1 | /* ix87 specific implementation of pow function.
|
---|
2 | Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005
|
---|
3 | Free Software Foundation, Inc.
|
---|
4 | This file is part of the GNU C Library.
|
---|
5 | Contributed by Ulrich Drepper <[email protected]>, 1996.
|
---|
6 |
|
---|
7 | The GNU C Library is free software; you can redistribute it and/or
|
---|
8 | modify it under the terms of the GNU Lesser General Public
|
---|
9 | License as published by the Free Software Foundation; either
|
---|
10 | version 2.1 of the License, or (at your option) any later version.
|
---|
11 |
|
---|
12 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | Lesser General Public License for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU Lesser General Public
|
---|
18 | License along with the GNU C Library; if not, write to the Free
|
---|
19 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
20 | 02111-1307 USA. */
|
---|
21 |
|
---|
22 | /*#include <machine/asm.h>*/
|
---|
23 | #include <iprt/cdefs.h>
|
---|
24 |
|
---|
25 | #ifdef __MINGW32__
|
---|
26 | # define ASM_TYPE_DIRECTIVE(name,typearg)
|
---|
27 | # define ASM_SIZE_DIRECTIVE(name)
|
---|
28 | # define cfi_adjust_cfa_offset(a)
|
---|
29 | # define C_LABEL(name) _ ## name:
|
---|
30 | # define C_SYMBOL_NAME(name) _ ## name
|
---|
31 | # define ASM_GLOBAL_DIRECTIVE .global
|
---|
32 | # define ALIGNARG(log2) 1<<log2
|
---|
33 | #elif __APPLE__
|
---|
34 | # define ASM_TYPE_DIRECTIVE(name,typearg)
|
---|
35 | # define ASM_SIZE_DIRECTIVE(name)
|
---|
36 | # define cfi_adjust_cfa_offset(a)
|
---|
37 | # define C_LABEL(name) _ ## name:
|
---|
38 | # define C_SYMBOL_NAME(name) _ ## name
|
---|
39 | # define ASM_GLOBAL_DIRECTIVE .globl
|
---|
40 | # define ALIGNARG(log2) log2
|
---|
41 | #else
|
---|
42 | # define ASM_TYPE_DIRECTIVE(name,typearg) .type name,typearg;
|
---|
43 | # define ASM_SIZE_DIRECTIVE(name) .size name,.-name;
|
---|
44 | # define C_LABEL(name) name:
|
---|
45 | # define C_SYMBOL_NAME(name) name
|
---|
46 | # /* figure this one out. */
|
---|
47 | # define cfi_adjust_cfa_offset(a)
|
---|
48 | # define ASM_GLOBAL_DIRECTIVE .global
|
---|
49 | # define ALIGNARG(log2) 1<<log2
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | #define ENTRY(name) \
|
---|
53 | ASM_GLOBAL_DIRECTIVE C_SYMBOL_NAME(name); \
|
---|
54 | ASM_TYPE_DIRECTIVE (C_SYMBOL_NAME(name),@function) \
|
---|
55 | .align ALIGNARG(4); \
|
---|
56 | C_LABEL(name)
|
---|
57 |
|
---|
58 | #undef END
|
---|
59 | #define END(name) \
|
---|
60 | ASM_SIZE_DIRECTIVE(name)
|
---|
61 |
|
---|
62 | #ifdef __ELF__
|
---|
63 | .section .rodata
|
---|
64 | #else
|
---|
65 | .text
|
---|
66 | #endif
|
---|
67 |
|
---|
68 | .align ALIGNARG(4)
|
---|
69 | ASM_TYPE_DIRECTIVE(infinity,@object)
|
---|
70 | inf_zero:
|
---|
71 | infinity:
|
---|
72 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
---|
73 | ASM_SIZE_DIRECTIVE(infinity)
|
---|
74 | ASM_TYPE_DIRECTIVE(zero,@object)
|
---|
75 | zero: .double 0.0
|
---|
76 | ASM_SIZE_DIRECTIVE(zero)
|
---|
77 | ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
---|
78 | minf_mzero:
|
---|
79 | minfinity:
|
---|
80 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
---|
81 | mzero:
|
---|
82 | .byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
---|
83 | ASM_SIZE_DIRECTIVE(minf_mzero)
|
---|
84 | ASM_TYPE_DIRECTIVE(one,@object)
|
---|
85 | one: .double 1.0
|
---|
86 | ASM_SIZE_DIRECTIVE(one)
|
---|
87 | ASM_TYPE_DIRECTIVE(limit,@object)
|
---|
88 | limit: .double 0.29
|
---|
89 | ASM_SIZE_DIRECTIVE(limit)
|
---|
90 | ASM_TYPE_DIRECTIVE(p63,@object)
|
---|
91 | p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
|
---|
92 | ASM_SIZE_DIRECTIVE(p63)
|
---|
93 |
|
---|
94 | #ifdef PIC
|
---|
95 | #define MO(op) op##@GOTOFF(%ecx)
|
---|
96 | #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
---|
97 | #else
|
---|
98 | #define MO(op) op
|
---|
99 | #define MOX(op,x,f) op(,x,f)
|
---|
100 | #endif
|
---|
101 |
|
---|
102 | .text
|
---|
103 | //ENTRY(__ieee754_powl)
|
---|
104 | ENTRY(RT_NOCRT(powl))
|
---|
105 | #ifdef __DARWIN__ /* 16-byte long double with 8 byte alignment requirements */
|
---|
106 | fldt 20(%esp) // y
|
---|
107 | #else
|
---|
108 | fldt 16(%esp) // y
|
---|
109 | #endif
|
---|
110 | fxam
|
---|
111 |
|
---|
112 | #ifdef PIC
|
---|
113 | LOAD_PIC_REG (cx)
|
---|
114 | #endif
|
---|
115 |
|
---|
116 | fnstsw
|
---|
117 | movb %ah, %dl
|
---|
118 | andb $0x45, %ah
|
---|
119 | cmpb $0x40, %ah // is y == 0 ?
|
---|
120 | je .L11
|
---|
121 |
|
---|
122 | cmpb $0x05, %ah // is y == ±inf ?
|
---|
123 | je .L12
|
---|
124 |
|
---|
125 | cmpb $0x01, %ah // is y == NaN ?
|
---|
126 | je .L30
|
---|
127 |
|
---|
128 | fldt 4(%esp) // x : y
|
---|
129 |
|
---|
130 | subl $8,%esp
|
---|
131 | cfi_adjust_cfa_offset (8)
|
---|
132 |
|
---|
133 | fxam
|
---|
134 | fnstsw
|
---|
135 | movb %ah, %dh
|
---|
136 | andb $0x45, %ah
|
---|
137 | cmpb $0x40, %ah
|
---|
138 | je .L20 // x is ±0
|
---|
139 |
|
---|
140 | cmpb $0x05, %ah
|
---|
141 | je .L15 // x is ±inf
|
---|
142 |
|
---|
143 | fxch // y : x
|
---|
144 |
|
---|
145 | /* fistpll raises invalid exception for |y| >= 1L<<63. */
|
---|
146 | fld %st // y : y : x
|
---|
147 | fabs // |y| : y : x
|
---|
148 | fcompl MO(p63) // y : x
|
---|
149 | fnstsw
|
---|
150 | sahf
|
---|
151 | jnc .L2
|
---|
152 |
|
---|
153 | /* First see whether `y' is a natural number. In this case we
|
---|
154 | can use a more precise algorithm. */
|
---|
155 | fld %st // y : y : x
|
---|
156 | fistpll (%esp) // y : x
|
---|
157 | fildll (%esp) // int(y) : y : x
|
---|
158 | fucomp %st(1) // y : x
|
---|
159 | fnstsw
|
---|
160 | sahf
|
---|
161 | jne .L2
|
---|
162 |
|
---|
163 | /* OK, we have an integer value for y. */
|
---|
164 | popl %eax
|
---|
165 | cfi_adjust_cfa_offset (-4)
|
---|
166 | popl %edx
|
---|
167 | cfi_adjust_cfa_offset (-4)
|
---|
168 | orl $0, %edx
|
---|
169 | fstp %st(0) // x
|
---|
170 | jns .L4 // y >= 0, jump
|
---|
171 | fdivrl MO(one) // 1/x (now referred to as x)
|
---|
172 | negl %eax
|
---|
173 | adcl $0, %edx
|
---|
174 | negl %edx
|
---|
175 | .L4: fldl MO(one) // 1 : x
|
---|
176 | fxch
|
---|
177 |
|
---|
178 | .L6: shrdl $1, %edx, %eax
|
---|
179 | jnc .L5
|
---|
180 | fxch
|
---|
181 | fmul %st(1) // x : ST*x
|
---|
182 | fxch
|
---|
183 | .L5: fmul %st(0), %st // x*x : ST*x
|
---|
184 | shrl $1, %edx
|
---|
185 | movl %eax, %ecx
|
---|
186 | orl %edx, %ecx
|
---|
187 | jnz .L6
|
---|
188 | fstp %st(0) // ST*x
|
---|
189 | ret
|
---|
190 |
|
---|
191 | /* y is ±NAN */
|
---|
192 | .L30: fldt 4(%esp) // x : y
|
---|
193 | fldl MO(one) // 1.0 : x : y
|
---|
194 | fucomp %st(1) // x : y
|
---|
195 | fnstsw
|
---|
196 | sahf
|
---|
197 | je .L31
|
---|
198 | fxch // y : x
|
---|
199 | .L31: fstp %st(1)
|
---|
200 | ret
|
---|
201 |
|
---|
202 | cfi_adjust_cfa_offset (8)
|
---|
203 | .align ALIGNARG(4)
|
---|
204 | .L2: /* y is a real number. */
|
---|
205 | fxch // x : y
|
---|
206 | fldl MO(one) // 1.0 : x : y
|
---|
207 | fld %st(1) // x : 1.0 : x : y
|
---|
208 | fsub %st(1) // x-1 : 1.0 : x : y
|
---|
209 | fabs // |x-1| : 1.0 : x : y
|
---|
210 | fcompl MO(limit) // 1.0 : x : y
|
---|
211 | fnstsw
|
---|
212 | fxch // x : 1.0 : y
|
---|
213 | sahf
|
---|
214 | ja .L7
|
---|
215 | fsub %st(1) // x-1 : 1.0 : y
|
---|
216 | fyl2xp1 // log2(x) : y
|
---|
217 | jmp .L8
|
---|
218 |
|
---|
219 | .L7: fyl2x // log2(x) : y
|
---|
220 | .L8: fmul %st(1) // y*log2(x) : y
|
---|
221 | fxam
|
---|
222 | fnstsw
|
---|
223 | andb $0x45, %ah
|
---|
224 | cmpb $0x05, %ah // is y*log2(x) == ±inf ?
|
---|
225 | je .L28
|
---|
226 | fst %st(1) // y*log2(x) : y*log2(x)
|
---|
227 | frndint // int(y*log2(x)) : y*log2(x)
|
---|
228 | fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
|
---|
229 | fxch // fract(y*log2(x)) : int(y*log2(x))
|
---|
230 | f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
---|
231 | faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
---|
232 | fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
---|
233 | addl $8, %esp
|
---|
234 | cfi_adjust_cfa_offset (-8)
|
---|
235 | fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
---|
236 | ret
|
---|
237 |
|
---|
238 | cfi_adjust_cfa_offset (8)
|
---|
239 | .L28: fstp %st(1) // y*log2(x)
|
---|
240 | fldl MO(one) // 1 : y*log2(x)
|
---|
241 | fscale // 2^(y*log2(x)) : y*log2(x)
|
---|
242 | addl $8, %esp
|
---|
243 | cfi_adjust_cfa_offset (-8)
|
---|
244 | fstp %st(1) // 2^(y*log2(x))
|
---|
245 | ret
|
---|
246 |
|
---|
247 | // pow(x,±0) = 1
|
---|
248 | .align ALIGNARG(4)
|
---|
249 | .L11: fstp %st(0) // pop y
|
---|
250 | fldl MO(one)
|
---|
251 | ret
|
---|
252 |
|
---|
253 | // y == ±inf
|
---|
254 | .align ALIGNARG(4)
|
---|
255 | .L12: fstp %st(0) // pop y
|
---|
256 | fldt 4(%esp) // x
|
---|
257 | fabs
|
---|
258 | fcompl MO(one) // < 1, == 1, or > 1
|
---|
259 | fnstsw
|
---|
260 | andb $0x45, %ah
|
---|
261 | cmpb $0x45, %ah
|
---|
262 | je .L13 // jump if x is NaN
|
---|
263 |
|
---|
264 | cmpb $0x40, %ah
|
---|
265 | je .L14 // jump if |x| == 1
|
---|
266 |
|
---|
267 | shlb $1, %ah
|
---|
268 | xorb %ah, %dl
|
---|
269 | andl $2, %edx
|
---|
270 | fldl MOX(inf_zero, %edx, 4)
|
---|
271 | ret
|
---|
272 |
|
---|
273 | .align ALIGNARG(4)
|
---|
274 | .L14: fldl MO(one)
|
---|
275 | ret
|
---|
276 |
|
---|
277 | .align ALIGNARG(4)
|
---|
278 | .L13: fldt 4(%esp) // load x == NaN
|
---|
279 | ret
|
---|
280 |
|
---|
281 | cfi_adjust_cfa_offset (8)
|
---|
282 | .align ALIGNARG(4)
|
---|
283 | // x is ±inf
|
---|
284 | .L15: fstp %st(0) // y
|
---|
285 | testb $2, %dh
|
---|
286 | jz .L16 // jump if x == +inf
|
---|
287 |
|
---|
288 | // We must find out whether y is an odd integer.
|
---|
289 | fld %st // y : y
|
---|
290 | fistpll (%esp) // y
|
---|
291 | fildll (%esp) // int(y) : y
|
---|
292 | fucompp // <empty>
|
---|
293 | fnstsw
|
---|
294 | sahf
|
---|
295 | jne .L17
|
---|
296 |
|
---|
297 | // OK, the value is an integer, but is it odd?
|
---|
298 | popl %eax
|
---|
299 | cfi_adjust_cfa_offset (-4)
|
---|
300 | popl %edx
|
---|
301 | cfi_adjust_cfa_offset (-4)
|
---|
302 | andb $1, %al
|
---|
303 | jz .L18 // jump if not odd
|
---|
304 | // It's an odd integer.
|
---|
305 | shrl $31, %edx
|
---|
306 | fldl MOX(minf_mzero, %edx, 8)
|
---|
307 | ret
|
---|
308 |
|
---|
309 | cfi_adjust_cfa_offset (8)
|
---|
310 | .align ALIGNARG(4)
|
---|
311 | .L16: fcompl MO(zero)
|
---|
312 | addl $8, %esp
|
---|
313 | cfi_adjust_cfa_offset (-8)
|
---|
314 | fnstsw
|
---|
315 | shrl $5, %eax
|
---|
316 | andl $8, %eax
|
---|
317 | fldl MOX(inf_zero, %eax, 1)
|
---|
318 | ret
|
---|
319 |
|
---|
320 | cfi_adjust_cfa_offset (8)
|
---|
321 | .align ALIGNARG(4)
|
---|
322 | .L17: shll $30, %edx // sign bit for y in right position
|
---|
323 | addl $8, %esp
|
---|
324 | cfi_adjust_cfa_offset (-8)
|
---|
325 | .L18: shrl $31, %edx
|
---|
326 | fldl MOX(inf_zero, %edx, 8)
|
---|
327 | ret
|
---|
328 |
|
---|
329 | cfi_adjust_cfa_offset (8)
|
---|
330 | .align ALIGNARG(4)
|
---|
331 | // x is ±0
|
---|
332 | .L20: fstp %st(0) // y
|
---|
333 | testb $2, %dl
|
---|
334 | jz .L21 // y > 0
|
---|
335 |
|
---|
336 | // x is ±0 and y is < 0. We must find out whether y is an odd integer.
|
---|
337 | testb $2, %dh
|
---|
338 | jz .L25
|
---|
339 |
|
---|
340 | fld %st // y : y
|
---|
341 | fistpll (%esp) // y
|
---|
342 | fildll (%esp) // int(y) : y
|
---|
343 | fucompp // <empty>
|
---|
344 | fnstsw
|
---|
345 | sahf
|
---|
346 | jne .L26
|
---|
347 |
|
---|
348 | // OK, the value is an integer, but is it odd?
|
---|
349 | popl %eax
|
---|
350 | cfi_adjust_cfa_offset (-4)
|
---|
351 | popl %edx
|
---|
352 | cfi_adjust_cfa_offset (-4)
|
---|
353 | andb $1, %al
|
---|
354 | jz .L27 // jump if not odd
|
---|
355 | // It's an odd integer.
|
---|
356 | // Raise divide-by-zero exception and get minus infinity value.
|
---|
357 | fldl MO(one)
|
---|
358 | fdivl MO(zero)
|
---|
359 | fchs
|
---|
360 | ret
|
---|
361 |
|
---|
362 | cfi_adjust_cfa_offset (8)
|
---|
363 | .L25: fstp %st(0)
|
---|
364 | .L26: addl $8, %esp
|
---|
365 | cfi_adjust_cfa_offset (-8)
|
---|
366 | .L27: // Raise divide-by-zero exception and get infinity value.
|
---|
367 | fldl MO(one)
|
---|
368 | fdivl MO(zero)
|
---|
369 | ret
|
---|
370 |
|
---|
371 | cfi_adjust_cfa_offset (8)
|
---|
372 | .align ALIGNARG(4)
|
---|
373 | // x is ±0 and y is > 0. We must find out whether y is an odd integer.
|
---|
374 | .L21: testb $2, %dh
|
---|
375 | jz .L22
|
---|
376 |
|
---|
377 | fld %st // y : y
|
---|
378 | fistpll (%esp) // y
|
---|
379 | fildll (%esp) // int(y) : y
|
---|
380 | fucompp // <empty>
|
---|
381 | fnstsw
|
---|
382 | sahf
|
---|
383 | jne .L23
|
---|
384 |
|
---|
385 | // OK, the value is an integer, but is it odd?
|
---|
386 | popl %eax
|
---|
387 | cfi_adjust_cfa_offset (-4)
|
---|
388 | popl %edx
|
---|
389 | cfi_adjust_cfa_offset (-4)
|
---|
390 | andb $1, %al
|
---|
391 | jz .L24 // jump if not odd
|
---|
392 | // It's an odd integer.
|
---|
393 | fldl MO(mzero)
|
---|
394 | ret
|
---|
395 |
|
---|
396 | cfi_adjust_cfa_offset (8)
|
---|
397 | .L22: fstp %st(0)
|
---|
398 | .L23: addl $8, %esp // Don't use 2 x pop
|
---|
399 | cfi_adjust_cfa_offset (-8)
|
---|
400 | .L24: fldl MO(zero)
|
---|
401 | ret
|
---|
402 |
|
---|
403 | END(RT_NOCRT(powl))
|
---|
404 | //END(__ieee754_powl)
|
---|