1 | /* trees.c -- output deflated data using Huffman coding
|
---|
2 | * Copyright (C) 1995-2017 Jean-loup Gailly
|
---|
3 | * detect_data_type() function provided freely by Cosmin Truta, 2006
|
---|
4 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
5 | */
|
---|
6 |
|
---|
7 | /*
|
---|
8 | * ALGORITHM
|
---|
9 | *
|
---|
10 | * The "deflation" process uses several Huffman trees. The more
|
---|
11 | * common source values are represented by shorter bit sequences.
|
---|
12 | *
|
---|
13 | * Each code tree is stored in a compressed form which is itself
|
---|
14 | * a Huffman encoding of the lengths of all the code strings (in
|
---|
15 | * ascending order by source values). The actual code strings are
|
---|
16 | * reconstructed from the lengths in the inflate process, as described
|
---|
17 | * in the deflate specification.
|
---|
18 | *
|
---|
19 | * REFERENCES
|
---|
20 | *
|
---|
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
|
---|
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
|
---|
23 | *
|
---|
24 | * Storer, James A.
|
---|
25 | * Data Compression: Methods and Theory, pp. 49-50.
|
---|
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
---|
27 | *
|
---|
28 | * Sedgewick, R.
|
---|
29 | * Algorithms, p290.
|
---|
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
---|
31 | */
|
---|
32 |
|
---|
33 | /* @(#) $Id$ */
|
---|
34 |
|
---|
35 | /* #define GEN_TREES_H */
|
---|
36 |
|
---|
37 | #include "deflate.h"
|
---|
38 |
|
---|
39 | #ifdef ZLIB_DEBUG
|
---|
40 | # include <ctype.h>
|
---|
41 | #endif
|
---|
42 |
|
---|
43 | /* ===========================================================================
|
---|
44 | * Constants
|
---|
45 | */
|
---|
46 |
|
---|
47 | #define MAX_BL_BITS 7
|
---|
48 | /* Bit length codes must not exceed MAX_BL_BITS bits */
|
---|
49 |
|
---|
50 | #define END_BLOCK 256
|
---|
51 | /* end of block literal code */
|
---|
52 |
|
---|
53 | #define REP_3_6 16
|
---|
54 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
---|
55 |
|
---|
56 | #define REPZ_3_10 17
|
---|
57 | /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
---|
58 |
|
---|
59 | #define REPZ_11_138 18
|
---|
60 | /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
---|
61 |
|
---|
62 | local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
|
---|
63 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
---|
64 |
|
---|
65 | local const int extra_dbits[D_CODES] /* extra bits for each distance code */
|
---|
66 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
---|
67 |
|
---|
68 | local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
|
---|
69 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
---|
70 |
|
---|
71 | local const uch bl_order[BL_CODES]
|
---|
72 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
---|
73 | /* The lengths of the bit length codes are sent in order of decreasing
|
---|
74 | * probability, to avoid transmitting the lengths for unused bit length codes.
|
---|
75 | */
|
---|
76 |
|
---|
77 | /* ===========================================================================
|
---|
78 | * Local data. These are initialized only once.
|
---|
79 | */
|
---|
80 |
|
---|
81 | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
|
---|
82 |
|
---|
83 | #if defined(GEN_TREES_H) || !defined(STDC)
|
---|
84 | /* non ANSI compilers may not accept trees.h */
|
---|
85 |
|
---|
86 | local ct_data static_ltree[L_CODES+2];
|
---|
87 | /* The static literal tree. Since the bit lengths are imposed, there is no
|
---|
88 | * need for the L_CODES extra codes used during heap construction. However
|
---|
89 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
---|
90 | * below).
|
---|
91 | */
|
---|
92 |
|
---|
93 | local ct_data static_dtree[D_CODES];
|
---|
94 | /* The static distance tree. (Actually a trivial tree since all codes use
|
---|
95 | * 5 bits.)
|
---|
96 | */
|
---|
97 |
|
---|
98 | uch _dist_code[DIST_CODE_LEN];
|
---|
99 | /* Distance codes. The first 256 values correspond to the distances
|
---|
100 | * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
---|
101 | * the 15 bit distances.
|
---|
102 | */
|
---|
103 |
|
---|
104 | uch _length_code[MAX_MATCH-MIN_MATCH+1];
|
---|
105 | /* length code for each normalized match length (0 == MIN_MATCH) */
|
---|
106 |
|
---|
107 | local int base_length[LENGTH_CODES];
|
---|
108 | /* First normalized length for each code (0 = MIN_MATCH) */
|
---|
109 |
|
---|
110 | local int base_dist[D_CODES];
|
---|
111 | /* First normalized distance for each code (0 = distance of 1) */
|
---|
112 |
|
---|
113 | #else
|
---|
114 | # include "trees.h"
|
---|
115 | #endif /* GEN_TREES_H */
|
---|
116 |
|
---|
117 | struct static_tree_desc_s {
|
---|
118 | const ct_data *static_tree; /* static tree or NULL */
|
---|
119 | const intf *extra_bits; /* extra bits for each code or NULL */
|
---|
120 | int extra_base; /* base index for extra_bits */
|
---|
121 | int elems; /* max number of elements in the tree */
|
---|
122 | int max_length; /* max bit length for the codes */
|
---|
123 | };
|
---|
124 |
|
---|
125 | local const static_tree_desc static_l_desc =
|
---|
126 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
|
---|
127 |
|
---|
128 | local const static_tree_desc static_d_desc =
|
---|
129 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
|
---|
130 |
|
---|
131 | local const static_tree_desc static_bl_desc =
|
---|
132 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
|
---|
133 |
|
---|
134 | /* ===========================================================================
|
---|
135 | * Local (static) routines in this file.
|
---|
136 | */
|
---|
137 |
|
---|
138 | local void tr_static_init OF((void));
|
---|
139 | local void init_block OF((deflate_state *s));
|
---|
140 | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
|
---|
141 | local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
|
---|
142 | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
|
---|
143 | local void build_tree OF((deflate_state *s, tree_desc *desc));
|
---|
144 | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
---|
145 | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
---|
146 | local int build_bl_tree OF((deflate_state *s));
|
---|
147 | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
|
---|
148 | int blcodes));
|
---|
149 | local void compress_block OF((deflate_state *s, const ct_data *ltree,
|
---|
150 | const ct_data *dtree));
|
---|
151 | local int detect_data_type OF((deflate_state *s));
|
---|
152 | local unsigned bi_reverse OF((unsigned value, int length));
|
---|
153 | local void bi_windup OF((deflate_state *s));
|
---|
154 | local void bi_flush OF((deflate_state *s));
|
---|
155 |
|
---|
156 | #ifdef GEN_TREES_H
|
---|
157 | local void gen_trees_header OF((void));
|
---|
158 | #endif
|
---|
159 |
|
---|
160 | #ifndef ZLIB_DEBUG
|
---|
161 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
|
---|
162 | /* Send a code of the given tree. c and tree must not have side effects */
|
---|
163 |
|
---|
164 | #else /* !ZLIB_DEBUG */
|
---|
165 | # define send_code(s, c, tree) \
|
---|
166 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
|
---|
167 | send_bits(s, tree[c].Code, tree[c].Len); }
|
---|
168 | #endif
|
---|
169 |
|
---|
170 | /* ===========================================================================
|
---|
171 | * Output a short LSB first on the stream.
|
---|
172 | * IN assertion: there is enough room in pendingBuf.
|
---|
173 | */
|
---|
174 | #define put_short(s, w) { \
|
---|
175 | put_byte(s, (uch)((w) & 0xff)); \
|
---|
176 | put_byte(s, (uch)((ush)(w) >> 8)); \
|
---|
177 | }
|
---|
178 |
|
---|
179 | /* ===========================================================================
|
---|
180 | * Send a value on a given number of bits.
|
---|
181 | * IN assertion: length <= 16 and value fits in length bits.
|
---|
182 | */
|
---|
183 | #ifdef ZLIB_DEBUG
|
---|
184 | local void send_bits OF((deflate_state *s, int value, int length));
|
---|
185 |
|
---|
186 | local void send_bits(s, value, length)
|
---|
187 | deflate_state *s;
|
---|
188 | int value; /* value to send */
|
---|
189 | int length; /* number of bits */
|
---|
190 | {
|
---|
191 | Tracevv((stderr," l %2d v %4x ", length, value));
|
---|
192 | Assert(length > 0 && length <= 15, "invalid length");
|
---|
193 | s->bits_sent += (ulg)length;
|
---|
194 |
|
---|
195 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and
|
---|
196 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
|
---|
197 | * unused bits in value.
|
---|
198 | */
|
---|
199 | if (s->bi_valid > (int)Buf_size - length) {
|
---|
200 | s->bi_buf |= (ush)value << s->bi_valid;
|
---|
201 | put_short(s, s->bi_buf);
|
---|
202 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
|
---|
203 | s->bi_valid += length - Buf_size;
|
---|
204 | } else {
|
---|
205 | s->bi_buf |= (ush)value << s->bi_valid;
|
---|
206 | s->bi_valid += length;
|
---|
207 | }
|
---|
208 | }
|
---|
209 | #else /* !ZLIB_DEBUG */
|
---|
210 |
|
---|
211 | #define send_bits(s, value, length) \
|
---|
212 | { int len = length;\
|
---|
213 | if (s->bi_valid > (int)Buf_size - len) {\
|
---|
214 | int val = (int)value;\
|
---|
215 | s->bi_buf |= (ush)val << s->bi_valid;\
|
---|
216 | put_short(s, s->bi_buf);\
|
---|
217 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
|
---|
218 | s->bi_valid += len - Buf_size;\
|
---|
219 | } else {\
|
---|
220 | s->bi_buf |= (ush)(value) << s->bi_valid;\
|
---|
221 | s->bi_valid += len;\
|
---|
222 | }\
|
---|
223 | }
|
---|
224 | #endif /* ZLIB_DEBUG */
|
---|
225 |
|
---|
226 |
|
---|
227 | /* the arguments must not have side effects */
|
---|
228 |
|
---|
229 | /* ===========================================================================
|
---|
230 | * Initialize the various 'constant' tables.
|
---|
231 | */
|
---|
232 | local void tr_static_init()
|
---|
233 | {
|
---|
234 | #if defined(GEN_TREES_H) || !defined(STDC)
|
---|
235 | static int static_init_done = 0;
|
---|
236 | int n; /* iterates over tree elements */
|
---|
237 | int bits; /* bit counter */
|
---|
238 | int length; /* length value */
|
---|
239 | int code; /* code value */
|
---|
240 | int dist; /* distance index */
|
---|
241 | ush bl_count[MAX_BITS+1];
|
---|
242 | /* number of codes at each bit length for an optimal tree */
|
---|
243 |
|
---|
244 | if (static_init_done) return;
|
---|
245 |
|
---|
246 | /* For some embedded targets, global variables are not initialized: */
|
---|
247 | #ifdef NO_INIT_GLOBAL_POINTERS
|
---|
248 | static_l_desc.static_tree = static_ltree;
|
---|
249 | static_l_desc.extra_bits = extra_lbits;
|
---|
250 | static_d_desc.static_tree = static_dtree;
|
---|
251 | static_d_desc.extra_bits = extra_dbits;
|
---|
252 | static_bl_desc.extra_bits = extra_blbits;
|
---|
253 | #endif
|
---|
254 |
|
---|
255 | /* Initialize the mapping length (0..255) -> length code (0..28) */
|
---|
256 | length = 0;
|
---|
257 | for (code = 0; code < LENGTH_CODES-1; code++) {
|
---|
258 | base_length[code] = length;
|
---|
259 | for (n = 0; n < (1<<extra_lbits[code]); n++) {
|
---|
260 | _length_code[length++] = (uch)code;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | Assert (length == 256, "tr_static_init: length != 256");
|
---|
264 | /* Note that the length 255 (match length 258) can be represented
|
---|
265 | * in two different ways: code 284 + 5 bits or code 285, so we
|
---|
266 | * overwrite length_code[255] to use the best encoding:
|
---|
267 | */
|
---|
268 | _length_code[length-1] = (uch)code;
|
---|
269 |
|
---|
270 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
---|
271 | dist = 0;
|
---|
272 | for (code = 0 ; code < 16; code++) {
|
---|
273 | base_dist[code] = dist;
|
---|
274 | for (n = 0; n < (1<<extra_dbits[code]); n++) {
|
---|
275 | _dist_code[dist++] = (uch)code;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | Assert (dist == 256, "tr_static_init: dist != 256");
|
---|
279 | dist >>= 7; /* from now on, all distances are divided by 128 */
|
---|
280 | for ( ; code < D_CODES; code++) {
|
---|
281 | base_dist[code] = dist << 7;
|
---|
282 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
|
---|
283 | _dist_code[256 + dist++] = (uch)code;
|
---|
284 | }
|
---|
285 | }
|
---|
286 | Assert (dist == 256, "tr_static_init: 256+dist != 512");
|
---|
287 |
|
---|
288 | /* Construct the codes of the static literal tree */
|
---|
289 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
---|
290 | n = 0;
|
---|
291 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
292 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
|
---|
293 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
|
---|
294 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
295 | /* Codes 286 and 287 do not exist, but we must include them in the
|
---|
296 | * tree construction to get a canonical Huffman tree (longest code
|
---|
297 | * all ones)
|
---|
298 | */
|
---|
299 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
|
---|
300 |
|
---|
301 | /* The static distance tree is trivial: */
|
---|
302 | for (n = 0; n < D_CODES; n++) {
|
---|
303 | static_dtree[n].Len = 5;
|
---|
304 | static_dtree[n].Code = bi_reverse((unsigned)n, 5);
|
---|
305 | }
|
---|
306 | static_init_done = 1;
|
---|
307 |
|
---|
308 | # ifdef GEN_TREES_H
|
---|
309 | gen_trees_header();
|
---|
310 | # endif
|
---|
311 | #endif /* defined(GEN_TREES_H) || !defined(STDC) */
|
---|
312 | }
|
---|
313 |
|
---|
314 | /* ===========================================================================
|
---|
315 | * Genererate the file trees.h describing the static trees.
|
---|
316 | */
|
---|
317 | #ifdef GEN_TREES_H
|
---|
318 | # ifndef ZLIB_DEBUG
|
---|
319 | # include <stdio.h>
|
---|
320 | # endif
|
---|
321 |
|
---|
322 | # define SEPARATOR(i, last, width) \
|
---|
323 | ((i) == (last)? "\n};\n\n" : \
|
---|
324 | ((i) % (width) == (width)-1 ? ",\n" : ", "))
|
---|
325 |
|
---|
326 | void gen_trees_header()
|
---|
327 | {
|
---|
328 | FILE *header = fopen("trees.h", "w");
|
---|
329 | int i;
|
---|
330 |
|
---|
331 | Assert (header != NULL, "Can't open trees.h");
|
---|
332 | fprintf(header,
|
---|
333 | "/* header created automatically with -DGEN_TREES_H */\n\n");
|
---|
334 |
|
---|
335 | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
|
---|
336 | for (i = 0; i < L_CODES+2; i++) {
|
---|
337 | fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
|
---|
338 | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
|
---|
339 | }
|
---|
340 |
|
---|
341 | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
|
---|
342 | for (i = 0; i < D_CODES; i++) {
|
---|
343 | fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
|
---|
344 | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
|
---|
345 | }
|
---|
346 |
|
---|
347 | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
|
---|
348 | for (i = 0; i < DIST_CODE_LEN; i++) {
|
---|
349 | fprintf(header, "%2u%s", _dist_code[i],
|
---|
350 | SEPARATOR(i, DIST_CODE_LEN-1, 20));
|
---|
351 | }
|
---|
352 |
|
---|
353 | fprintf(header,
|
---|
354 | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
|
---|
355 | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
|
---|
356 | fprintf(header, "%2u%s", _length_code[i],
|
---|
357 | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
|
---|
358 | }
|
---|
359 |
|
---|
360 | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
|
---|
361 | for (i = 0; i < LENGTH_CODES; i++) {
|
---|
362 | fprintf(header, "%1u%s", base_length[i],
|
---|
363 | SEPARATOR(i, LENGTH_CODES-1, 20));
|
---|
364 | }
|
---|
365 |
|
---|
366 | fprintf(header, "local const int base_dist[D_CODES] = {\n");
|
---|
367 | for (i = 0; i < D_CODES; i++) {
|
---|
368 | fprintf(header, "%5u%s", base_dist[i],
|
---|
369 | SEPARATOR(i, D_CODES-1, 10));
|
---|
370 | }
|
---|
371 |
|
---|
372 | fclose(header);
|
---|
373 | }
|
---|
374 | #endif /* GEN_TREES_H */
|
---|
375 |
|
---|
376 | /* ===========================================================================
|
---|
377 | * Initialize the tree data structures for a new zlib stream.
|
---|
378 | */
|
---|
379 | void ZLIB_INTERNAL _tr_init(s)
|
---|
380 | deflate_state *s;
|
---|
381 | {
|
---|
382 | tr_static_init();
|
---|
383 |
|
---|
384 | s->l_desc.dyn_tree = s->dyn_ltree;
|
---|
385 | s->l_desc.stat_desc = &static_l_desc;
|
---|
386 |
|
---|
387 | s->d_desc.dyn_tree = s->dyn_dtree;
|
---|
388 | s->d_desc.stat_desc = &static_d_desc;
|
---|
389 |
|
---|
390 | s->bl_desc.dyn_tree = s->bl_tree;
|
---|
391 | s->bl_desc.stat_desc = &static_bl_desc;
|
---|
392 |
|
---|
393 | s->bi_buf = 0;
|
---|
394 | s->bi_valid = 0;
|
---|
395 | #ifdef ZLIB_DEBUG
|
---|
396 | s->compressed_len = 0L;
|
---|
397 | s->bits_sent = 0L;
|
---|
398 | #endif
|
---|
399 |
|
---|
400 | /* Initialize the first block of the first file: */
|
---|
401 | init_block(s);
|
---|
402 | }
|
---|
403 |
|
---|
404 | /* ===========================================================================
|
---|
405 | * Initialize a new block.
|
---|
406 | */
|
---|
407 | local void init_block(s)
|
---|
408 | deflate_state *s;
|
---|
409 | {
|
---|
410 | int n; /* iterates over tree elements */
|
---|
411 |
|
---|
412 | /* Initialize the trees. */
|
---|
413 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
|
---|
414 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
|
---|
415 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
|
---|
416 |
|
---|
417 | s->dyn_ltree[END_BLOCK].Freq = 1;
|
---|
418 | s->opt_len = s->static_len = 0L;
|
---|
419 | s->last_lit = s->matches = 0;
|
---|
420 | }
|
---|
421 |
|
---|
422 | #define SMALLEST 1
|
---|
423 | /* Index within the heap array of least frequent node in the Huffman tree */
|
---|
424 |
|
---|
425 |
|
---|
426 | /* ===========================================================================
|
---|
427 | * Remove the smallest element from the heap and recreate the heap with
|
---|
428 | * one less element. Updates heap and heap_len.
|
---|
429 | */
|
---|
430 | #define pqremove(s, tree, top) \
|
---|
431 | {\
|
---|
432 | top = s->heap[SMALLEST]; \
|
---|
433 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \
|
---|
434 | pqdownheap(s, tree, SMALLEST); \
|
---|
435 | }
|
---|
436 |
|
---|
437 | /* ===========================================================================
|
---|
438 | * Compares to subtrees, using the tree depth as tie breaker when
|
---|
439 | * the subtrees have equal frequency. This minimizes the worst case length.
|
---|
440 | */
|
---|
441 | #define smaller(tree, n, m, depth) \
|
---|
442 | (tree[n].Freq < tree[m].Freq || \
|
---|
443 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
|
---|
444 |
|
---|
445 | /* ===========================================================================
|
---|
446 | * Restore the heap property by moving down the tree starting at node k,
|
---|
447 | * exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
448 | * when the heap property is re-established (each father smaller than its
|
---|
449 | * two sons).
|
---|
450 | */
|
---|
451 | local void pqdownheap(s, tree, k)
|
---|
452 | deflate_state *s;
|
---|
453 | ct_data *tree; /* the tree to restore */
|
---|
454 | int k; /* node to move down */
|
---|
455 | {
|
---|
456 | int v = s->heap[k];
|
---|
457 | int j = k << 1; /* left son of k */
|
---|
458 | while (j <= s->heap_len) {
|
---|
459 | /* Set j to the smallest of the two sons: */
|
---|
460 | if (j < s->heap_len &&
|
---|
461 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
|
---|
462 | j++;
|
---|
463 | }
|
---|
464 | /* Exit if v is smaller than both sons */
|
---|
465 | if (smaller(tree, v, s->heap[j], s->depth)) break;
|
---|
466 |
|
---|
467 | /* Exchange v with the smallest son */
|
---|
468 | s->heap[k] = s->heap[j]; k = j;
|
---|
469 |
|
---|
470 | /* And continue down the tree, setting j to the left son of k */
|
---|
471 | j <<= 1;
|
---|
472 | }
|
---|
473 | s->heap[k] = v;
|
---|
474 | }
|
---|
475 |
|
---|
476 | /* ===========================================================================
|
---|
477 | * Compute the optimal bit lengths for a tree and update the total bit length
|
---|
478 | * for the current block.
|
---|
479 | * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
---|
480 | * above are the tree nodes sorted by increasing frequency.
|
---|
481 | * OUT assertions: the field len is set to the optimal bit length, the
|
---|
482 | * array bl_count contains the frequencies for each bit length.
|
---|
483 | * The length opt_len is updated; static_len is also updated if stree is
|
---|
484 | * not null.
|
---|
485 | */
|
---|
486 | local void gen_bitlen(s, desc)
|
---|
487 | deflate_state *s;
|
---|
488 | tree_desc *desc; /* the tree descriptor */
|
---|
489 | {
|
---|
490 | ct_data *tree = desc->dyn_tree;
|
---|
491 | int max_code = desc->max_code;
|
---|
492 | const ct_data *stree = desc->stat_desc->static_tree;
|
---|
493 | const intf *extra = desc->stat_desc->extra_bits;
|
---|
494 | int base = desc->stat_desc->extra_base;
|
---|
495 | int max_length = desc->stat_desc->max_length;
|
---|
496 | int h; /* heap index */
|
---|
497 | int n, m; /* iterate over the tree elements */
|
---|
498 | int bits; /* bit length */
|
---|
499 | int xbits; /* extra bits */
|
---|
500 | ush f; /* frequency */
|
---|
501 | int overflow = 0; /* number of elements with bit length too large */
|
---|
502 |
|
---|
503 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
|
---|
504 |
|
---|
505 | /* In a first pass, compute the optimal bit lengths (which may
|
---|
506 | * overflow in the case of the bit length tree).
|
---|
507 | */
|
---|
508 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
|
---|
509 |
|
---|
510 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
|
---|
511 | n = s->heap[h];
|
---|
512 | bits = tree[tree[n].Dad].Len + 1;
|
---|
513 | if (bits > max_length) bits = max_length, overflow++;
|
---|
514 | tree[n].Len = (ush)bits;
|
---|
515 | /* We overwrite tree[n].Dad which is no longer needed */
|
---|
516 |
|
---|
517 | if (n > max_code) continue; /* not a leaf node */
|
---|
518 |
|
---|
519 | s->bl_count[bits]++;
|
---|
520 | xbits = 0;
|
---|
521 | if (n >= base) xbits = extra[n-base];
|
---|
522 | f = tree[n].Freq;
|
---|
523 | s->opt_len += (ulg)f * (unsigned)(bits + xbits);
|
---|
524 | if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
|
---|
525 | }
|
---|
526 | if (overflow == 0) return;
|
---|
527 |
|
---|
528 | Tracev((stderr,"\nbit length overflow\n"));
|
---|
529 | /* This happens for example on obj2 and pic of the Calgary corpus */
|
---|
530 |
|
---|
531 | /* Find the first bit length which could increase: */
|
---|
532 | do {
|
---|
533 | bits = max_length-1;
|
---|
534 | while (s->bl_count[bits] == 0) bits--;
|
---|
535 | s->bl_count[bits]--; /* move one leaf down the tree */
|
---|
536 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
|
---|
537 | s->bl_count[max_length]--;
|
---|
538 | /* The brother of the overflow item also moves one step up,
|
---|
539 | * but this does not affect bl_count[max_length]
|
---|
540 | */
|
---|
541 | overflow -= 2;
|
---|
542 | } while (overflow > 0);
|
---|
543 |
|
---|
544 | /* Now recompute all bit lengths, scanning in increasing frequency.
|
---|
545 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
---|
546 | * lengths instead of fixing only the wrong ones. This idea is taken
|
---|
547 | * from 'ar' written by Haruhiko Okumura.)
|
---|
548 | */
|
---|
549 | for (bits = max_length; bits != 0; bits--) {
|
---|
550 | n = s->bl_count[bits];
|
---|
551 | while (n != 0) {
|
---|
552 | m = s->heap[--h];
|
---|
553 | if (m > max_code) continue;
|
---|
554 | if ((unsigned) tree[m].Len != (unsigned) bits) {
|
---|
555 | Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
---|
556 | s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
|
---|
557 | tree[m].Len = (ush)bits;
|
---|
558 | }
|
---|
559 | n--;
|
---|
560 | }
|
---|
561 | }
|
---|
562 | }
|
---|
563 |
|
---|
564 | /* ===========================================================================
|
---|
565 | * Generate the codes for a given tree and bit counts (which need not be
|
---|
566 | * optimal).
|
---|
567 | * IN assertion: the array bl_count contains the bit length statistics for
|
---|
568 | * the given tree and the field len is set for all tree elements.
|
---|
569 | * OUT assertion: the field code is set for all tree elements of non
|
---|
570 | * zero code length.
|
---|
571 | */
|
---|
572 | local void gen_codes (tree, max_code, bl_count)
|
---|
573 | ct_data *tree; /* the tree to decorate */
|
---|
574 | int max_code; /* largest code with non zero frequency */
|
---|
575 | ushf *bl_count; /* number of codes at each bit length */
|
---|
576 | {
|
---|
577 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
---|
578 | unsigned code = 0; /* running code value */
|
---|
579 | int bits; /* bit index */
|
---|
580 | int n; /* code index */
|
---|
581 |
|
---|
582 | /* The distribution counts are first used to generate the code values
|
---|
583 | * without bit reversal.
|
---|
584 | */
|
---|
585 | for (bits = 1; bits <= MAX_BITS; bits++) {
|
---|
586 | code = (code + bl_count[bits-1]) << 1;
|
---|
587 | next_code[bits] = (ush)code;
|
---|
588 | }
|
---|
589 | /* Check that the bit counts in bl_count are consistent. The last code
|
---|
590 | * must be all ones.
|
---|
591 | */
|
---|
592 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
---|
593 | "inconsistent bit counts");
|
---|
594 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
---|
595 |
|
---|
596 | for (n = 0; n <= max_code; n++) {
|
---|
597 | int len = tree[n].Len;
|
---|
598 | if (len == 0) continue;
|
---|
599 | /* Now reverse the bits */
|
---|
600 | tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
|
---|
601 |
|
---|
602 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
---|
603 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
---|
604 | }
|
---|
605 | }
|
---|
606 |
|
---|
607 | /* ===========================================================================
|
---|
608 | * Construct one Huffman tree and assigns the code bit strings and lengths.
|
---|
609 | * Update the total bit length for the current block.
|
---|
610 | * IN assertion: the field freq is set for all tree elements.
|
---|
611 | * OUT assertions: the fields len and code are set to the optimal bit length
|
---|
612 | * and corresponding code. The length opt_len is updated; static_len is
|
---|
613 | * also updated if stree is not null. The field max_code is set.
|
---|
614 | */
|
---|
615 | local void build_tree(s, desc)
|
---|
616 | deflate_state *s;
|
---|
617 | tree_desc *desc; /* the tree descriptor */
|
---|
618 | {
|
---|
619 | ct_data *tree = desc->dyn_tree;
|
---|
620 | const ct_data *stree = desc->stat_desc->static_tree;
|
---|
621 | int elems = desc->stat_desc->elems;
|
---|
622 | int n, m; /* iterate over heap elements */
|
---|
623 | int max_code = -1; /* largest code with non zero frequency */
|
---|
624 | int node; /* new node being created */
|
---|
625 |
|
---|
626 | /* Construct the initial heap, with least frequent element in
|
---|
627 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
---|
628 | * heap[0] is not used.
|
---|
629 | */
|
---|
630 | s->heap_len = 0, s->heap_max = HEAP_SIZE;
|
---|
631 |
|
---|
632 | for (n = 0; n < elems; n++) {
|
---|
633 | if (tree[n].Freq != 0) {
|
---|
634 | s->heap[++(s->heap_len)] = max_code = n;
|
---|
635 | s->depth[n] = 0;
|
---|
636 | } else {
|
---|
637 | tree[n].Len = 0;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | /* The pkzip format requires that at least one distance code exists,
|
---|
642 | * and that at least one bit should be sent even if there is only one
|
---|
643 | * possible code. So to avoid special checks later on we force at least
|
---|
644 | * two codes of non zero frequency.
|
---|
645 | */
|
---|
646 | while (s->heap_len < 2) {
|
---|
647 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
|
---|
648 | tree[node].Freq = 1;
|
---|
649 | s->depth[node] = 0;
|
---|
650 | s->opt_len--; if (stree) s->static_len -= stree[node].Len;
|
---|
651 | /* node is 0 or 1 so it does not have extra bits */
|
---|
652 | }
|
---|
653 | desc->max_code = max_code;
|
---|
654 |
|
---|
655 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
---|
656 | * establish sub-heaps of increasing lengths:
|
---|
657 | */
|
---|
658 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
|
---|
659 |
|
---|
660 | /* Construct the Huffman tree by repeatedly combining the least two
|
---|
661 | * frequent nodes.
|
---|
662 | */
|
---|
663 | node = elems; /* next internal node of the tree */
|
---|
664 | do {
|
---|
665 | pqremove(s, tree, n); /* n = node of least frequency */
|
---|
666 | m = s->heap[SMALLEST]; /* m = node of next least frequency */
|
---|
667 |
|
---|
668 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
|
---|
669 | s->heap[--(s->heap_max)] = m;
|
---|
670 |
|
---|
671 | /* Create a new node father of n and m */
|
---|
672 | tree[node].Freq = tree[n].Freq + tree[m].Freq;
|
---|
673 | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
|
---|
674 | s->depth[n] : s->depth[m]) + 1);
|
---|
675 | tree[n].Dad = tree[m].Dad = (ush)node;
|
---|
676 | #ifdef DUMP_BL_TREE
|
---|
677 | if (tree == s->bl_tree) {
|
---|
678 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
|
---|
679 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
|
---|
680 | }
|
---|
681 | #endif
|
---|
682 | /* and insert the new node in the heap */
|
---|
683 | s->heap[SMALLEST] = node++;
|
---|
684 | pqdownheap(s, tree, SMALLEST);
|
---|
685 |
|
---|
686 | } while (s->heap_len >= 2);
|
---|
687 |
|
---|
688 | s->heap[--(s->heap_max)] = s->heap[SMALLEST];
|
---|
689 |
|
---|
690 | /* At this point, the fields freq and dad are set. We can now
|
---|
691 | * generate the bit lengths.
|
---|
692 | */
|
---|
693 | gen_bitlen(s, (tree_desc *)desc);
|
---|
694 |
|
---|
695 | /* The field len is now set, we can generate the bit codes */
|
---|
696 | gen_codes ((ct_data *)tree, max_code, s->bl_count);
|
---|
697 | }
|
---|
698 |
|
---|
699 | /* ===========================================================================
|
---|
700 | * Scan a literal or distance tree to determine the frequencies of the codes
|
---|
701 | * in the bit length tree.
|
---|
702 | */
|
---|
703 | local void scan_tree (s, tree, max_code)
|
---|
704 | deflate_state *s;
|
---|
705 | ct_data *tree; /* the tree to be scanned */
|
---|
706 | int max_code; /* and its largest code of non zero frequency */
|
---|
707 | {
|
---|
708 | int n; /* iterates over all tree elements */
|
---|
709 | int prevlen = -1; /* last emitted length */
|
---|
710 | int curlen; /* length of current code */
|
---|
711 | int nextlen = tree[0].Len; /* length of next code */
|
---|
712 | int count = 0; /* repeat count of the current code */
|
---|
713 | int max_count = 7; /* max repeat count */
|
---|
714 | int min_count = 4; /* min repeat count */
|
---|
715 |
|
---|
716 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
717 | tree[max_code+1].Len = (ush)0xffff; /* guard */
|
---|
718 |
|
---|
719 | for (n = 0; n <= max_code; n++) {
|
---|
720 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
721 | if (++count < max_count && curlen == nextlen) {
|
---|
722 | continue;
|
---|
723 | } else if (count < min_count) {
|
---|
724 | s->bl_tree[curlen].Freq += count;
|
---|
725 | } else if (curlen != 0) {
|
---|
726 | if (curlen != prevlen) s->bl_tree[curlen].Freq++;
|
---|
727 | s->bl_tree[REP_3_6].Freq++;
|
---|
728 | } else if (count <= 10) {
|
---|
729 | s->bl_tree[REPZ_3_10].Freq++;
|
---|
730 | } else {
|
---|
731 | s->bl_tree[REPZ_11_138].Freq++;
|
---|
732 | }
|
---|
733 | count = 0; prevlen = curlen;
|
---|
734 | if (nextlen == 0) {
|
---|
735 | max_count = 138, min_count = 3;
|
---|
736 | } else if (curlen == nextlen) {
|
---|
737 | max_count = 6, min_count = 3;
|
---|
738 | } else {
|
---|
739 | max_count = 7, min_count = 4;
|
---|
740 | }
|
---|
741 | }
|
---|
742 | }
|
---|
743 |
|
---|
744 | /* ===========================================================================
|
---|
745 | * Send a literal or distance tree in compressed form, using the codes in
|
---|
746 | * bl_tree.
|
---|
747 | */
|
---|
748 | local void send_tree (s, tree, max_code)
|
---|
749 | deflate_state *s;
|
---|
750 | ct_data *tree; /* the tree to be scanned */
|
---|
751 | int max_code; /* and its largest code of non zero frequency */
|
---|
752 | {
|
---|
753 | int n; /* iterates over all tree elements */
|
---|
754 | int prevlen = -1; /* last emitted length */
|
---|
755 | int curlen; /* length of current code */
|
---|
756 | int nextlen = tree[0].Len; /* length of next code */
|
---|
757 | int count = 0; /* repeat count of the current code */
|
---|
758 | int max_count = 7; /* max repeat count */
|
---|
759 | int min_count = 4; /* min repeat count */
|
---|
760 |
|
---|
761 | /* tree[max_code+1].Len = -1; */ /* guard already set */
|
---|
762 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
763 |
|
---|
764 | for (n = 0; n <= max_code; n++) {
|
---|
765 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
766 | if (++count < max_count && curlen == nextlen) {
|
---|
767 | continue;
|
---|
768 | } else if (count < min_count) {
|
---|
769 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
|
---|
770 |
|
---|
771 | } else if (curlen != 0) {
|
---|
772 | if (curlen != prevlen) {
|
---|
773 | send_code(s, curlen, s->bl_tree); count--;
|
---|
774 | }
|
---|
775 | Assert(count >= 3 && count <= 6, " 3_6?");
|
---|
776 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
|
---|
777 |
|
---|
778 | } else if (count <= 10) {
|
---|
779 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
|
---|
780 |
|
---|
781 | } else {
|
---|
782 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
|
---|
783 | }
|
---|
784 | count = 0; prevlen = curlen;
|
---|
785 | if (nextlen == 0) {
|
---|
786 | max_count = 138, min_count = 3;
|
---|
787 | } else if (curlen == nextlen) {
|
---|
788 | max_count = 6, min_count = 3;
|
---|
789 | } else {
|
---|
790 | max_count = 7, min_count = 4;
|
---|
791 | }
|
---|
792 | }
|
---|
793 | }
|
---|
794 |
|
---|
795 | /* ===========================================================================
|
---|
796 | * Construct the Huffman tree for the bit lengths and return the index in
|
---|
797 | * bl_order of the last bit length code to send.
|
---|
798 | */
|
---|
799 | local int build_bl_tree(s)
|
---|
800 | deflate_state *s;
|
---|
801 | {
|
---|
802 | int max_blindex; /* index of last bit length code of non zero freq */
|
---|
803 |
|
---|
804 | /* Determine the bit length frequencies for literal and distance trees */
|
---|
805 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
|
---|
806 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
|
---|
807 |
|
---|
808 | /* Build the bit length tree: */
|
---|
809 | build_tree(s, (tree_desc *)(&(s->bl_desc)));
|
---|
810 | /* opt_len now includes the length of the tree representations, except
|
---|
811 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
812 | */
|
---|
813 |
|
---|
814 | /* Determine the number of bit length codes to send. The pkzip format
|
---|
815 | * requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
816 | * 3 but the actual value used is 4.)
|
---|
817 | */
|
---|
818 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
---|
819 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
|
---|
820 | }
|
---|
821 | /* Update opt_len to include the bit length tree and counts */
|
---|
822 | s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
|
---|
823 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
|
---|
824 | s->opt_len, s->static_len));
|
---|
825 |
|
---|
826 | return max_blindex;
|
---|
827 | }
|
---|
828 |
|
---|
829 | /* ===========================================================================
|
---|
830 | * Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
831 | * lengths of the bit length codes, the literal tree and the distance tree.
|
---|
832 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
833 | */
|
---|
834 | local void send_all_trees(s, lcodes, dcodes, blcodes)
|
---|
835 | deflate_state *s;
|
---|
836 | int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
---|
837 | {
|
---|
838 | int rank; /* index in bl_order */
|
---|
839 |
|
---|
840 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
---|
841 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
---|
842 | "too many codes");
|
---|
843 | Tracev((stderr, "\nbl counts: "));
|
---|
844 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
|
---|
845 | send_bits(s, dcodes-1, 5);
|
---|
846 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
|
---|
847 | for (rank = 0; rank < blcodes; rank++) {
|
---|
848 | Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
---|
849 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
|
---|
850 | }
|
---|
851 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
|
---|
852 |
|
---|
853 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
|
---|
854 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
|
---|
855 |
|
---|
856 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
|
---|
857 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
|
---|
858 | }
|
---|
859 |
|
---|
860 | /* ===========================================================================
|
---|
861 | * Send a stored block
|
---|
862 | */
|
---|
863 | void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
|
---|
864 | deflate_state *s;
|
---|
865 | charf *buf; /* input block */
|
---|
866 | ulg stored_len; /* length of input block */
|
---|
867 | int last; /* one if this is the last block for a file */
|
---|
868 | {
|
---|
869 | send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
|
---|
870 | bi_windup(s); /* align on byte boundary */
|
---|
871 | put_short(s, (ush)stored_len);
|
---|
872 | put_short(s, (ush)~stored_len);
|
---|
873 | zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
|
---|
874 | s->pending += stored_len;
|
---|
875 | #ifdef ZLIB_DEBUG
|
---|
876 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
|
---|
877 | s->compressed_len += (stored_len + 4) << 3;
|
---|
878 | s->bits_sent += 2*16;
|
---|
879 | s->bits_sent += stored_len<<3;
|
---|
880 | #endif
|
---|
881 | }
|
---|
882 |
|
---|
883 | /* ===========================================================================
|
---|
884 | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
|
---|
885 | */
|
---|
886 | void ZLIB_INTERNAL _tr_flush_bits(s)
|
---|
887 | deflate_state *s;
|
---|
888 | {
|
---|
889 | bi_flush(s);
|
---|
890 | }
|
---|
891 |
|
---|
892 | /* ===========================================================================
|
---|
893 | * Send one empty static block to give enough lookahead for inflate.
|
---|
894 | * This takes 10 bits, of which 7 may remain in the bit buffer.
|
---|
895 | */
|
---|
896 | void ZLIB_INTERNAL _tr_align(s)
|
---|
897 | deflate_state *s;
|
---|
898 | {
|
---|
899 | send_bits(s, STATIC_TREES<<1, 3);
|
---|
900 | send_code(s, END_BLOCK, static_ltree);
|
---|
901 | #ifdef ZLIB_DEBUG
|
---|
902 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
|
---|
903 | #endif
|
---|
904 | bi_flush(s);
|
---|
905 | }
|
---|
906 |
|
---|
907 | /* ===========================================================================
|
---|
908 | * Determine the best encoding for the current block: dynamic trees, static
|
---|
909 | * trees or store, and write out the encoded block.
|
---|
910 | */
|
---|
911 | void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
|
---|
912 | deflate_state *s;
|
---|
913 | charf *buf; /* input block, or NULL if too old */
|
---|
914 | ulg stored_len; /* length of input block */
|
---|
915 | int last; /* one if this is the last block for a file */
|
---|
916 | {
|
---|
917 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
---|
918 | int max_blindex = 0; /* index of last bit length code of non zero freq */
|
---|
919 |
|
---|
920 | /* Build the Huffman trees unless a stored block is forced */
|
---|
921 | if (s->level > 0) {
|
---|
922 |
|
---|
923 | /* Check if the file is binary or text */
|
---|
924 | if (s->strm->data_type == Z_UNKNOWN)
|
---|
925 | s->strm->data_type = detect_data_type(s);
|
---|
926 |
|
---|
927 | /* Construct the literal and distance trees */
|
---|
928 | build_tree(s, (tree_desc *)(&(s->l_desc)));
|
---|
929 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
|
---|
930 | s->static_len));
|
---|
931 |
|
---|
932 | build_tree(s, (tree_desc *)(&(s->d_desc)));
|
---|
933 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
|
---|
934 | s->static_len));
|
---|
935 | /* At this point, opt_len and static_len are the total bit lengths of
|
---|
936 | * the compressed block data, excluding the tree representations.
|
---|
937 | */
|
---|
938 |
|
---|
939 | /* Build the bit length tree for the above two trees, and get the index
|
---|
940 | * in bl_order of the last bit length code to send.
|
---|
941 | */
|
---|
942 | max_blindex = build_bl_tree(s);
|
---|
943 |
|
---|
944 | /* Determine the best encoding. Compute the block lengths in bytes. */
|
---|
945 | opt_lenb = (s->opt_len+3+7)>>3;
|
---|
946 | static_lenb = (s->static_len+3+7)>>3;
|
---|
947 |
|
---|
948 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
|
---|
949 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
|
---|
950 | s->last_lit));
|
---|
951 |
|
---|
952 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
|
---|
953 |
|
---|
954 | } else {
|
---|
955 | Assert(buf != (char*)0, "lost buf");
|
---|
956 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
|
---|
957 | }
|
---|
958 |
|
---|
959 | #ifdef FORCE_STORED
|
---|
960 | if (buf != (char*)0) { /* force stored block */
|
---|
961 | #else
|
---|
962 | if (stored_len+4 <= opt_lenb && buf != (char*)0) {
|
---|
963 | /* 4: two words for the lengths */
|
---|
964 | #endif
|
---|
965 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
966 | * Otherwise we can't have processed more than WSIZE input bytes since
|
---|
967 | * the last block flush, because compression would have been
|
---|
968 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
969 | * transform a block into a stored block.
|
---|
970 | */
|
---|
971 | _tr_stored_block(s, buf, stored_len, last);
|
---|
972 |
|
---|
973 | #ifdef FORCE_STATIC
|
---|
974 | } else if (static_lenb >= 0) { /* force static trees */
|
---|
975 | #else
|
---|
976 | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
|
---|
977 | #endif
|
---|
978 | send_bits(s, (STATIC_TREES<<1)+last, 3);
|
---|
979 | compress_block(s, (const ct_data *)static_ltree,
|
---|
980 | (const ct_data *)static_dtree);
|
---|
981 | #ifdef ZLIB_DEBUG
|
---|
982 | s->compressed_len += 3 + s->static_len;
|
---|
983 | #endif
|
---|
984 | } else {
|
---|
985 | send_bits(s, (DYN_TREES<<1)+last, 3);
|
---|
986 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
|
---|
987 | max_blindex+1);
|
---|
988 | compress_block(s, (const ct_data *)s->dyn_ltree,
|
---|
989 | (const ct_data *)s->dyn_dtree);
|
---|
990 | #ifdef ZLIB_DEBUG
|
---|
991 | s->compressed_len += 3 + s->opt_len;
|
---|
992 | #endif
|
---|
993 | }
|
---|
994 | Assert (s->compressed_len == s->bits_sent, "bad compressed size");
|
---|
995 | /* The above check is made mod 2^32, for files larger than 512 MB
|
---|
996 | * and uLong implemented on 32 bits.
|
---|
997 | */
|
---|
998 | init_block(s);
|
---|
999 |
|
---|
1000 | if (last) {
|
---|
1001 | bi_windup(s);
|
---|
1002 | #ifdef ZLIB_DEBUG
|
---|
1003 | s->compressed_len += 7; /* align on byte boundary */
|
---|
1004 | #endif
|
---|
1005 | }
|
---|
1006 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
|
---|
1007 | s->compressed_len-7*last));
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | /* ===========================================================================
|
---|
1011 | * Save the match info and tally the frequency counts. Return true if
|
---|
1012 | * the current block must be flushed.
|
---|
1013 | */
|
---|
1014 | int ZLIB_INTERNAL _tr_tally (s, dist, lc)
|
---|
1015 | deflate_state *s;
|
---|
1016 | unsigned dist; /* distance of matched string */
|
---|
1017 | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
---|
1018 | {
|
---|
1019 | s->d_buf[s->last_lit] = (ush)dist;
|
---|
1020 | s->l_buf[s->last_lit++] = (uch)lc;
|
---|
1021 | if (dist == 0) {
|
---|
1022 | /* lc is the unmatched char */
|
---|
1023 | s->dyn_ltree[lc].Freq++;
|
---|
1024 | } else {
|
---|
1025 | s->matches++;
|
---|
1026 | /* Here, lc is the match length - MIN_MATCH */
|
---|
1027 | dist--; /* dist = match distance - 1 */
|
---|
1028 | Assert((ush)dist < (ush)MAX_DIST(s) &&
|
---|
1029 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
---|
1030 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
|
---|
1031 |
|
---|
1032 | s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
|
---|
1033 | s->dyn_dtree[d_code(dist)].Freq++;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | #ifdef TRUNCATE_BLOCK
|
---|
1037 | /* Try to guess if it is profitable to stop the current block here */
|
---|
1038 | if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
|
---|
1039 | /* Compute an upper bound for the compressed length */
|
---|
1040 | ulg out_length = (ulg)s->last_lit*8L;
|
---|
1041 | ulg in_length = (ulg)((long)s->strstart - s->block_start);
|
---|
1042 | int dcode;
|
---|
1043 | for (dcode = 0; dcode < D_CODES; dcode++) {
|
---|
1044 | out_length += (ulg)s->dyn_dtree[dcode].Freq *
|
---|
1045 | (5L+extra_dbits[dcode]);
|
---|
1046 | }
|
---|
1047 | out_length >>= 3;
|
---|
1048 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
|
---|
1049 | s->last_lit, in_length, out_length,
|
---|
1050 | 100L - out_length*100L/in_length));
|
---|
1051 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
|
---|
1052 | }
|
---|
1053 | #endif
|
---|
1054 | return (s->last_lit == s->lit_bufsize-1);
|
---|
1055 | /* We avoid equality with lit_bufsize because of wraparound at 64K
|
---|
1056 | * on 16 bit machines and because stored blocks are restricted to
|
---|
1057 | * 64K-1 bytes.
|
---|
1058 | */
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | /* ===========================================================================
|
---|
1062 | * Send the block data compressed using the given Huffman trees
|
---|
1063 | */
|
---|
1064 | local void compress_block(s, ltree, dtree)
|
---|
1065 | deflate_state *s;
|
---|
1066 | const ct_data *ltree; /* literal tree */
|
---|
1067 | const ct_data *dtree; /* distance tree */
|
---|
1068 | {
|
---|
1069 | unsigned dist; /* distance of matched string */
|
---|
1070 | int lc; /* match length or unmatched char (if dist == 0) */
|
---|
1071 | unsigned lx = 0; /* running index in l_buf */
|
---|
1072 | unsigned code; /* the code to send */
|
---|
1073 | int extra; /* number of extra bits to send */
|
---|
1074 |
|
---|
1075 | if (s->last_lit != 0) do {
|
---|
1076 | dist = s->d_buf[lx];
|
---|
1077 | lc = s->l_buf[lx++];
|
---|
1078 | if (dist == 0) {
|
---|
1079 | send_code(s, lc, ltree); /* send a literal byte */
|
---|
1080 | Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
---|
1081 | } else {
|
---|
1082 | /* Here, lc is the match length - MIN_MATCH */
|
---|
1083 | code = _length_code[lc];
|
---|
1084 | send_code(s, code+LITERALS+1, ltree); /* send the length code */
|
---|
1085 | extra = extra_lbits[code];
|
---|
1086 | if (extra != 0) {
|
---|
1087 | lc -= base_length[code];
|
---|
1088 | send_bits(s, lc, extra); /* send the extra length bits */
|
---|
1089 | }
|
---|
1090 | dist--; /* dist is now the match distance - 1 */
|
---|
1091 | code = d_code(dist);
|
---|
1092 | Assert (code < D_CODES, "bad d_code");
|
---|
1093 |
|
---|
1094 | send_code(s, code, dtree); /* send the distance code */
|
---|
1095 | extra = extra_dbits[code];
|
---|
1096 | if (extra != 0) {
|
---|
1097 | dist -= (unsigned)base_dist[code];
|
---|
1098 | send_bits(s, dist, extra); /* send the extra distance bits */
|
---|
1099 | }
|
---|
1100 | } /* literal or match pair ? */
|
---|
1101 |
|
---|
1102 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
|
---|
1103 | Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
|
---|
1104 | "pendingBuf overflow");
|
---|
1105 |
|
---|
1106 | } while (lx < s->last_lit);
|
---|
1107 |
|
---|
1108 | send_code(s, END_BLOCK, ltree);
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 | /* ===========================================================================
|
---|
1112 | * Check if the data type is TEXT or BINARY, using the following algorithm:
|
---|
1113 | * - TEXT if the two conditions below are satisfied:
|
---|
1114 | * a) There are no non-portable control characters belonging to the
|
---|
1115 | * "black list" (0..6, 14..25, 28..31).
|
---|
1116 | * b) There is at least one printable character belonging to the
|
---|
1117 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
---|
1118 | * - BINARY otherwise.
|
---|
1119 | * - The following partially-portable control characters form a
|
---|
1120 | * "gray list" that is ignored in this detection algorithm:
|
---|
1121 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
---|
1122 | * IN assertion: the fields Freq of dyn_ltree are set.
|
---|
1123 | */
|
---|
1124 | local int detect_data_type(s)
|
---|
1125 | deflate_state *s;
|
---|
1126 | {
|
---|
1127 | /* black_mask is the bit mask of black-listed bytes
|
---|
1128 | * set bits 0..6, 14..25, and 28..31
|
---|
1129 | * 0xf3ffc07f = binary 11110011111111111100000001111111
|
---|
1130 | */
|
---|
1131 | unsigned long black_mask = 0xf3ffc07fUL;
|
---|
1132 | int n;
|
---|
1133 |
|
---|
1134 | /* Check for non-textual ("black-listed") bytes. */
|
---|
1135 | for (n = 0; n <= 31; n++, black_mask >>= 1)
|
---|
1136 | if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
|
---|
1137 | return Z_BINARY;
|
---|
1138 |
|
---|
1139 | /* Check for textual ("white-listed") bytes. */
|
---|
1140 | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|
---|
1141 | || s->dyn_ltree[13].Freq != 0)
|
---|
1142 | return Z_TEXT;
|
---|
1143 | for (n = 32; n < LITERALS; n++)
|
---|
1144 | if (s->dyn_ltree[n].Freq != 0)
|
---|
1145 | return Z_TEXT;
|
---|
1146 |
|
---|
1147 | /* There are no "black-listed" or "white-listed" bytes:
|
---|
1148 | * this stream either is empty or has tolerated ("gray-listed") bytes only.
|
---|
1149 | */
|
---|
1150 | return Z_BINARY;
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 | /* ===========================================================================
|
---|
1154 | * Reverse the first len bits of a code, using straightforward code (a faster
|
---|
1155 | * method would use a table)
|
---|
1156 | * IN assertion: 1 <= len <= 15
|
---|
1157 | */
|
---|
1158 | local unsigned bi_reverse(code, len)
|
---|
1159 | unsigned code; /* the value to invert */
|
---|
1160 | int len; /* its bit length */
|
---|
1161 | {
|
---|
1162 | register unsigned res = 0;
|
---|
1163 | do {
|
---|
1164 | res |= code & 1;
|
---|
1165 | code >>= 1, res <<= 1;
|
---|
1166 | } while (--len > 0);
|
---|
1167 | return res >> 1;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | /* ===========================================================================
|
---|
1171 | * Flush the bit buffer, keeping at most 7 bits in it.
|
---|
1172 | */
|
---|
1173 | local void bi_flush(s)
|
---|
1174 | deflate_state *s;
|
---|
1175 | {
|
---|
1176 | if (s->bi_valid == 16) {
|
---|
1177 | put_short(s, s->bi_buf);
|
---|
1178 | s->bi_buf = 0;
|
---|
1179 | s->bi_valid = 0;
|
---|
1180 | } else if (s->bi_valid >= 8) {
|
---|
1181 | put_byte(s, (Byte)s->bi_buf);
|
---|
1182 | s->bi_buf >>= 8;
|
---|
1183 | s->bi_valid -= 8;
|
---|
1184 | }
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | /* ===========================================================================
|
---|
1188 | * Flush the bit buffer and align the output on a byte boundary
|
---|
1189 | */
|
---|
1190 | local void bi_windup(s)
|
---|
1191 | deflate_state *s;
|
---|
1192 | {
|
---|
1193 | if (s->bi_valid > 8) {
|
---|
1194 | put_short(s, s->bi_buf);
|
---|
1195 | } else if (s->bi_valid > 0) {
|
---|
1196 | put_byte(s, (Byte)s->bi_buf);
|
---|
1197 | }
|
---|
1198 | s->bi_buf = 0;
|
---|
1199 | s->bi_valid = 0;
|
---|
1200 | #ifdef ZLIB_DEBUG
|
---|
1201 | s->bits_sent = (s->bits_sent+7) & ~7;
|
---|
1202 | #endif
|
---|
1203 | }
|
---|