|
169 | OSSL_UNION_ALIGN;
|
---|
170 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
|
---|
171 | } md_state;
|
---|
172 | void (*md_final_raw) (void *ctx, unsigned char *md_out);
|
---|
173 | void (*md_transform) (void *ctx, const unsigned char *block);
|
---|
174 | size_t md_size, md_block_size = 64;
|
---|
175 | size_t sslv3_pad_length = 40, header_length, variance_blocks,
|
---|
176 | len, max_mac_bytes, num_blocks,
|
---|
177 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
|
---|
178 | size_t bits; /* at most 18 bits */
|
---|
179 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
|
---|
180 | /* hmac_pad is the masked HMAC key. */
|
---|
181 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
|
---|
182 | unsigned char first_block[MAX_HASH_BLOCK_SIZE];
|
---|
183 | unsigned char mac_out[EVP_MAX_MD_SIZE];
|
---|
184 | size_t i, j;
|
---|
185 | unsigned md_out_size_u;
|
---|
186 | EVP_MD_CTX *md_ctx = NULL;
|
---|
187 | /*
|
---|
188 | * mdLengthSize is the number of bytes in the length field that
|
---|
189 | * terminates * the hash.
|
---|
190 | */
|
---|
191 | size_t md_length_size = 8;
|
---|
192 | char length_is_big_endian = 1;
|
---|
193 | int ret = 0;
|
---|
194 |
|
---|
195 | /*
|
---|
196 | * This is a, hopefully redundant, check that allows us to forget about
|
---|
197 | * many possible overflows later in this function.
|
---|
198 | */
|
---|
199 | if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
|
---|
200 | return 0;
|
---|
201 |
|
---|
202 | if (EVP_MD_is_a(md, "MD5")) {
|
---|
203 | #ifdef FIPS_MODULE
|
---|
204 | return 0;
|
---|
205 | #else
|
---|
206 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
|
---|
207 | return 0;
|
---|
208 | md_final_raw = tls1_md5_final_raw;
|
---|
209 | md_transform =
|
---|
210 | (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
|
---|
211 | md_size = 16;
|
---|
212 | sslv3_pad_length = 48;
|
---|
213 | length_is_big_endian = 0;
|
---|
214 | #endif
|
---|
215 | } else if (EVP_MD_is_a(md, "SHA1")) {
|
---|
216 | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
|
---|
217 | return 0;
|
---|
218 | md_final_raw = tls1_sha1_final_raw;
|
---|
219 | md_transform =
|
---|
220 | (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
|
---|
221 | md_size = 20;
|
---|
222 | } else if (EVP_MD_is_a(md, "SHA2-224")) {
|
---|
223 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
224 | return 0;
|
---|
225 | md_final_raw = tls1_sha256_final_raw;
|
---|
226 | md_transform =
|
---|
227 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
228 | md_size = 224 / 8;
|
---|
229 | } else if (EVP_MD_is_a(md, "SHA2-256")) {
|
---|
230 | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
231 | return 0;
|
---|
232 | md_final_raw = tls1_sha256_final_raw;
|
---|
233 | md_transform =
|
---|
234 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
235 | md_size = 32;
|
---|
236 | } else if (EVP_MD_is_a(md, "SHA2-384")) {
|
---|
237 | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
238 | return 0;
|
---|
239 | md_final_raw = tls1_sha512_final_raw;
|
---|
240 | md_transform =
|
---|
241 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
242 | md_size = 384 / 8;
|
---|
243 | md_block_size = 128;
|
---|
244 | md_length_size = 16;
|
---|
245 | } else if (EVP_MD_is_a(md, "SHA2-512")) {
|
---|
246 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
247 | return 0;
|
---|
248 | md_final_raw = tls1_sha512_final_raw;
|
---|
249 | md_transform =
|
---|
250 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
251 | md_size = 64;
|
---|
252 | md_block_size = 128;
|
---|
253 | md_length_size = 16;
|
---|
254 | } else {
|
---|
255 | /*
|
---|
256 | * ssl3_cbc_record_digest_supported should have been called first to
|
---|
257 | * check that the hash function is supported.
|
---|
258 | */
|
---|
259 | if (md_out_size != NULL)
|
---|
260 | *md_out_size = 0;
|
---|
261 | return ossl_assert(0);
|
---|
262 | }
|
---|
263 |
|
---|
264 | if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
|
---|
265 | || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
|
---|
266 | || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
|
---|
267 | return 0;
|
---|
268 |
|
---|
269 | header_length = 13;
|
---|
270 | if (is_sslv3) {
|
---|
271 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
|
---|
272 | * number */ +
|
---|
273 | 1 /* record type */ +
|
---|
274 | 2 /* record length */ ;
|
---|
275 | }
|
---|
276 |
|
---|
277 | /*
|
---|
278 | * variance_blocks is the number of blocks of the hash that we have to
|
---|
279 | * calculate in constant time because they could be altered by the
|
---|
280 | * padding value. In SSLv3, the padding must be minimal so the end of
|
---|
281 | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
|
---|
282 | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
|
---|
283 | * of hash termination (0x80 + 64-bit length) don't fit in the final
|
---|
284 | * block, we say that the final two blocks can vary based on the padding.
|
---|
285 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
|
---|
286 | * required to be minimal. Therefore we say that the final |variance_blocks|
|
---|
287 | * blocks can
|
---|
288 | * vary based on the padding. Later in the function, if the message is
|
---|
289 | * short and there obviously cannot be this many blocks then
|
---|
290 | * variance_blocks can be reduced.
|
---|
291 | */
|
---|
292 | variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
|
---|
293 | /*
|
---|
294 | * From now on we're dealing with the MAC, which conceptually has 13
|
---|
295 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes
|
---|
296 | * (SSLv3)
|
---|
297 | */
|
---|
298 | len = data_plus_mac_plus_padding_size + header_length;
|
---|
299 | /*
|
---|
300 | * max_mac_bytes contains the maximum bytes of bytes in the MAC,
|
---|
301 | * including * |header|, assuming that there's no padding.
|
---|
302 | */
|
---|
303 | max_mac_bytes = len - md_size - 1;
|
---|
304 | /* num_blocks is the maximum number of hash blocks. */
|
---|
305 | num_blocks =
|
---|
306 | (max_mac_bytes + 1 + md_length_size + md_block_size -
|
---|
307 | 1) / md_block_size;
|
---|
308 | /*
|
---|
309 | * In order to calculate the MAC in constant time we have to handle the
|
---|
310 | * final blocks specially because the padding value could cause the end
|
---|
311 | * to appear somewhere in the final |variance_blocks| blocks and we can't
|
---|
312 | * leak where. However, |num_starting_blocks| worth of data can be hashed
|
---|
313 | * right away because no padding value can affect whether they are
|
---|
314 | * plaintext.
|
---|
315 | */
|
---|
316 | num_starting_blocks = 0;
|
---|
317 | /*
|
---|
318 | * k is the starting byte offset into the conceptual header||data where
|
---|
319 | * we start processing.
|
---|
320 | */
|
---|
321 | k = 0;
|
---|
322 | /*
|
---|
323 | * mac_end_offset is the index just past the end of the data to be MACed.
|
---|
324 | */
|
---|
325 | mac_end_offset = data_size + header_length;
|
---|
326 | /*
|
---|
327 | * c is the index of the 0x80 byte in the final hash block that contains
|
---|
328 | * application data.
|
---|
329 | */
|
---|
330 | c = mac_end_offset % md_block_size;
|
---|
331 | /*
|
---|
332 | * index_a is the hash block number that contains the 0x80 terminating
|
---|
333 | * value.
|
---|
334 | */
|
---|
335 | index_a = mac_end_offset / md_block_size;
|
---|
336 | /*
|
---|
337 | * index_b is the hash block number that contains the 64-bit hash length,
|
---|
338 | * in bits.
|
---|
339 | */
|
---|
340 | index_b = (mac_end_offset + md_length_size) / md_block_size;
|
---|
341 | /*
|
---|
342 | * bits is the hash-length in bits. It includes the additional hash block
|
---|
343 | * for the masked HMAC key, or whole of |header| in the case of SSLv3.
|
---|
344 | */
|
---|
345 |
|
---|
346 | /*
|
---|
347 | * For SSLv3, if we're going to have any starting blocks then we need at
|
---|
348 | * least two because the header is larger than a single block.
|
---|
349 | */
|
---|
350 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
|
---|
351 | num_starting_blocks = num_blocks - variance_blocks;
|
---|
352 | k = md_block_size * num_starting_blocks;
|
---|
353 | }
|
---|
354 |
|
---|
355 | bits = 8 * mac_end_offset;
|
---|
356 | if (!is_sslv3) {
|
---|
357 | /*
|
---|
358 | * Compute the initial HMAC block. For SSLv3, the padding and secret
|
---|
359 | * bytes are included in |header| because they take more than a
|
---|
360 | * single block.
|
---|
361 | */
|
---|
362 | bits += 8 * md_block_size;
|
---|
363 | memset(hmac_pad, 0, md_block_size);
|
---|
364 | if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
|
---|
365 | return 0;
|
---|
366 | memcpy(hmac_pad, mac_secret, mac_secret_length);
|
---|
367 | for (i = 0; i < md_block_size; i++)
|
---|
368 | hmac_pad[i] ^= 0x36;
|
---|
369 |
|
---|
370 | md_transform(md_state.c, hmac_pad);
|
---|
371 | }
|
---|
372 |
|
---|
373 | if (length_is_big_endian) {
|
---|
374 | memset(length_bytes, 0, md_length_size - 4);
|
---|
375 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
|
---|
376 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
|
---|
377 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
|
---|
378 | length_bytes[md_length_size - 1] = (unsigned char)bits;
|
---|
379 | } else {
|
---|
380 | memset(length_bytes, 0, md_length_size);
|
---|
381 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
|
---|
382 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
|
---|
383 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
|
---|
384 | length_bytes[md_length_size - 8] = (unsigned char)bits;
|
---|
385 | }
|
---|
386 |
|
---|
387 | if (k > 0) {
|
---|
388 | if (is_sslv3) {
|
---|
389 | size_t overhang;
|
---|
390 |
|
---|
391 | /*
|
---|
392 | * The SSLv3 header is larger than a single block. overhang is
|
---|
393 | * the number of bytes beyond a single block that the header
|
---|
394 | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
|
---|
395 | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
|
---|
396 | * therefore we can be confident that the header_length will be
|
---|
397 | * greater than |md_block_size|. However we add a sanity check just
|
---|
398 | * in case
|
---|
399 | */
|
---|
400 | if (header_length <= md_block_size) {
|
---|
401 | /* Should never happen */
|
---|
402 | return 0;
|
---|
403 | }
|
---|
404 | overhang = header_length - md_block_size;
|
---|
405 | md_transform(md_state.c, header);
|
---|
406 | memcpy(first_block, header + md_block_size, overhang);
|
---|
407 | memcpy(first_block + overhang, data, md_block_size - overhang);
|
---|
408 | md_transform(md_state.c, first_block);
|
---|
409 | for (i = 1; i < k / md_block_size - 1; i++)
|
---|
410 | md_transform(md_state.c, data + md_block_size * i - overhang);
|
---|
411 | } else {
|
---|
412 | /* k is a multiple of md_block_size. */
|
---|
413 | memcpy(first_block, header, 13);
|
---|
414 | memcpy(first_block + 13, data, md_block_size - 13);
|
---|
415 | md_transform(md_state.c, first_block);
|
---|
416 | for (i = 1; i < k / md_block_size; i++)
|
---|
417 | md_transform(md_state.c, data + md_block_size * i - 13);
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 | memset(mac_out, 0, sizeof(mac_out));
|
---|
422 |
|
---|
423 | /*
|
---|
424 | * We now process the final hash blocks. For each block, we construct it
|
---|
425 | * in constant time. If the |i==index_a| then we'll include the 0x80
|
---|
426 | * bytes and zero pad etc. For each block we selectively copy it, in
|
---|
427 | * constant time, to |mac_out|.
|
---|
428 | */
|
---|
429 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
|
---|
430 | i++) {
|
---|
431 | unsigned char block[MAX_HASH_BLOCK_SIZE];
|
---|
432 | unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
|
---|
433 | unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
|
---|
434 | for (j = 0; j < md_block_size; j++) {
|
---|
435 | unsigned char b = 0, is_past_c, is_past_cp1;
|
---|
436 | if (k < header_length)
|
---|
437 | b = header[k];
|
---|
438 | else if (k < data_plus_mac_plus_padding_size + header_length)
|
---|
439 | b = data[k - header_length];
|
---|
440 | k++;
|
---|
441 |
|
---|
442 | is_past_c = is_block_a & constant_time_ge_8_s(j, c);
|
---|
443 | is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
|
---|
444 | /*
|
---|
445 | * If this is the block containing the end of the application
|
---|
446 | * data, and we are at the offset for the 0x80 value, then
|
---|
447 | * overwrite b with 0x80.
|
---|
448 | */
|
---|
449 | b = constant_time_select_8(is_past_c, 0x80, b);
|
---|
450 | /*
|
---|
451 | * If this block contains the end of the application data
|
---|
452 | * and we're past the 0x80 value then just write zero.
|
---|
453 | */
|
---|
454 | b = b & ~is_past_cp1;
|
---|
455 | /*
|
---|
456 | * If this is index_b (the final block), but not index_a (the end
|
---|
457 | * of the data), then the 64-bit length didn't fit into index_a
|
---|
458 | * and we're having to add an extra block of zeros.
|
---|
459 | */
|
---|
460 | b &= ~is_block_b | is_block_a;
|
---|
461 |
|
---|
462 | /*
|
---|
463 | * The final bytes of one of the blocks contains the length.
|
---|
464 | */
|
---|
465 | if (j >= md_block_size - md_length_size) {
|
---|
466 | /* If this is index_b, write a length byte. */
|
---|
467 | b = constant_time_select_8(is_block_b,
|
---|
468 | length_bytes[j -
|
---|
469 | (md_block_size -
|
---|
470 | md_length_size)], b);
|
---|
471 | }
|
---|
472 | block[j] = b;
|
---|
473 | }
|
---|
474 |
|
---|
475 | md_transform(md_state.c, block);
|
---|
476 | md_final_raw(md_state.c, block);
|
---|
477 | /* If this is index_b, copy the hash value to |mac_out|. */
|
---|
478 | for (j = 0; j < md_size; j++)
|
---|
479 | mac_out[j] |= block[j] & is_block_b;
|
---|
480 | }
|
---|
481 |
|
---|
482 | md_ctx = EVP_MD_CTX_new();
|
---|
483 | if (md_ctx == NULL)
|
---|
484 | goto err;
|
---|
485 |
|
---|
486 | if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
|
---|
487 | goto err;
|
---|
488 | if (is_sslv3) {
|
---|
489 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
|
---|
490 | memset(hmac_pad, 0x5c, sslv3_pad_length);
|
---|
491 |
|
---|
492 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
|
---|
493 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
|
---|
494 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
495 | goto err;
|
---|
496 | } else {
|
---|
497 | /* Complete the HMAC in the standard manner. */
|
---|
498 | for (i = 0; i < md_block_size; i++)
|
---|
499 | hmac_pad[i] ^= 0x6a;
|
---|
500 |
|
---|
501 | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
|
---|
502 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
503 | goto err;
|
---|
504 | }
|
---|
505 | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
|
---|
506 | if (ret && md_out_size)
|
---|
507 | *md_out_size = md_out_size_u;
|
---|
508 |
|
---|
509 | ret = 1;
|
---|
510 | err:
|
---|
511 | EVP_MD_CTX_free(md_ctx);
|
---|
512 | return ret;
|
---|
513 | }
|
---|