VirtualBox

source: vbox/trunk/src/recompiler/cpu-all.h@ 11982

最後變更 在這個檔案從11982是 11982,由 vboxsync 提交於 16 年 前

All: license header changes for 2.0 (OSE headers, add Sun GPL/LGPL disclaimer)

  • 屬性 svn:eol-style 設為 native
檔案大小: 30.4 KB
 
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/*
22 * Sun LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
23 * other than GPL or LGPL is available it will apply instead, Sun elects to use only
24 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
25 * a choice of LGPL license versions is made available with the language indicating
26 * that LGPLv2 or any later version may be used, or where a choice of which version
27 * of the LGPL is applied is otherwise unspecified.
28 */
29#ifndef CPU_ALL_H
30#define CPU_ALL_H
31
32#ifdef VBOX
33# ifndef LOG_GROUP
34# include <VBox/log.h>
35# define LOG_GROUP LOG_GROUP_REM
36# endif
37# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
38#endif
39
40#if defined(__arm__) || defined(__sparc__)
41#define WORDS_ALIGNED
42#endif
43
44/* some important defines:
45 *
46 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
47 * memory accesses.
48 *
49 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
50 * otherwise little endian.
51 *
52 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
53 *
54 * TARGET_WORDS_BIGENDIAN : same for target cpu
55 */
56
57#include "bswap.h"
58
59#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
60#define BSWAP_NEEDED
61#endif
62
63#ifdef BSWAP_NEEDED
64
65static inline uint16_t tswap16(uint16_t s)
66{
67 return bswap16(s);
68}
69
70static inline uint32_t tswap32(uint32_t s)
71{
72 return bswap32(s);
73}
74
75static inline uint64_t tswap64(uint64_t s)
76{
77 return bswap64(s);
78}
79
80static inline void tswap16s(uint16_t *s)
81{
82 *s = bswap16(*s);
83}
84
85static inline void tswap32s(uint32_t *s)
86{
87 *s = bswap32(*s);
88}
89
90static inline void tswap64s(uint64_t *s)
91{
92 *s = bswap64(*s);
93}
94
95#else
96
97static inline uint16_t tswap16(uint16_t s)
98{
99 return s;
100}
101
102static inline uint32_t tswap32(uint32_t s)
103{
104 return s;
105}
106
107static inline uint64_t tswap64(uint64_t s)
108{
109 return s;
110}
111
112static inline void tswap16s(uint16_t *s)
113{
114}
115
116static inline void tswap32s(uint32_t *s)
117{
118}
119
120static inline void tswap64s(uint64_t *s)
121{
122}
123
124#endif
125
126#if TARGET_LONG_SIZE == 4
127#define tswapl(s) tswap32(s)
128#define tswapls(s) tswap32s((uint32_t *)(s))
129#define bswaptls(s) bswap32s(s)
130#else
131#define tswapl(s) tswap64(s)
132#define tswapls(s) tswap64s((uint64_t *)(s))
133#define bswaptls(s) bswap64s(s)
134#endif
135
136/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
137 endian ! */
138typedef union {
139 float64 d;
140#if defined(WORDS_BIGENDIAN) \
141 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
142 struct {
143 uint32_t upper;
144 uint32_t lower;
145 } l;
146#else
147 struct {
148 uint32_t lower;
149 uint32_t upper;
150 } l;
151#endif
152 uint64_t ll;
153} CPU_DoubleU;
154
155/* CPU memory access without any memory or io remapping */
156
157/*
158 * the generic syntax for the memory accesses is:
159 *
160 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
161 *
162 * store: st{type}{size}{endian}_{access_type}(ptr, val)
163 *
164 * type is:
165 * (empty): integer access
166 * f : float access
167 *
168 * sign is:
169 * (empty): for floats or 32 bit size
170 * u : unsigned
171 * s : signed
172 *
173 * size is:
174 * b: 8 bits
175 * w: 16 bits
176 * l: 32 bits
177 * q: 64 bits
178 *
179 * endian is:
180 * (empty): target cpu endianness or 8 bit access
181 * r : reversed target cpu endianness (not implemented yet)
182 * be : big endian (not implemented yet)
183 * le : little endian (not implemented yet)
184 *
185 * access_type is:
186 * raw : host memory access
187 * user : user mode access using soft MMU
188 * kernel : kernel mode access using soft MMU
189 */
190#ifdef VBOX
191
192void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb);
193uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys);
194int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys);
195uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys);
196int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys);
197uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys);
198int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys);
199uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys);
200int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys);
201void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb);
202void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val);
203void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val);
204void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val);
205void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val);
206
207#ifndef VBOX_WITH_NEW_PHYS_CODE
208void remR3GrowDynRange(unsigned long physaddr);
209#endif
210#if 0 /*defined(RT_ARCH_AMD64) && defined(VBOX_STRICT)*/
211# define VBOX_CHECK_ADDR(ptr) do { if ((uintptr_t)(ptr) >= _4G) __asm__("int3"); } while (0)
212#else
213# define VBOX_CHECK_ADDR(ptr) do { } while (0)
214#endif
215
216static inline int ldub_p(void *ptr)
217{
218 VBOX_CHECK_ADDR(ptr);
219 return remR3PhysReadU8((uintptr_t)ptr);
220}
221
222static inline int ldsb_p(void *ptr)
223{
224 VBOX_CHECK_ADDR(ptr);
225 return remR3PhysReadS8((uintptr_t)ptr);
226}
227
228static inline void stb_p(void *ptr, int v)
229{
230 VBOX_CHECK_ADDR(ptr);
231 remR3PhysWriteU8((uintptr_t)ptr, v);
232}
233
234static inline int lduw_le_p(void *ptr)
235{
236 VBOX_CHECK_ADDR(ptr);
237 return remR3PhysReadU16((uintptr_t)ptr);
238}
239
240static inline int ldsw_le_p(void *ptr)
241{
242 VBOX_CHECK_ADDR(ptr);
243 return remR3PhysReadS16((uintptr_t)ptr);
244}
245
246static inline void stw_le_p(void *ptr, int v)
247{
248 VBOX_CHECK_ADDR(ptr);
249 remR3PhysWriteU16((uintptr_t)ptr, v);
250}
251
252static inline int ldl_le_p(void *ptr)
253{
254 VBOX_CHECK_ADDR(ptr);
255 return remR3PhysReadU32((uintptr_t)ptr);
256}
257
258static inline void stl_le_p(void *ptr, int v)
259{
260 VBOX_CHECK_ADDR(ptr);
261 remR3PhysWriteU32((uintptr_t)ptr, v);
262}
263
264static inline void stq_le_p(void *ptr, uint64_t v)
265{
266 VBOX_CHECK_ADDR(ptr);
267 remR3PhysWriteU64((uintptr_t)ptr, v);
268}
269
270static inline uint64_t ldq_le_p(void *ptr)
271{
272 VBOX_CHECK_ADDR(ptr);
273 return remR3PhysReadU64((uintptr_t)ptr);
274}
275
276#undef VBOX_CHECK_ADDR
277
278/* float access */
279
280static inline float32 ldfl_le_p(void *ptr)
281{
282 union {
283 float32 f;
284 uint32_t i;
285 } u;
286 u.i = ldl_le_p(ptr);
287 return u.f;
288}
289
290static inline void stfl_le_p(void *ptr, float32 v)
291{
292 union {
293 float32 f;
294 uint32_t i;
295 } u;
296 u.f = v;
297 stl_le_p(ptr, u.i);
298}
299
300static inline float64 ldfq_le_p(void *ptr)
301{
302 CPU_DoubleU u;
303 u.l.lower = ldl_le_p(ptr);
304 u.l.upper = ldl_le_p(ptr + 4);
305 return u.d;
306}
307
308static inline void stfq_le_p(void *ptr, float64 v)
309{
310 CPU_DoubleU u;
311 u.d = v;
312 stl_le_p(ptr, u.l.lower);
313 stl_le_p(ptr + 4, u.l.upper);
314}
315
316#else /* !VBOX */
317
318static inline int ldub_p(void *ptr)
319{
320 return *(uint8_t *)ptr;
321}
322
323static inline int ldsb_p(void *ptr)
324{
325 return *(int8_t *)ptr;
326}
327
328static inline void stb_p(void *ptr, int v)
329{
330 *(uint8_t *)ptr = v;
331}
332
333/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
334 kernel handles unaligned load/stores may give better results, but
335 it is a system wide setting : bad */
336#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
337
338/* conservative code for little endian unaligned accesses */
339static inline int lduw_le_p(void *ptr)
340{
341#ifdef __powerpc__
342 int val;
343 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
344 return val;
345#else
346 uint8_t *p = ptr;
347 return p[0] | (p[1] << 8);
348#endif
349}
350
351static inline int ldsw_le_p(void *ptr)
352{
353#ifdef __powerpc__
354 int val;
355 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
356 return (int16_t)val;
357#else
358 uint8_t *p = ptr;
359 return (int16_t)(p[0] | (p[1] << 8));
360#endif
361}
362
363static inline int ldl_le_p(void *ptr)
364{
365#ifdef __powerpc__
366 int val;
367 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
368 return val;
369#else
370 uint8_t *p = ptr;
371 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
372#endif
373}
374
375static inline uint64_t ldq_le_p(void *ptr)
376{
377 uint8_t *p = ptr;
378 uint32_t v1, v2;
379 v1 = ldl_le_p(p);
380 v2 = ldl_le_p(p + 4);
381 return v1 | ((uint64_t)v2 << 32);
382}
383
384static inline void stw_le_p(void *ptr, int v)
385{
386#ifdef __powerpc__
387 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
388#else
389 uint8_t *p = ptr;
390 p[0] = v;
391 p[1] = v >> 8;
392#endif
393}
394
395static inline void stl_le_p(void *ptr, int v)
396{
397#ifdef __powerpc__
398 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
399#else
400 uint8_t *p = ptr;
401 p[0] = v;
402 p[1] = v >> 8;
403 p[2] = v >> 16;
404 p[3] = v >> 24;
405#endif
406}
407
408static inline void stq_le_p(void *ptr, uint64_t v)
409{
410 uint8_t *p = ptr;
411 stl_le_p(p, (uint32_t)v);
412 stl_le_p(p + 4, v >> 32);
413}
414
415/* float access */
416
417static inline float32 ldfl_le_p(void *ptr)
418{
419 union {
420 float32 f;
421 uint32_t i;
422 } u;
423 u.i = ldl_le_p(ptr);
424 return u.f;
425}
426
427static inline void stfl_le_p(void *ptr, float32 v)
428{
429 union {
430 float32 f;
431 uint32_t i;
432 } u;
433 u.f = v;
434 stl_le_p(ptr, u.i);
435}
436
437static inline float64 ldfq_le_p(void *ptr)
438{
439 CPU_DoubleU u;
440 u.l.lower = ldl_le_p(ptr);
441 u.l.upper = ldl_le_p(ptr + 4);
442 return u.d;
443}
444
445static inline void stfq_le_p(void *ptr, float64 v)
446{
447 CPU_DoubleU u;
448 u.d = v;
449 stl_le_p(ptr, u.l.lower);
450 stl_le_p(ptr + 4, u.l.upper);
451}
452
453#else
454
455static inline int lduw_le_p(void *ptr)
456{
457 return *(uint16_t *)ptr;
458}
459
460static inline int ldsw_le_p(void *ptr)
461{
462 return *(int16_t *)ptr;
463}
464
465static inline int ldl_le_p(void *ptr)
466{
467 return *(uint32_t *)ptr;
468}
469
470static inline uint64_t ldq_le_p(void *ptr)
471{
472 return *(uint64_t *)ptr;
473}
474
475static inline void stw_le_p(void *ptr, int v)
476{
477 *(uint16_t *)ptr = v;
478}
479
480static inline void stl_le_p(void *ptr, int v)
481{
482 *(uint32_t *)ptr = v;
483}
484
485static inline void stq_le_p(void *ptr, uint64_t v)
486{
487 *(uint64_t *)ptr = v;
488}
489
490/* float access */
491
492static inline float32 ldfl_le_p(void *ptr)
493{
494 return *(float32 *)ptr;
495}
496
497static inline float64 ldfq_le_p(void *ptr)
498{
499 return *(float64 *)ptr;
500}
501
502static inline void stfl_le_p(void *ptr, float32 v)
503{
504 *(float32 *)ptr = v;
505}
506
507static inline void stfq_le_p(void *ptr, float64 v)
508{
509 *(float64 *)ptr = v;
510}
511#endif
512#endif /* !VBOX */
513
514#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
515
516static inline int lduw_be_p(void *ptr)
517{
518#if defined(__i386__)
519 int val;
520 asm volatile ("movzwl %1, %0\n"
521 "xchgb %b0, %h0\n"
522 : "=q" (val)
523 : "m" (*(uint16_t *)ptr));
524 return val;
525#else
526 uint8_t *b = (uint8_t *) ptr;
527 return ((b[0] << 8) | b[1]);
528#endif
529}
530
531static inline int ldsw_be_p(void *ptr)
532{
533#if defined(__i386__)
534 int val;
535 asm volatile ("movzwl %1, %0\n"
536 "xchgb %b0, %h0\n"
537 : "=q" (val)
538 : "m" (*(uint16_t *)ptr));
539 return (int16_t)val;
540#else
541 uint8_t *b = (uint8_t *) ptr;
542 return (int16_t)((b[0] << 8) | b[1]);
543#endif
544}
545
546static inline int ldl_be_p(void *ptr)
547{
548#if defined(__i386__) || defined(__x86_64__)
549 int val;
550 asm volatile ("movl %1, %0\n"
551 "bswap %0\n"
552 : "=r" (val)
553 : "m" (*(uint32_t *)ptr));
554 return val;
555#else
556 uint8_t *b = (uint8_t *) ptr;
557 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
558#endif
559}
560
561static inline uint64_t ldq_be_p(void *ptr)
562{
563 uint32_t a,b;
564 a = ldl_be_p(ptr);
565 b = ldl_be_p(ptr+4);
566 return (((uint64_t)a<<32)|b);
567}
568
569static inline void stw_be_p(void *ptr, int v)
570{
571#if defined(__i386__)
572 asm volatile ("xchgb %b0, %h0\n"
573 "movw %w0, %1\n"
574 : "=q" (v)
575 : "m" (*(uint16_t *)ptr), "0" (v));
576#else
577 uint8_t *d = (uint8_t *) ptr;
578 d[0] = v >> 8;
579 d[1] = v;
580#endif
581}
582
583static inline void stl_be_p(void *ptr, int v)
584{
585#if defined(__i386__) || defined(__x86_64__)
586 asm volatile ("bswap %0\n"
587 "movl %0, %1\n"
588 : "=r" (v)
589 : "m" (*(uint32_t *)ptr), "0" (v));
590#else
591 uint8_t *d = (uint8_t *) ptr;
592 d[0] = v >> 24;
593 d[1] = v >> 16;
594 d[2] = v >> 8;
595 d[3] = v;
596#endif
597}
598
599static inline void stq_be_p(void *ptr, uint64_t v)
600{
601 stl_be_p(ptr, v >> 32);
602 stl_be_p(ptr + 4, v);
603}
604
605/* float access */
606
607static inline float32 ldfl_be_p(void *ptr)
608{
609 union {
610 float32 f;
611 uint32_t i;
612 } u;
613 u.i = ldl_be_p(ptr);
614 return u.f;
615}
616
617static inline void stfl_be_p(void *ptr, float32 v)
618{
619 union {
620 float32 f;
621 uint32_t i;
622 } u;
623 u.f = v;
624 stl_be_p(ptr, u.i);
625}
626
627static inline float64 ldfq_be_p(void *ptr)
628{
629 CPU_DoubleU u;
630 u.l.upper = ldl_be_p(ptr);
631 u.l.lower = ldl_be_p(ptr + 4);
632 return u.d;
633}
634
635static inline void stfq_be_p(void *ptr, float64 v)
636{
637 CPU_DoubleU u;
638 u.d = v;
639 stl_be_p(ptr, u.l.upper);
640 stl_be_p(ptr + 4, u.l.lower);
641}
642
643#else
644
645static inline int lduw_be_p(void *ptr)
646{
647 return *(uint16_t *)ptr;
648}
649
650static inline int ldsw_be_p(void *ptr)
651{
652 return *(int16_t *)ptr;
653}
654
655static inline int ldl_be_p(void *ptr)
656{
657 return *(uint32_t *)ptr;
658}
659
660static inline uint64_t ldq_be_p(void *ptr)
661{
662 return *(uint64_t *)ptr;
663}
664
665static inline void stw_be_p(void *ptr, int v)
666{
667 *(uint16_t *)ptr = v;
668}
669
670static inline void stl_be_p(void *ptr, int v)
671{
672 *(uint32_t *)ptr = v;
673}
674
675static inline void stq_be_p(void *ptr, uint64_t v)
676{
677 *(uint64_t *)ptr = v;
678}
679
680/* float access */
681
682static inline float32 ldfl_be_p(void *ptr)
683{
684 return *(float32 *)ptr;
685}
686
687static inline float64 ldfq_be_p(void *ptr)
688{
689 return *(float64 *)ptr;
690}
691
692static inline void stfl_be_p(void *ptr, float32 v)
693{
694 *(float32 *)ptr = v;
695}
696
697static inline void stfq_be_p(void *ptr, float64 v)
698{
699 *(float64 *)ptr = v;
700}
701
702#endif
703
704/* target CPU memory access functions */
705#if defined(TARGET_WORDS_BIGENDIAN)
706#define lduw_p(p) lduw_be_p(p)
707#define ldsw_p(p) ldsw_be_p(p)
708#define ldl_p(p) ldl_be_p(p)
709#define ldq_p(p) ldq_be_p(p)
710#define ldfl_p(p) ldfl_be_p(p)
711#define ldfq_p(p) ldfq_be_p(p)
712#define stw_p(p, v) stw_be_p(p, v)
713#define stl_p(p, v) stl_be_p(p, v)
714#define stq_p(p, v) stq_be_p(p, v)
715#define stfl_p(p, v) stfl_be_p(p, v)
716#define stfq_p(p, v) stfq_be_p(p, v)
717#else
718#define lduw_p(p) lduw_le_p(p)
719#define ldsw_p(p) ldsw_le_p(p)
720#define ldl_p(p) ldl_le_p(p)
721#define ldq_p(p) ldq_le_p(p)
722#define ldfl_p(p) ldfl_le_p(p)
723#define ldfq_p(p) ldfq_le_p(p)
724#define stw_p(p, v) stw_le_p(p, v)
725#define stl_p(p, v) stl_le_p(p, v)
726#define stq_p(p, v) stq_le_p(p, v)
727#define stfl_p(p, v) stfl_le_p(p, v)
728#define stfq_p(p, v) stfq_le_p(p, v)
729#endif
730
731/* MMU memory access macros */
732
733#if defined(CONFIG_USER_ONLY)
734/* On some host systems the guest address space is reserved on the host.
735 * This allows the guest address space to be offset to a convenient location.
736 */
737//#define GUEST_BASE 0x20000000
738#define GUEST_BASE 0
739
740/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
741#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
742#define h2g(x) ((target_ulong)(x - GUEST_BASE))
743
744#define saddr(x) g2h(x)
745#define laddr(x) g2h(x)
746
747#else /* !CONFIG_USER_ONLY */
748/* NOTE: we use double casts if pointers and target_ulong have
749 different sizes */
750#define saddr(x) (uint8_t *)(long)(x)
751#define laddr(x) (uint8_t *)(long)(x)
752#endif
753
754#define ldub_raw(p) ldub_p(laddr((p)))
755#define ldsb_raw(p) ldsb_p(laddr((p)))
756#define lduw_raw(p) lduw_p(laddr((p)))
757#define ldsw_raw(p) ldsw_p(laddr((p)))
758#define ldl_raw(p) ldl_p(laddr((p)))
759#define ldq_raw(p) ldq_p(laddr((p)))
760#define ldfl_raw(p) ldfl_p(laddr((p)))
761#define ldfq_raw(p) ldfq_p(laddr((p)))
762#define stb_raw(p, v) stb_p(saddr((p)), v)
763#define stw_raw(p, v) stw_p(saddr((p)), v)
764#define stl_raw(p, v) stl_p(saddr((p)), v)
765#define stq_raw(p, v) stq_p(saddr((p)), v)
766#define stfl_raw(p, v) stfl_p(saddr((p)), v)
767#define stfq_raw(p, v) stfq_p(saddr((p)), v)
768
769
770#if defined(CONFIG_USER_ONLY)
771
772/* if user mode, no other memory access functions */
773#define ldub(p) ldub_raw(p)
774#define ldsb(p) ldsb_raw(p)
775#define lduw(p) lduw_raw(p)
776#define ldsw(p) ldsw_raw(p)
777#define ldl(p) ldl_raw(p)
778#define ldq(p) ldq_raw(p)
779#define ldfl(p) ldfl_raw(p)
780#define ldfq(p) ldfq_raw(p)
781#define stb(p, v) stb_raw(p, v)
782#define stw(p, v) stw_raw(p, v)
783#define stl(p, v) stl_raw(p, v)
784#define stq(p, v) stq_raw(p, v)
785#define stfl(p, v) stfl_raw(p, v)
786#define stfq(p, v) stfq_raw(p, v)
787
788#define ldub_code(p) ldub_raw(p)
789#define ldsb_code(p) ldsb_raw(p)
790#define lduw_code(p) lduw_raw(p)
791#define ldsw_code(p) ldsw_raw(p)
792#define ldl_code(p) ldl_raw(p)
793
794#define ldub_kernel(p) ldub_raw(p)
795#define ldsb_kernel(p) ldsb_raw(p)
796#define lduw_kernel(p) lduw_raw(p)
797#define ldsw_kernel(p) ldsw_raw(p)
798#define ldl_kernel(p) ldl_raw(p)
799#define ldfl_kernel(p) ldfl_raw(p)
800#define ldfq_kernel(p) ldfq_raw(p)
801#define stb_kernel(p, v) stb_raw(p, v)
802#define stw_kernel(p, v) stw_raw(p, v)
803#define stl_kernel(p, v) stl_raw(p, v)
804#define stq_kernel(p, v) stq_raw(p, v)
805#define stfl_kernel(p, v) stfl_raw(p, v)
806#define stfq_kernel(p, vt) stfq_raw(p, v)
807
808#endif /* defined(CONFIG_USER_ONLY) */
809
810/* page related stuff */
811
812#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
813#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
814#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
815
816/* ??? These should be the larger of unsigned long and target_ulong. */
817extern unsigned long qemu_real_host_page_size;
818extern unsigned long qemu_host_page_bits;
819extern unsigned long qemu_host_page_size;
820extern unsigned long qemu_host_page_mask;
821
822#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
823
824/* same as PROT_xxx */
825#define PAGE_READ 0x0001
826#define PAGE_WRITE 0x0002
827#define PAGE_EXEC 0x0004
828#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
829#define PAGE_VALID 0x0008
830/* original state of the write flag (used when tracking self-modifying
831 code */
832#define PAGE_WRITE_ORG 0x0010
833
834void page_dump(FILE *f);
835int page_get_flags(target_ulong address);
836void page_set_flags(target_ulong start, target_ulong end, int flags);
837void page_unprotect_range(target_ulong data, target_ulong data_size);
838
839#define SINGLE_CPU_DEFINES
840#ifdef SINGLE_CPU_DEFINES
841
842#if defined(TARGET_I386)
843
844#define CPUState CPUX86State
845#define cpu_init cpu_x86_init
846#define cpu_exec cpu_x86_exec
847#define cpu_gen_code cpu_x86_gen_code
848#define cpu_signal_handler cpu_x86_signal_handler
849
850#elif defined(TARGET_ARM)
851
852#define CPUState CPUARMState
853#define cpu_init cpu_arm_init
854#define cpu_exec cpu_arm_exec
855#define cpu_gen_code cpu_arm_gen_code
856#define cpu_signal_handler cpu_arm_signal_handler
857
858#elif defined(TARGET_SPARC)
859
860#define CPUState CPUSPARCState
861#define cpu_init cpu_sparc_init
862#define cpu_exec cpu_sparc_exec
863#define cpu_gen_code cpu_sparc_gen_code
864#define cpu_signal_handler cpu_sparc_signal_handler
865
866#elif defined(TARGET_PPC)
867
868#define CPUState CPUPPCState
869#define cpu_init cpu_ppc_init
870#define cpu_exec cpu_ppc_exec
871#define cpu_gen_code cpu_ppc_gen_code
872#define cpu_signal_handler cpu_ppc_signal_handler
873
874#elif defined(TARGET_M68K)
875#define CPUState CPUM68KState
876#define cpu_init cpu_m68k_init
877#define cpu_exec cpu_m68k_exec
878#define cpu_gen_code cpu_m68k_gen_code
879#define cpu_signal_handler cpu_m68k_signal_handler
880
881#elif defined(TARGET_MIPS)
882#define CPUState CPUMIPSState
883#define cpu_init cpu_mips_init
884#define cpu_exec cpu_mips_exec
885#define cpu_gen_code cpu_mips_gen_code
886#define cpu_signal_handler cpu_mips_signal_handler
887
888#elif defined(TARGET_SH4)
889#define CPUState CPUSH4State
890#define cpu_init cpu_sh4_init
891#define cpu_exec cpu_sh4_exec
892#define cpu_gen_code cpu_sh4_gen_code
893#define cpu_signal_handler cpu_sh4_signal_handler
894
895#else
896
897#error unsupported target CPU
898
899#endif
900
901#endif /* SINGLE_CPU_DEFINES */
902
903void cpu_dump_state(CPUState *env, FILE *f,
904 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
905 int flags);
906
907DECLNORETURN(void) cpu_abort(CPUState *env, const char *fmt, ...);
908extern CPUState *first_cpu;
909extern CPUState *cpu_single_env;
910extern int code_copy_enabled;
911
912#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
913#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
914#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
915#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
916#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
917#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
918#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
919
920#ifdef VBOX
921/** Executes a single instruction. cpu_exec() will normally return EXCP_SINGLE_INSTR. */
922#define CPU_INTERRUPT_SINGLE_INSTR 0x0200
923/** Executing a CPU_INTERRUPT_SINGLE_INSTR request, quit the cpu_loop. (for exceptions and suchlike) */
924#define CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT 0x0400
925/** VM execution was interrupted by VMR3Reset, VMR3Suspend or VMR3PowerOff. */
926#define CPU_INTERRUPT_RC 0x0800
927/** Exit current TB to process an external interrupt request (also in op.c!!) */
928#define CPU_INTERRUPT_EXTERNAL_EXIT 0x1000
929/** Exit current TB to process an external interrupt request (also in op.c!!) */
930#define CPU_INTERRUPT_EXTERNAL_HARD 0x2000
931/** Exit current TB to process an external interrupt request (also in op.c!!) */
932#define CPU_INTERRUPT_EXTERNAL_TIMER 0x4000
933/** Exit current TB to process an external interrupt request (also in op.c!!) */
934#define CPU_INTERRUPT_EXTERNAL_DMA 0x8000
935#endif /* VBOX */
936void cpu_interrupt(CPUState *s, int mask);
937void cpu_reset_interrupt(CPUState *env, int mask);
938
939int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
940int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
941void cpu_single_step(CPUState *env, int enabled);
942void cpu_reset(CPUState *s);
943
944/* Return the physical page corresponding to a virtual one. Use it
945 only for debugging because no protection checks are done. Return -1
946 if no page found. */
947target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
948
949#define CPU_LOG_TB_OUT_ASM (1 << 0)
950#define CPU_LOG_TB_IN_ASM (1 << 1)
951#define CPU_LOG_TB_OP (1 << 2)
952#define CPU_LOG_TB_OP_OPT (1 << 3)
953#define CPU_LOG_INT (1 << 4)
954#define CPU_LOG_EXEC (1 << 5)
955#define CPU_LOG_PCALL (1 << 6)
956#define CPU_LOG_IOPORT (1 << 7)
957#define CPU_LOG_TB_CPU (1 << 8)
958
959/* define log items */
960typedef struct CPULogItem {
961 int mask;
962 const char *name;
963 const char *help;
964} CPULogItem;
965
966extern CPULogItem cpu_log_items[];
967
968void cpu_set_log(int log_flags);
969void cpu_set_log_filename(const char *filename);
970int cpu_str_to_log_mask(const char *str);
971
972/* IO ports API */
973
974/* NOTE: as these functions may be even used when there is an isa
975 brige on non x86 targets, we always defined them */
976#ifndef NO_CPU_IO_DEFS
977void cpu_outb(CPUState *env, int addr, int val);
978void cpu_outw(CPUState *env, int addr, int val);
979void cpu_outl(CPUState *env, int addr, int val);
980int cpu_inb(CPUState *env, int addr);
981int cpu_inw(CPUState *env, int addr);
982int cpu_inl(CPUState *env, int addr);
983#endif
984
985/* memory API */
986
987#ifndef VBOX
988extern int phys_ram_size;
989extern int phys_ram_fd;
990extern int phys_ram_size;
991#else /* VBOX */
992extern RTGCPHYS phys_ram_size;
993/** This is required for bounds checking the phys_ram_dirty accesses. */
994extern uint32_t phys_ram_dirty_size;
995#endif /* VBOX */
996#if !defined(VBOX)
997extern uint8_t *phys_ram_base;
998#endif
999extern uint8_t *phys_ram_dirty;
1000
1001/* physical memory access */
1002#define TLB_INVALID_MASK (1 << 3)
1003#define IO_MEM_SHIFT 4
1004#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
1005
1006#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
1007#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
1008#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
1009#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
1010#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
1011#define IO_MEM_RAM_MISSING (5 << IO_MEM_SHIFT) /* used internally, never use directly */
1012#endif
1013/* acts like a ROM when read and like a device when written. As an
1014 exception, the write memory callback gets the ram offset instead of
1015 the physical address */
1016#define IO_MEM_ROMD (1)
1017
1018typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
1019typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
1020
1021void cpu_register_physical_memory(target_phys_addr_t start_addr,
1022 unsigned long size,
1023 unsigned long phys_offset);
1024uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
1025int cpu_register_io_memory(int io_index,
1026 CPUReadMemoryFunc **mem_read,
1027 CPUWriteMemoryFunc **mem_write,
1028 void *opaque);
1029CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
1030CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
1031
1032void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
1033 int len, int is_write);
1034static inline void cpu_physical_memory_read(target_phys_addr_t addr,
1035 uint8_t *buf, int len)
1036{
1037 cpu_physical_memory_rw(addr, buf, len, 0);
1038}
1039static inline void cpu_physical_memory_write(target_phys_addr_t addr,
1040 const uint8_t *buf, int len)
1041{
1042 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
1043}
1044uint32_t ldub_phys(target_phys_addr_t addr);
1045uint32_t lduw_phys(target_phys_addr_t addr);
1046uint32_t ldl_phys(target_phys_addr_t addr);
1047uint64_t ldq_phys(target_phys_addr_t addr);
1048void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
1049void stb_phys(target_phys_addr_t addr, uint32_t val);
1050void stw_phys(target_phys_addr_t addr, uint32_t val);
1051void stl_phys(target_phys_addr_t addr, uint32_t val);
1052void stq_phys(target_phys_addr_t addr, uint64_t val);
1053
1054void cpu_physical_memory_write_rom(target_phys_addr_t addr,
1055 const uint8_t *buf, int len);
1056int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1057 uint8_t *buf, int len, int is_write);
1058
1059#define VGA_DIRTY_FLAG 0x01
1060#define CODE_DIRTY_FLAG 0x02
1061
1062/* read dirty bit (return 0 or 1) */
1063static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1064{
1065#ifdef VBOX
1066 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1067 {
1068 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1069 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1070 return 0;
1071 }
1072#endif
1073 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
1074}
1075
1076static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
1077 int dirty_flags)
1078{
1079#ifdef VBOX
1080 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1081 {
1082 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1083 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1084 return 0xff & dirty_flags; /** @todo I don't think this is the right thing to return, fix! */
1085 }
1086#endif
1087 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1088}
1089
1090static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1091{
1092#ifdef VBOX
1093 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1094 {
1095 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1096 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1097 return;
1098 }
1099#endif
1100 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1101}
1102
1103void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1104 int dirty_flags);
1105void cpu_tlb_update_dirty(CPUState *env);
1106
1107void dump_exec_info(FILE *f,
1108 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
1109
1110/*******************************************/
1111/* host CPU ticks (if available) */
1112
1113#if defined(__powerpc__)
1114
1115static inline uint32_t get_tbl(void)
1116{
1117 uint32_t tbl;
1118 asm volatile("mftb %0" : "=r" (tbl));
1119 return tbl;
1120}
1121
1122static inline uint32_t get_tbu(void)
1123{
1124 uint32_t tbl;
1125 asm volatile("mftbu %0" : "=r" (tbl));
1126 return tbl;
1127}
1128
1129static inline int64_t cpu_get_real_ticks(void)
1130{
1131 uint32_t l, h, h1;
1132 /* NOTE: we test if wrapping has occurred */
1133 do {
1134 h = get_tbu();
1135 l = get_tbl();
1136 h1 = get_tbu();
1137 } while (h != h1);
1138 return ((int64_t)h << 32) | l;
1139}
1140
1141#elif defined(__i386__)
1142
1143static inline int64_t cpu_get_real_ticks(void)
1144{
1145 int64_t val;
1146 asm volatile ("rdtsc" : "=A" (val));
1147 return val;
1148}
1149
1150#elif defined(__x86_64__)
1151
1152static inline int64_t cpu_get_real_ticks(void)
1153{
1154 uint32_t low,high;
1155 int64_t val;
1156 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1157 val = high;
1158 val <<= 32;
1159 val |= low;
1160 return val;
1161}
1162
1163#elif defined(__ia64)
1164
1165static inline int64_t cpu_get_real_ticks(void)
1166{
1167 int64_t val;
1168 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1169 return val;
1170}
1171
1172#elif defined(__s390__)
1173
1174static inline int64_t cpu_get_real_ticks(void)
1175{
1176 int64_t val;
1177 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1178 return val;
1179}
1180
1181#elif defined(__sparc_v9__)
1182
1183static inline int64_t cpu_get_real_ticks (void)
1184{
1185#if defined(_LP64)
1186 uint64_t rval;
1187 asm volatile("rd %%tick,%0" : "=r"(rval));
1188 return rval;
1189#else
1190 union {
1191 uint64_t i64;
1192 struct {
1193 uint32_t high;
1194 uint32_t low;
1195 } i32;
1196 } rval;
1197 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1198 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1199 return rval.i64;
1200#endif
1201}
1202#else
1203/* The host CPU doesn't have an easily accessible cycle counter.
1204 Just return a monotonically increasing vlue. This will be totally wrong,
1205 but hopefully better than nothing. */
1206static inline int64_t cpu_get_real_ticks (void)
1207{
1208 static int64_t ticks = 0;
1209 return ticks++;
1210}
1211#endif
1212
1213/* profiling */
1214#ifdef CONFIG_PROFILER
1215static inline int64_t profile_getclock(void)
1216{
1217 return cpu_get_real_ticks();
1218}
1219
1220extern int64_t kqemu_time, kqemu_time_start;
1221extern int64_t qemu_time, qemu_time_start;
1222extern int64_t tlb_flush_time;
1223extern int64_t kqemu_exec_count;
1224extern int64_t dev_time;
1225extern int64_t kqemu_ret_int_count;
1226extern int64_t kqemu_ret_excp_count;
1227extern int64_t kqemu_ret_intr_count;
1228
1229#endif
1230
1231#ifdef VBOX
1232void tb_invalidate_virt(CPUState *env, uint32_t eip);
1233#endif /* VBOX */
1234
1235#endif /* CPU_ALL_H */
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette