1 | /*
|
---|
2 | * virtual page mapping and translated block handling
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
22 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
23 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
24 | * a choice of LGPL license versions is made available with the language indicating
|
---|
25 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
26 | * of the LGPL is applied is otherwise unspecified.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include "config.h"
|
---|
30 | #ifndef VBOX
|
---|
31 | #ifdef _WIN32
|
---|
32 | #include <windows.h>
|
---|
33 | #else
|
---|
34 | #include <sys/types.h>
|
---|
35 | #include <sys/mman.h>
|
---|
36 | #endif
|
---|
37 | #include <stdlib.h>
|
---|
38 | #include <stdio.h>
|
---|
39 | #include <stdarg.h>
|
---|
40 | #include <string.h>
|
---|
41 | #include <errno.h>
|
---|
42 | #include <unistd.h>
|
---|
43 | #include <inttypes.h>
|
---|
44 | #else /* VBOX */
|
---|
45 | # include <stdlib.h>
|
---|
46 | # include <stdio.h>
|
---|
47 | # include <iprt/alloc.h>
|
---|
48 | # include <iprt/string.h>
|
---|
49 | # include <iprt/param.h>
|
---|
50 | # include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
|
---|
51 | #endif /* VBOX */
|
---|
52 |
|
---|
53 | #include "cpu.h"
|
---|
54 | #include "exec-all.h"
|
---|
55 | #include "qemu-common.h"
|
---|
56 | #include "tcg.h"
|
---|
57 | #ifndef VBOX
|
---|
58 | #include "hw/hw.h"
|
---|
59 | #endif
|
---|
60 | #include "osdep.h"
|
---|
61 | #include "kvm.h"
|
---|
62 | #if defined(CONFIG_USER_ONLY)
|
---|
63 | #include <qemu.h>
|
---|
64 | #endif
|
---|
65 |
|
---|
66 | //#define DEBUG_TB_INVALIDATE
|
---|
67 | //#define DEBUG_FLUSH
|
---|
68 | //#define DEBUG_TLB
|
---|
69 | //#define DEBUG_UNASSIGNED
|
---|
70 |
|
---|
71 | /* make various TB consistency checks */
|
---|
72 | //#define DEBUG_TB_CHECK
|
---|
73 | //#define DEBUG_TLB_CHECK
|
---|
74 |
|
---|
75 | //#define DEBUG_IOPORT
|
---|
76 | //#define DEBUG_SUBPAGE
|
---|
77 |
|
---|
78 | #if !defined(CONFIG_USER_ONLY)
|
---|
79 | /* TB consistency checks only implemented for usermode emulation. */
|
---|
80 | #undef DEBUG_TB_CHECK
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | #define SMC_BITMAP_USE_THRESHOLD 10
|
---|
84 |
|
---|
85 | #if defined(TARGET_SPARC64)
|
---|
86 | #define TARGET_PHYS_ADDR_SPACE_BITS 41
|
---|
87 | #elif defined(TARGET_SPARC)
|
---|
88 | #define TARGET_PHYS_ADDR_SPACE_BITS 36
|
---|
89 | #elif defined(TARGET_ALPHA)
|
---|
90 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
91 | #define TARGET_VIRT_ADDR_SPACE_BITS 42
|
---|
92 | #elif defined(TARGET_PPC64)
|
---|
93 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
94 | #elif defined(TARGET_X86_64)
|
---|
95 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
96 | #elif defined(TARGET_I386)
|
---|
97 | #define TARGET_PHYS_ADDR_SPACE_BITS 36
|
---|
98 | #else
|
---|
99 | #define TARGET_PHYS_ADDR_SPACE_BITS 32
|
---|
100 | #endif
|
---|
101 |
|
---|
102 | static TranslationBlock *tbs;
|
---|
103 | int code_gen_max_blocks;
|
---|
104 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
|
---|
105 | static int nb_tbs;
|
---|
106 | /* any access to the tbs or the page table must use this lock */
|
---|
107 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
|
---|
108 |
|
---|
109 | #ifndef VBOX
|
---|
110 | #if defined(__arm__) || defined(__sparc_v9__)
|
---|
111 | /* The prologue must be reachable with a direct jump. ARM and Sparc64
|
---|
112 | have limited branch ranges (possibly also PPC) so place it in a
|
---|
113 | section close to code segment. */
|
---|
114 | #define code_gen_section \
|
---|
115 | __attribute__((__section__(".gen_code"))) \
|
---|
116 | __attribute__((aligned (32)))
|
---|
117 | #elif defined(_WIN32)
|
---|
118 | /* Maximum alignment for Win32 is 16. */
|
---|
119 | #define code_gen_section \
|
---|
120 | __attribute__((aligned (16)))
|
---|
121 | #else
|
---|
122 | #define code_gen_section \
|
---|
123 | __attribute__((aligned (32)))
|
---|
124 | #endif
|
---|
125 |
|
---|
126 | uint8_t code_gen_prologue[1024] code_gen_section;
|
---|
127 | #else /* VBOX */
|
---|
128 | extern uint8_t* code_gen_prologue;
|
---|
129 | #endif /* VBOX */
|
---|
130 | static uint8_t *code_gen_buffer;
|
---|
131 | static unsigned long code_gen_buffer_size;
|
---|
132 | /* threshold to flush the translated code buffer */
|
---|
133 | static unsigned long code_gen_buffer_max_size;
|
---|
134 | uint8_t *code_gen_ptr;
|
---|
135 |
|
---|
136 | #ifndef VBOX
|
---|
137 | #if !defined(CONFIG_USER_ONLY)
|
---|
138 | int phys_ram_fd;
|
---|
139 | uint8_t *phys_ram_dirty;
|
---|
140 | static int in_migration;
|
---|
141 |
|
---|
142 | typedef struct RAMBlock {
|
---|
143 | uint8_t *host;
|
---|
144 | ram_addr_t offset;
|
---|
145 | ram_addr_t length;
|
---|
146 | struct RAMBlock *next;
|
---|
147 | } RAMBlock;
|
---|
148 |
|
---|
149 | static RAMBlock *ram_blocks;
|
---|
150 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
|
---|
151 | then we can no longer assume contiguous ram offsets, and external uses
|
---|
152 | of this variable will break. */
|
---|
153 | ram_addr_t last_ram_offset;
|
---|
154 | #endif
|
---|
155 | #else /* VBOX */
|
---|
156 | /* we have memory ranges (the high PC-BIOS mapping) which
|
---|
157 | causes some pages to fall outside the dirty map here. */
|
---|
158 | RTGCPHYS phys_ram_dirty_size;
|
---|
159 | uint8_t *phys_ram_dirty;
|
---|
160 | #endif /* VBOX */
|
---|
161 |
|
---|
162 | CPUState *first_cpu;
|
---|
163 | /* current CPU in the current thread. It is only valid inside
|
---|
164 | cpu_exec() */
|
---|
165 | CPUState *cpu_single_env;
|
---|
166 | /* 0 = Do not count executed instructions.
|
---|
167 | 1 = Precise instruction counting.
|
---|
168 | 2 = Adaptive rate instruction counting. */
|
---|
169 | int use_icount = 0;
|
---|
170 | /* Current instruction counter. While executing translated code this may
|
---|
171 | include some instructions that have not yet been executed. */
|
---|
172 | int64_t qemu_icount;
|
---|
173 |
|
---|
174 | typedef struct PageDesc {
|
---|
175 | /* list of TBs intersecting this ram page */
|
---|
176 | TranslationBlock *first_tb;
|
---|
177 | /* in order to optimize self modifying code, we count the number
|
---|
178 | of lookups we do to a given page to use a bitmap */
|
---|
179 | unsigned int code_write_count;
|
---|
180 | uint8_t *code_bitmap;
|
---|
181 | #if defined(CONFIG_USER_ONLY)
|
---|
182 | unsigned long flags;
|
---|
183 | #endif
|
---|
184 | } PageDesc;
|
---|
185 |
|
---|
186 | typedef struct PhysPageDesc {
|
---|
187 | /* offset in host memory of the page + io_index in the low bits */
|
---|
188 | ram_addr_t phys_offset;
|
---|
189 | ram_addr_t region_offset;
|
---|
190 | } PhysPageDesc;
|
---|
191 |
|
---|
192 | #define L2_BITS 10
|
---|
193 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
|
---|
194 | /* XXX: this is a temporary hack for alpha target.
|
---|
195 | * In the future, this is to be replaced by a multi-level table
|
---|
196 | * to actually be able to handle the complete 64 bits address space.
|
---|
197 | */
|
---|
198 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
|
---|
199 | #else
|
---|
200 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
|
---|
201 | #endif
|
---|
202 | #ifdef VBOX
|
---|
203 | #define L0_BITS (TARGET_PHYS_ADDR_SPACE_BITS - 32)
|
---|
204 | #endif
|
---|
205 |
|
---|
206 | #ifdef VBOX
|
---|
207 | #define L0_SIZE (1 << L0_BITS)
|
---|
208 | #endif
|
---|
209 | #define L1_SIZE (1 << L1_BITS)
|
---|
210 | #define L2_SIZE (1 << L2_BITS)
|
---|
211 |
|
---|
212 | unsigned long qemu_real_host_page_size;
|
---|
213 | unsigned long qemu_host_page_bits;
|
---|
214 | unsigned long qemu_host_page_size;
|
---|
215 | unsigned long qemu_host_page_mask;
|
---|
216 |
|
---|
217 | /* XXX: for system emulation, it could just be an array */
|
---|
218 | #ifndef VBOX
|
---|
219 | static PageDesc *l1_map[L1_SIZE];
|
---|
220 | static PhysPageDesc **l1_phys_map;
|
---|
221 | #else
|
---|
222 | static unsigned l0_map_max_used = 0;
|
---|
223 | static PageDesc **l0_map[L0_SIZE];
|
---|
224 | static void **l0_phys_map[L0_SIZE];
|
---|
225 | #endif
|
---|
226 |
|
---|
227 | #if !defined(CONFIG_USER_ONLY)
|
---|
228 | static void io_mem_init(void);
|
---|
229 |
|
---|
230 | /* io memory support */
|
---|
231 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
|
---|
232 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
|
---|
233 | void *io_mem_opaque[IO_MEM_NB_ENTRIES];
|
---|
234 | static char io_mem_used[IO_MEM_NB_ENTRIES];
|
---|
235 | static int io_mem_watch;
|
---|
236 | #endif
|
---|
237 |
|
---|
238 | #ifndef VBOX
|
---|
239 | /* log support */
|
---|
240 | static const char *logfilename = "/tmp/qemu.log";
|
---|
241 | #endif /* !VBOX */
|
---|
242 | FILE *logfile;
|
---|
243 | int loglevel;
|
---|
244 | #ifndef VBOX
|
---|
245 | static int log_append = 0;
|
---|
246 | #endif
|
---|
247 |
|
---|
248 | /* statistics */
|
---|
249 | #ifndef VBOX
|
---|
250 | static int tlb_flush_count;
|
---|
251 | static int tb_flush_count;
|
---|
252 | static int tb_phys_invalidate_count;
|
---|
253 | #else /* VBOX - Resettable U32 stats, see VBoxRecompiler.c. */
|
---|
254 | uint32_t tlb_flush_count;
|
---|
255 | uint32_t tb_flush_count;
|
---|
256 | uint32_t tb_phys_invalidate_count;
|
---|
257 | #endif /* VBOX */
|
---|
258 |
|
---|
259 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
---|
260 | typedef struct subpage_t {
|
---|
261 | target_phys_addr_t base;
|
---|
262 | CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
|
---|
263 | CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
|
---|
264 | void *opaque[TARGET_PAGE_SIZE][2][4];
|
---|
265 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
|
---|
266 | } subpage_t;
|
---|
267 |
|
---|
268 | #ifndef VBOX
|
---|
269 | #ifdef _WIN32
|
---|
270 | static void map_exec(void *addr, long size)
|
---|
271 | {
|
---|
272 | DWORD old_protect;
|
---|
273 | VirtualProtect(addr, size,
|
---|
274 | PAGE_EXECUTE_READWRITE, &old_protect);
|
---|
275 |
|
---|
276 | }
|
---|
277 | #else
|
---|
278 | static void map_exec(void *addr, long size)
|
---|
279 | {
|
---|
280 | unsigned long start, end, page_size;
|
---|
281 |
|
---|
282 | page_size = getpagesize();
|
---|
283 | start = (unsigned long)addr;
|
---|
284 | start &= ~(page_size - 1);
|
---|
285 |
|
---|
286 | end = (unsigned long)addr + size;
|
---|
287 | end += page_size - 1;
|
---|
288 | end &= ~(page_size - 1);
|
---|
289 |
|
---|
290 | mprotect((void *)start, end - start,
|
---|
291 | PROT_READ | PROT_WRITE | PROT_EXEC);
|
---|
292 | }
|
---|
293 | #endif
|
---|
294 | #else /* VBOX */
|
---|
295 | static void map_exec(void *addr, long size)
|
---|
296 | {
|
---|
297 | RTMemProtect(addr, size,
|
---|
298 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
299 | }
|
---|
300 | #endif /* VBOX */
|
---|
301 |
|
---|
302 | static void page_init(void)
|
---|
303 | {
|
---|
304 | /* NOTE: we can always suppose that qemu_host_page_size >=
|
---|
305 | TARGET_PAGE_SIZE */
|
---|
306 | #ifdef VBOX
|
---|
307 | RTMemProtect(code_gen_buffer, sizeof(code_gen_buffer),
|
---|
308 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
309 | qemu_real_host_page_size = PAGE_SIZE;
|
---|
310 | #else /* !VBOX */
|
---|
311 | #ifdef _WIN32
|
---|
312 | {
|
---|
313 | SYSTEM_INFO system_info;
|
---|
314 |
|
---|
315 | GetSystemInfo(&system_info);
|
---|
316 | qemu_real_host_page_size = system_info.dwPageSize;
|
---|
317 | }
|
---|
318 | #else
|
---|
319 | qemu_real_host_page_size = getpagesize();
|
---|
320 | #endif
|
---|
321 | #endif /* !VBOX */
|
---|
322 | if (qemu_host_page_size == 0)
|
---|
323 | qemu_host_page_size = qemu_real_host_page_size;
|
---|
324 | if (qemu_host_page_size < TARGET_PAGE_SIZE)
|
---|
325 | qemu_host_page_size = TARGET_PAGE_SIZE;
|
---|
326 | qemu_host_page_bits = 0;
|
---|
327 | #ifndef VBOX
|
---|
328 | while ((1 << qemu_host_page_bits) < qemu_host_page_size)
|
---|
329 | #else
|
---|
330 | while ((1 << qemu_host_page_bits) < (int)qemu_host_page_size)
|
---|
331 | #endif
|
---|
332 | qemu_host_page_bits++;
|
---|
333 | qemu_host_page_mask = ~(qemu_host_page_size - 1);
|
---|
334 | #ifndef VBOX
|
---|
335 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
|
---|
336 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
|
---|
337 | #endif
|
---|
338 |
|
---|
339 | #ifdef VBOX
|
---|
340 | /* We use other means to set reserved bit on our pages */
|
---|
341 | #else /* !VBOX */
|
---|
342 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
|
---|
343 | {
|
---|
344 | long long startaddr, endaddr;
|
---|
345 | FILE *f;
|
---|
346 | int n;
|
---|
347 |
|
---|
348 | mmap_lock();
|
---|
349 | last_brk = (unsigned long)sbrk(0);
|
---|
350 | f = fopen("/proc/self/maps", "r");
|
---|
351 | if (f) {
|
---|
352 | do {
|
---|
353 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
|
---|
354 | if (n == 2) {
|
---|
355 | startaddr = MIN(startaddr,
|
---|
356 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
|
---|
357 | endaddr = MIN(endaddr,
|
---|
358 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
|
---|
359 | page_set_flags(startaddr & TARGET_PAGE_MASK,
|
---|
360 | TARGET_PAGE_ALIGN(endaddr),
|
---|
361 | PAGE_RESERVED);
|
---|
362 | }
|
---|
363 | } while (!feof(f));
|
---|
364 | fclose(f);
|
---|
365 | }
|
---|
366 | mmap_unlock();
|
---|
367 | }
|
---|
368 | #endif
|
---|
369 | #endif /* !VBOX */
|
---|
370 | }
|
---|
371 |
|
---|
372 | static inline PageDesc **page_l1_map(target_ulong index)
|
---|
373 | {
|
---|
374 | #ifndef VBOX
|
---|
375 | #if TARGET_LONG_BITS > 32
|
---|
376 | /* Host memory outside guest VM. For 32-bit targets we have already
|
---|
377 | excluded high addresses. */
|
---|
378 | if (index > ((target_ulong)L2_SIZE * L1_SIZE))
|
---|
379 | return NULL;
|
---|
380 | #endif
|
---|
381 | return &l1_map[index >> L2_BITS];
|
---|
382 | #else /* VBOX */
|
---|
383 | PageDesc **l1_map;
|
---|
384 | AssertMsgReturn(index < (target_ulong)L2_SIZE * L1_SIZE * L0_SIZE,
|
---|
385 | ("index=%RGp >= %RGp; L1_SIZE=%#x L2_SIZE=%#x L0_SIZE=%#x\n",
|
---|
386 | (RTGCPHYS)index, (RTGCPHYS)L2_SIZE * L1_SIZE, L1_SIZE, L2_SIZE, L0_SIZE),
|
---|
387 | NULL);
|
---|
388 | l1_map = l0_map[index >> (L1_BITS + L2_BITS)];
|
---|
389 | if (RT_UNLIKELY(!l1_map))
|
---|
390 | {
|
---|
391 | unsigned i0 = index >> (L1_BITS + L2_BITS);
|
---|
392 | l0_map[i0] = l1_map = qemu_mallocz(sizeof(PageDesc *) * L1_SIZE);
|
---|
393 | if (RT_UNLIKELY(!l1_map))
|
---|
394 | return NULL;
|
---|
395 | if (i0 >= l0_map_max_used)
|
---|
396 | l0_map_max_used = i0 + 1;
|
---|
397 | }
|
---|
398 | return &l1_map[(index >> L2_BITS) & (L1_SIZE - 1)];
|
---|
399 | #endif /* VBOX */
|
---|
400 | }
|
---|
401 |
|
---|
402 | static inline PageDesc *page_find_alloc(target_ulong index)
|
---|
403 | {
|
---|
404 | PageDesc **lp, *p;
|
---|
405 | lp = page_l1_map(index);
|
---|
406 | if (!lp)
|
---|
407 | return NULL;
|
---|
408 |
|
---|
409 | p = *lp;
|
---|
410 | if (!p) {
|
---|
411 | /* allocate if not found */
|
---|
412 | #if defined(CONFIG_USER_ONLY)
|
---|
413 | size_t len = sizeof(PageDesc) * L2_SIZE;
|
---|
414 | /* Don't use qemu_malloc because it may recurse. */
|
---|
415 | p = mmap(NULL, len, PROT_READ | PROT_WRITE,
|
---|
416 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
---|
417 | *lp = p;
|
---|
418 | if (h2g_valid(p)) {
|
---|
419 | unsigned long addr = h2g(p);
|
---|
420 | page_set_flags(addr & TARGET_PAGE_MASK,
|
---|
421 | TARGET_PAGE_ALIGN(addr + len),
|
---|
422 | PAGE_RESERVED);
|
---|
423 | }
|
---|
424 | #else
|
---|
425 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
|
---|
426 | *lp = p;
|
---|
427 | #endif
|
---|
428 | }
|
---|
429 | return p + (index & (L2_SIZE - 1));
|
---|
430 | }
|
---|
431 |
|
---|
432 | static inline PageDesc *page_find(target_ulong index)
|
---|
433 | {
|
---|
434 | PageDesc **lp, *p;
|
---|
435 | lp = page_l1_map(index);
|
---|
436 | if (!lp)
|
---|
437 | return NULL;
|
---|
438 |
|
---|
439 | p = *lp;
|
---|
440 | if (!p) {
|
---|
441 | return NULL;
|
---|
442 | }
|
---|
443 | return p + (index & (L2_SIZE - 1));
|
---|
444 | }
|
---|
445 |
|
---|
446 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
|
---|
447 | {
|
---|
448 | void **lp, **p;
|
---|
449 | PhysPageDesc *pd;
|
---|
450 |
|
---|
451 | #ifndef VBOX
|
---|
452 | p = (void **)l1_phys_map;
|
---|
453 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32
|
---|
454 |
|
---|
455 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
|
---|
456 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
|
---|
457 | #endif
|
---|
458 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
|
---|
459 | p = *lp;
|
---|
460 | if (!p) {
|
---|
461 | /* allocate if not found */
|
---|
462 | if (!alloc)
|
---|
463 | return NULL;
|
---|
464 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
|
---|
465 | memset(p, 0, sizeof(void *) * L1_SIZE);
|
---|
466 | *lp = p;
|
---|
467 | }
|
---|
468 | #endif
|
---|
469 | #else /* VBOX */
|
---|
470 | /* level 0 lookup and lazy allocation of level 1 map. */
|
---|
471 | if (RT_UNLIKELY(index >= (target_phys_addr_t)L2_SIZE * L1_SIZE * L0_SIZE))
|
---|
472 | return NULL;
|
---|
473 | p = l0_phys_map[index >> (L1_BITS + L2_BITS)];
|
---|
474 | if (RT_UNLIKELY(!p)) {
|
---|
475 | if (!alloc)
|
---|
476 | return NULL;
|
---|
477 | p = qemu_vmalloc(sizeof(void **) * L1_SIZE);
|
---|
478 | memset(p, 0, sizeof(void **) * L1_SIZE);
|
---|
479 | l0_phys_map[index >> (L1_BITS + L2_BITS)] = p;
|
---|
480 | }
|
---|
481 |
|
---|
482 | /* level 1 lookup and lazy allocation of level 2 map. */
|
---|
483 | #endif /* VBOX */
|
---|
484 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
|
---|
485 | pd = *lp;
|
---|
486 | if (!pd) {
|
---|
487 | int i;
|
---|
488 | /* allocate if not found */
|
---|
489 | if (!alloc)
|
---|
490 | return NULL;
|
---|
491 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
|
---|
492 | *lp = pd;
|
---|
493 | for (i = 0; i < L2_SIZE; i++) {
|
---|
494 | pd[i].phys_offset = IO_MEM_UNASSIGNED;
|
---|
495 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
|
---|
496 | }
|
---|
497 | }
|
---|
498 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
|
---|
499 | }
|
---|
500 |
|
---|
501 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
|
---|
502 | {
|
---|
503 | return phys_page_find_alloc(index, 0);
|
---|
504 | }
|
---|
505 |
|
---|
506 | #if !defined(CONFIG_USER_ONLY)
|
---|
507 | static void tlb_protect_code(ram_addr_t ram_addr);
|
---|
508 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
509 | target_ulong vaddr);
|
---|
510 | #define mmap_lock() do { } while(0)
|
---|
511 | #define mmap_unlock() do { } while(0)
|
---|
512 | #endif
|
---|
513 |
|
---|
514 | #ifdef VBOX /* We don't need such huge codegen buffer size, as execute
|
---|
515 | most of the code in raw or hwacc mode. */
|
---|
516 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
|
---|
517 | #else /* !VBOX */
|
---|
518 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
|
---|
519 | #endif /* !VBOX */
|
---|
520 |
|
---|
521 | #if defined(CONFIG_USER_ONLY)
|
---|
522 | /* Currently it is not recommended to allocate big chunks of data in
|
---|
523 | user mode. It will change when a dedicated libc will be used */
|
---|
524 | #define USE_STATIC_CODE_GEN_BUFFER
|
---|
525 | #endif
|
---|
526 |
|
---|
527 | #if defined(VBOX) && defined(USE_STATIC_CODE_GEN_BUFFER)
|
---|
528 | # error "VBox allocates codegen buffer dynamically"
|
---|
529 | #endif
|
---|
530 |
|
---|
531 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
532 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
|
---|
533 | #endif
|
---|
534 |
|
---|
535 | static void code_gen_alloc(unsigned long tb_size)
|
---|
536 | {
|
---|
537 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
538 | code_gen_buffer = static_code_gen_buffer;
|
---|
539 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
540 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
541 | #else
|
---|
542 | # ifdef VBOX
|
---|
543 | /* We cannot use phys_ram_size here, as it's 0 now,
|
---|
544 | * it only gets initialized once RAM registration callback
|
---|
545 | * (REMR3NotifyPhysRamRegister()) called.
|
---|
546 | */
|
---|
547 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
548 | # else /* !VBOX */
|
---|
549 | code_gen_buffer_size = tb_size;
|
---|
550 | if (code_gen_buffer_size == 0) {
|
---|
551 | #if defined(CONFIG_USER_ONLY)
|
---|
552 | /* in user mode, phys_ram_size is not meaningful */
|
---|
553 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
554 | #else
|
---|
555 | /* XXX: needs adjustments */
|
---|
556 | code_gen_buffer_size = (unsigned long)(ram_size / 4);
|
---|
557 | #endif
|
---|
558 | }
|
---|
559 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
|
---|
560 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
|
---|
561 | # endif /* !VBOX */
|
---|
562 | /* The code gen buffer location may have constraints depending on
|
---|
563 | the host cpu and OS */
|
---|
564 | # ifdef VBOX
|
---|
565 | code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
|
---|
566 |
|
---|
567 | if (!code_gen_buffer) {
|
---|
568 | LogRel(("REM: failed allocate codegen buffer %lld\n",
|
---|
569 | code_gen_buffer_size));
|
---|
570 | return;
|
---|
571 | }
|
---|
572 | # else /* !VBOX */
|
---|
573 | #if defined(__linux__)
|
---|
574 | {
|
---|
575 | int flags;
|
---|
576 | void *start = NULL;
|
---|
577 |
|
---|
578 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
579 | #if defined(__x86_64__)
|
---|
580 | flags |= MAP_32BIT;
|
---|
581 | /* Cannot map more than that */
|
---|
582 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
583 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
584 | #elif defined(__sparc_v9__)
|
---|
585 | // Map the buffer below 2G, so we can use direct calls and branches
|
---|
586 | flags |= MAP_FIXED;
|
---|
587 | start = (void *) 0x60000000UL;
|
---|
588 | if (code_gen_buffer_size > (512 * 1024 * 1024))
|
---|
589 | code_gen_buffer_size = (512 * 1024 * 1024);
|
---|
590 | #elif defined(__arm__)
|
---|
591 | /* Map the buffer below 32M, so we can use direct calls and branches */
|
---|
592 | flags |= MAP_FIXED;
|
---|
593 | start = (void *) 0x01000000UL;
|
---|
594 | if (code_gen_buffer_size > 16 * 1024 * 1024)
|
---|
595 | code_gen_buffer_size = 16 * 1024 * 1024;
|
---|
596 | #endif
|
---|
597 | code_gen_buffer = mmap(start, code_gen_buffer_size,
|
---|
598 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
599 | flags, -1, 0);
|
---|
600 | if (code_gen_buffer == MAP_FAILED) {
|
---|
601 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
602 | exit(1);
|
---|
603 | }
|
---|
604 | }
|
---|
605 | #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
|
---|
606 | {
|
---|
607 | int flags;
|
---|
608 | void *addr = NULL;
|
---|
609 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
610 | #if defined(__x86_64__)
|
---|
611 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
|
---|
612 | * 0x40000000 is free */
|
---|
613 | flags |= MAP_FIXED;
|
---|
614 | addr = (void *)0x40000000;
|
---|
615 | /* Cannot map more than that */
|
---|
616 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
617 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
618 | #endif
|
---|
619 | code_gen_buffer = mmap(addr, code_gen_buffer_size,
|
---|
620 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
621 | flags, -1, 0);
|
---|
622 | if (code_gen_buffer == MAP_FAILED) {
|
---|
623 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
624 | exit(1);
|
---|
625 | }
|
---|
626 | }
|
---|
627 | #else
|
---|
628 | code_gen_buffer = qemu_malloc(code_gen_buffer_size);
|
---|
629 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
630 | #endif
|
---|
631 | # endif /* !VBOX */
|
---|
632 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */
|
---|
633 | #ifndef VBOX /** @todo r=bird: why are we different? */
|
---|
634 | map_exec(code_gen_prologue, sizeof(code_gen_prologue));
|
---|
635 | #else
|
---|
636 | map_exec(code_gen_prologue, _1K);
|
---|
637 | #endif
|
---|
638 | code_gen_buffer_max_size = code_gen_buffer_size -
|
---|
639 | code_gen_max_block_size();
|
---|
640 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
|
---|
641 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
|
---|
642 | }
|
---|
643 |
|
---|
644 | /* Must be called before using the QEMU cpus. 'tb_size' is the size
|
---|
645 | (in bytes) allocated to the translation buffer. Zero means default
|
---|
646 | size. */
|
---|
647 | void cpu_exec_init_all(unsigned long tb_size)
|
---|
648 | {
|
---|
649 | cpu_gen_init();
|
---|
650 | code_gen_alloc(tb_size);
|
---|
651 | code_gen_ptr = code_gen_buffer;
|
---|
652 | page_init();
|
---|
653 | #if !defined(CONFIG_USER_ONLY)
|
---|
654 | io_mem_init();
|
---|
655 | #endif
|
---|
656 | }
|
---|
657 |
|
---|
658 | #ifndef VBOX
|
---|
659 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
660 |
|
---|
661 | static void cpu_common_pre_save(void *opaque)
|
---|
662 | {
|
---|
663 | CPUState *env = opaque;
|
---|
664 |
|
---|
665 | cpu_synchronize_state(env);
|
---|
666 | }
|
---|
667 |
|
---|
668 | static int cpu_common_pre_load(void *opaque)
|
---|
669 | {
|
---|
670 | CPUState *env = opaque;
|
---|
671 |
|
---|
672 | cpu_synchronize_state(env);
|
---|
673 | return 0;
|
---|
674 | }
|
---|
675 |
|
---|
676 | static int cpu_common_post_load(void *opaque, int version_id)
|
---|
677 | {
|
---|
678 | CPUState *env = opaque;
|
---|
679 |
|
---|
680 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
---|
681 | version_id is increased. */
|
---|
682 | env->interrupt_request &= ~0x01;
|
---|
683 | tlb_flush(env, 1);
|
---|
684 |
|
---|
685 | return 0;
|
---|
686 | }
|
---|
687 |
|
---|
688 | static const VMStateDescription vmstate_cpu_common = {
|
---|
689 | .name = "cpu_common",
|
---|
690 | .version_id = 1,
|
---|
691 | .minimum_version_id = 1,
|
---|
692 | .minimum_version_id_old = 1,
|
---|
693 | .pre_save = cpu_common_pre_save,
|
---|
694 | .pre_load = cpu_common_pre_load,
|
---|
695 | .post_load = cpu_common_post_load,
|
---|
696 | .fields = (VMStateField []) {
|
---|
697 | VMSTATE_UINT32(halted, CPUState),
|
---|
698 | VMSTATE_UINT32(interrupt_request, CPUState),
|
---|
699 | VMSTATE_END_OF_LIST()
|
---|
700 | }
|
---|
701 | };
|
---|
702 | #endif
|
---|
703 |
|
---|
704 | CPUState *qemu_get_cpu(int cpu)
|
---|
705 | {
|
---|
706 | CPUState *env = first_cpu;
|
---|
707 |
|
---|
708 | while (env) {
|
---|
709 | if (env->cpu_index == cpu)
|
---|
710 | break;
|
---|
711 | env = env->next_cpu;
|
---|
712 | }
|
---|
713 |
|
---|
714 | return env;
|
---|
715 | }
|
---|
716 |
|
---|
717 | #endif /* !VBOX */
|
---|
718 |
|
---|
719 | void cpu_exec_init(CPUState *env)
|
---|
720 | {
|
---|
721 | CPUState **penv;
|
---|
722 | int cpu_index;
|
---|
723 |
|
---|
724 | #if defined(CONFIG_USER_ONLY)
|
---|
725 | cpu_list_lock();
|
---|
726 | #endif
|
---|
727 | env->next_cpu = NULL;
|
---|
728 | penv = &first_cpu;
|
---|
729 | cpu_index = 0;
|
---|
730 | while (*penv != NULL) {
|
---|
731 | penv = &(*penv)->next_cpu;
|
---|
732 | cpu_index++;
|
---|
733 | }
|
---|
734 | env->cpu_index = cpu_index;
|
---|
735 | env->numa_node = 0;
|
---|
736 | QTAILQ_INIT(&env->breakpoints);
|
---|
737 | QTAILQ_INIT(&env->watchpoints);
|
---|
738 | *penv = env;
|
---|
739 | #ifndef VBOX
|
---|
740 | #if defined(CONFIG_USER_ONLY)
|
---|
741 | cpu_list_unlock();
|
---|
742 | #endif
|
---|
743 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
744 | vmstate_register(cpu_index, &vmstate_cpu_common, env);
|
---|
745 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
|
---|
746 | cpu_save, cpu_load, env);
|
---|
747 | #endif
|
---|
748 | #endif /* !VBOX */
|
---|
749 | }
|
---|
750 |
|
---|
751 | static inline void invalidate_page_bitmap(PageDesc *p)
|
---|
752 | {
|
---|
753 | if (p->code_bitmap) {
|
---|
754 | qemu_free(p->code_bitmap);
|
---|
755 | p->code_bitmap = NULL;
|
---|
756 | }
|
---|
757 | p->code_write_count = 0;
|
---|
758 | }
|
---|
759 |
|
---|
760 | /* set to NULL all the 'first_tb' fields in all PageDescs */
|
---|
761 | static void page_flush_tb(void)
|
---|
762 | {
|
---|
763 | int i, j;
|
---|
764 | PageDesc *p;
|
---|
765 | #ifdef VBOX
|
---|
766 | int k;
|
---|
767 | #endif
|
---|
768 |
|
---|
769 | #ifdef VBOX
|
---|
770 | k = l0_map_max_used;
|
---|
771 | while (k-- > 0) {
|
---|
772 | PageDesc **l1_map = l0_map[k];
|
---|
773 | if (l1_map) {
|
---|
774 | #endif
|
---|
775 | for(i = 0; i < L1_SIZE; i++) {
|
---|
776 | p = l1_map[i];
|
---|
777 | if (p) {
|
---|
778 | for(j = 0; j < L2_SIZE; j++) {
|
---|
779 | p->first_tb = NULL;
|
---|
780 | invalidate_page_bitmap(p);
|
---|
781 | p++;
|
---|
782 | }
|
---|
783 | }
|
---|
784 | }
|
---|
785 | #ifdef VBOX
|
---|
786 | }
|
---|
787 | }
|
---|
788 | #endif
|
---|
789 | }
|
---|
790 |
|
---|
791 | /* flush all the translation blocks */
|
---|
792 | /* XXX: tb_flush is currently not thread safe */
|
---|
793 | void tb_flush(CPUState *env1)
|
---|
794 | {
|
---|
795 | CPUState *env;
|
---|
796 | #ifdef VBOX
|
---|
797 | STAM_PROFILE_START(&env1->StatTbFlush, a);
|
---|
798 | #endif
|
---|
799 | #if defined(DEBUG_FLUSH)
|
---|
800 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
|
---|
801 | (unsigned long)(code_gen_ptr - code_gen_buffer),
|
---|
802 | nb_tbs, nb_tbs > 0 ?
|
---|
803 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
|
---|
804 | #endif
|
---|
805 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
|
---|
806 | cpu_abort(env1, "Internal error: code buffer overflow\n");
|
---|
807 |
|
---|
808 | nb_tbs = 0;
|
---|
809 |
|
---|
810 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
811 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
812 | }
|
---|
813 |
|
---|
814 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
|
---|
815 | page_flush_tb();
|
---|
816 |
|
---|
817 | code_gen_ptr = code_gen_buffer;
|
---|
818 | /* XXX: flush processor icache at this point if cache flush is
|
---|
819 | expensive */
|
---|
820 | tb_flush_count++;
|
---|
821 | #ifdef VBOX
|
---|
822 | STAM_PROFILE_STOP(&env1->StatTbFlush, a);
|
---|
823 | #endif
|
---|
824 | }
|
---|
825 |
|
---|
826 | #ifdef DEBUG_TB_CHECK
|
---|
827 |
|
---|
828 | static void tb_invalidate_check(target_ulong address)
|
---|
829 | {
|
---|
830 | TranslationBlock *tb;
|
---|
831 | int i;
|
---|
832 | address &= TARGET_PAGE_MASK;
|
---|
833 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
834 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
835 | if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
|
---|
836 | address >= tb->pc + tb->size)) {
|
---|
837 | printf("ERROR invalidate: address=" TARGET_FMT_lx
|
---|
838 | " PC=%08lx size=%04x\n",
|
---|
839 | address, (long)tb->pc, tb->size);
|
---|
840 | }
|
---|
841 | }
|
---|
842 | }
|
---|
843 | }
|
---|
844 |
|
---|
845 | /* verify that all the pages have correct rights for code */
|
---|
846 | static void tb_page_check(void)
|
---|
847 | {
|
---|
848 | TranslationBlock *tb;
|
---|
849 | int i, flags1, flags2;
|
---|
850 |
|
---|
851 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
852 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
853 | flags1 = page_get_flags(tb->pc);
|
---|
854 | flags2 = page_get_flags(tb->pc + tb->size - 1);
|
---|
855 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
|
---|
856 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
|
---|
857 | (long)tb->pc, tb->size, flags1, flags2);
|
---|
858 | }
|
---|
859 | }
|
---|
860 | }
|
---|
861 | }
|
---|
862 |
|
---|
863 | #endif
|
---|
864 |
|
---|
865 | /* invalidate one TB */
|
---|
866 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
|
---|
867 | int next_offset)
|
---|
868 | {
|
---|
869 | TranslationBlock *tb1;
|
---|
870 | for(;;) {
|
---|
871 | tb1 = *ptb;
|
---|
872 | if (tb1 == tb) {
|
---|
873 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
|
---|
874 | break;
|
---|
875 | }
|
---|
876 | ptb = (TranslationBlock **)((char *)tb1 + next_offset);
|
---|
877 | }
|
---|
878 | }
|
---|
879 |
|
---|
880 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
|
---|
881 | {
|
---|
882 | TranslationBlock *tb1;
|
---|
883 | unsigned int n1;
|
---|
884 |
|
---|
885 | for(;;) {
|
---|
886 | tb1 = *ptb;
|
---|
887 | n1 = (long)tb1 & 3;
|
---|
888 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
889 | if (tb1 == tb) {
|
---|
890 | *ptb = tb1->page_next[n1];
|
---|
891 | break;
|
---|
892 | }
|
---|
893 | ptb = &tb1->page_next[n1];
|
---|
894 | }
|
---|
895 | }
|
---|
896 |
|
---|
897 | static inline void tb_jmp_remove(TranslationBlock *tb, int n)
|
---|
898 | {
|
---|
899 | TranslationBlock *tb1, **ptb;
|
---|
900 | unsigned int n1;
|
---|
901 |
|
---|
902 | ptb = &tb->jmp_next[n];
|
---|
903 | tb1 = *ptb;
|
---|
904 | if (tb1) {
|
---|
905 | /* find tb(n) in circular list */
|
---|
906 | for(;;) {
|
---|
907 | tb1 = *ptb;
|
---|
908 | n1 = (long)tb1 & 3;
|
---|
909 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
910 | if (n1 == n && tb1 == tb)
|
---|
911 | break;
|
---|
912 | if (n1 == 2) {
|
---|
913 | ptb = &tb1->jmp_first;
|
---|
914 | } else {
|
---|
915 | ptb = &tb1->jmp_next[n1];
|
---|
916 | }
|
---|
917 | }
|
---|
918 | /* now we can suppress tb(n) from the list */
|
---|
919 | *ptb = tb->jmp_next[n];
|
---|
920 |
|
---|
921 | tb->jmp_next[n] = NULL;
|
---|
922 | }
|
---|
923 | }
|
---|
924 |
|
---|
925 | /* reset the jump entry 'n' of a TB so that it is not chained to
|
---|
926 | another TB */
|
---|
927 | static inline void tb_reset_jump(TranslationBlock *tb, int n)
|
---|
928 | {
|
---|
929 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
|
---|
930 | }
|
---|
931 |
|
---|
932 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
|
---|
933 | {
|
---|
934 | CPUState *env;
|
---|
935 | PageDesc *p;
|
---|
936 | unsigned int h, n1;
|
---|
937 | target_phys_addr_t phys_pc;
|
---|
938 | TranslationBlock *tb1, *tb2;
|
---|
939 |
|
---|
940 | /* remove the TB from the hash list */
|
---|
941 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
942 | h = tb_phys_hash_func(phys_pc);
|
---|
943 | tb_remove(&tb_phys_hash[h], tb,
|
---|
944 | offsetof(TranslationBlock, phys_hash_next));
|
---|
945 |
|
---|
946 | /* remove the TB from the page list */
|
---|
947 | if (tb->page_addr[0] != page_addr) {
|
---|
948 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
|
---|
949 | tb_page_remove(&p->first_tb, tb);
|
---|
950 | invalidate_page_bitmap(p);
|
---|
951 | }
|
---|
952 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
|
---|
953 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
|
---|
954 | tb_page_remove(&p->first_tb, tb);
|
---|
955 | invalidate_page_bitmap(p);
|
---|
956 | }
|
---|
957 |
|
---|
958 | tb_invalidated_flag = 1;
|
---|
959 |
|
---|
960 | /* remove the TB from the hash list */
|
---|
961 | h = tb_jmp_cache_hash_func(tb->pc);
|
---|
962 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
963 | if (env->tb_jmp_cache[h] == tb)
|
---|
964 | env->tb_jmp_cache[h] = NULL;
|
---|
965 | }
|
---|
966 |
|
---|
967 | /* suppress this TB from the two jump lists */
|
---|
968 | tb_jmp_remove(tb, 0);
|
---|
969 | tb_jmp_remove(tb, 1);
|
---|
970 |
|
---|
971 | /* suppress any remaining jumps to this TB */
|
---|
972 | tb1 = tb->jmp_first;
|
---|
973 | for(;;) {
|
---|
974 | n1 = (long)tb1 & 3;
|
---|
975 | if (n1 == 2)
|
---|
976 | break;
|
---|
977 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
978 | tb2 = tb1->jmp_next[n1];
|
---|
979 | tb_reset_jump(tb1, n1);
|
---|
980 | tb1->jmp_next[n1] = NULL;
|
---|
981 | tb1 = tb2;
|
---|
982 | }
|
---|
983 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
|
---|
984 |
|
---|
985 | tb_phys_invalidate_count++;
|
---|
986 | }
|
---|
987 |
|
---|
988 | #ifdef VBOX
|
---|
989 |
|
---|
990 | void tb_invalidate_virt(CPUState *env, uint32_t eip)
|
---|
991 | {
|
---|
992 | # if 1
|
---|
993 | tb_flush(env);
|
---|
994 | # else
|
---|
995 | uint8_t *cs_base, *pc;
|
---|
996 | unsigned int flags, h, phys_pc;
|
---|
997 | TranslationBlock *tb, **ptb;
|
---|
998 |
|
---|
999 | flags = env->hflags;
|
---|
1000 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
|
---|
1001 | cs_base = env->segs[R_CS].base;
|
---|
1002 | pc = cs_base + eip;
|
---|
1003 |
|
---|
1004 | tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
|
---|
1005 | flags);
|
---|
1006 |
|
---|
1007 | if(tb)
|
---|
1008 | {
|
---|
1009 | # ifdef DEBUG
|
---|
1010 | printf("invalidating TB (%08X) at %08X\n", tb, eip);
|
---|
1011 | # endif
|
---|
1012 | tb_invalidate(tb);
|
---|
1013 | //Note: this will leak TBs, but the whole cache will be flushed
|
---|
1014 | // when it happens too often
|
---|
1015 | tb->pc = 0;
|
---|
1016 | tb->cs_base = 0;
|
---|
1017 | tb->flags = 0;
|
---|
1018 | }
|
---|
1019 | # endif
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | # ifdef VBOX_STRICT
|
---|
1023 | /**
|
---|
1024 | * Gets the page offset.
|
---|
1025 | */
|
---|
1026 | unsigned long get_phys_page_offset(target_ulong addr)
|
---|
1027 | {
|
---|
1028 | PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1029 | return p ? p->phys_offset : 0;
|
---|
1030 | }
|
---|
1031 | # endif /* VBOX_STRICT */
|
---|
1032 |
|
---|
1033 | #endif /* VBOX */
|
---|
1034 |
|
---|
1035 | static inline void set_bits(uint8_t *tab, int start, int len)
|
---|
1036 | {
|
---|
1037 | int end, mask, end1;
|
---|
1038 |
|
---|
1039 | end = start + len;
|
---|
1040 | tab += start >> 3;
|
---|
1041 | mask = 0xff << (start & 7);
|
---|
1042 | if ((start & ~7) == (end & ~7)) {
|
---|
1043 | if (start < end) {
|
---|
1044 | mask &= ~(0xff << (end & 7));
|
---|
1045 | *tab |= mask;
|
---|
1046 | }
|
---|
1047 | } else {
|
---|
1048 | *tab++ |= mask;
|
---|
1049 | start = (start + 8) & ~7;
|
---|
1050 | end1 = end & ~7;
|
---|
1051 | while (start < end1) {
|
---|
1052 | *tab++ = 0xff;
|
---|
1053 | start += 8;
|
---|
1054 | }
|
---|
1055 | if (start < end) {
|
---|
1056 | mask = ~(0xff << (end & 7));
|
---|
1057 | *tab |= mask;
|
---|
1058 | }
|
---|
1059 | }
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | static void build_page_bitmap(PageDesc *p)
|
---|
1063 | {
|
---|
1064 | int n, tb_start, tb_end;
|
---|
1065 | TranslationBlock *tb;
|
---|
1066 |
|
---|
1067 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
|
---|
1068 |
|
---|
1069 | tb = p->first_tb;
|
---|
1070 | while (tb != NULL) {
|
---|
1071 | n = (long)tb & 3;
|
---|
1072 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1073 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1074 | if (n == 0) {
|
---|
1075 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1076 | it is not a problem */
|
---|
1077 | tb_start = tb->pc & ~TARGET_PAGE_MASK;
|
---|
1078 | tb_end = tb_start + tb->size;
|
---|
1079 | if (tb_end > TARGET_PAGE_SIZE)
|
---|
1080 | tb_end = TARGET_PAGE_SIZE;
|
---|
1081 | } else {
|
---|
1082 | tb_start = 0;
|
---|
1083 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1084 | }
|
---|
1085 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
|
---|
1086 | tb = tb->page_next[n];
|
---|
1087 | }
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | TranslationBlock *tb_gen_code(CPUState *env,
|
---|
1091 | target_ulong pc, target_ulong cs_base,
|
---|
1092 | int flags, int cflags)
|
---|
1093 | {
|
---|
1094 | TranslationBlock *tb;
|
---|
1095 | uint8_t *tc_ptr;
|
---|
1096 | target_ulong phys_pc, phys_page2, virt_page2;
|
---|
1097 | int code_gen_size;
|
---|
1098 |
|
---|
1099 | phys_pc = get_phys_addr_code(env, pc);
|
---|
1100 | tb = tb_alloc(pc);
|
---|
1101 | if (!tb) {
|
---|
1102 | /* flush must be done */
|
---|
1103 | tb_flush(env);
|
---|
1104 | /* cannot fail at this point */
|
---|
1105 | tb = tb_alloc(pc);
|
---|
1106 | /* Don't forget to invalidate previous TB info. */
|
---|
1107 | tb_invalidated_flag = 1;
|
---|
1108 | }
|
---|
1109 | tc_ptr = code_gen_ptr;
|
---|
1110 | tb->tc_ptr = tc_ptr;
|
---|
1111 | tb->cs_base = cs_base;
|
---|
1112 | tb->flags = flags;
|
---|
1113 | tb->cflags = cflags;
|
---|
1114 | cpu_gen_code(env, tb, &code_gen_size);
|
---|
1115 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
|
---|
1116 |
|
---|
1117 | /* check next page if needed */
|
---|
1118 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
---|
1119 | phys_page2 = -1;
|
---|
1120 | if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
---|
1121 | phys_page2 = get_phys_addr_code(env, virt_page2);
|
---|
1122 | }
|
---|
1123 | tb_link_phys(tb, phys_pc, phys_page2);
|
---|
1124 | return tb;
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | /* invalidate all TBs which intersect with the target physical page
|
---|
1128 | starting in range [start;end[. NOTE: start and end must refer to
|
---|
1129 | the same physical page. 'is_cpu_write_access' should be true if called
|
---|
1130 | from a real cpu write access: the virtual CPU will exit the current
|
---|
1131 | TB if code is modified inside this TB. */
|
---|
1132 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
|
---|
1133 | int is_cpu_write_access)
|
---|
1134 | {
|
---|
1135 | TranslationBlock *tb, *tb_next, *saved_tb;
|
---|
1136 | CPUState *env = cpu_single_env;
|
---|
1137 | target_ulong tb_start, tb_end;
|
---|
1138 | PageDesc *p;
|
---|
1139 | int n;
|
---|
1140 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1141 | int current_tb_not_found = is_cpu_write_access;
|
---|
1142 | TranslationBlock *current_tb = NULL;
|
---|
1143 | int current_tb_modified = 0;
|
---|
1144 | target_ulong current_pc = 0;
|
---|
1145 | target_ulong current_cs_base = 0;
|
---|
1146 | int current_flags = 0;
|
---|
1147 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1148 |
|
---|
1149 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1150 | if (!p)
|
---|
1151 | return;
|
---|
1152 | if (!p->code_bitmap &&
|
---|
1153 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
|
---|
1154 | is_cpu_write_access) {
|
---|
1155 | /* build code bitmap */
|
---|
1156 | build_page_bitmap(p);
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | /* we remove all the TBs in the range [start, end[ */
|
---|
1160 | /* XXX: see if in some cases it could be faster to invalidate all the code */
|
---|
1161 | tb = p->first_tb;
|
---|
1162 | while (tb != NULL) {
|
---|
1163 | n = (long)tb & 3;
|
---|
1164 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1165 | tb_next = tb->page_next[n];
|
---|
1166 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1167 | if (n == 0) {
|
---|
1168 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1169 | it is not a problem */
|
---|
1170 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
1171 | tb_end = tb_start + tb->size;
|
---|
1172 | } else {
|
---|
1173 | tb_start = tb->page_addr[1];
|
---|
1174 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1175 | }
|
---|
1176 | if (!(tb_end <= start || tb_start >= end)) {
|
---|
1177 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1178 | if (current_tb_not_found) {
|
---|
1179 | current_tb_not_found = 0;
|
---|
1180 | current_tb = NULL;
|
---|
1181 | if (env->mem_io_pc) {
|
---|
1182 | /* now we have a real cpu fault */
|
---|
1183 | current_tb = tb_find_pc(env->mem_io_pc);
|
---|
1184 | }
|
---|
1185 | }
|
---|
1186 | if (current_tb == tb &&
|
---|
1187 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1188 | /* If we are modifying the current TB, we must stop
|
---|
1189 | its execution. We could be more precise by checking
|
---|
1190 | that the modification is after the current PC, but it
|
---|
1191 | would require a specialized function to partially
|
---|
1192 | restore the CPU state */
|
---|
1193 |
|
---|
1194 | current_tb_modified = 1;
|
---|
1195 | cpu_restore_state(current_tb, env,
|
---|
1196 | env->mem_io_pc, NULL);
|
---|
1197 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1198 | ¤t_flags);
|
---|
1199 | }
|
---|
1200 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1201 | /* we need to do that to handle the case where a signal
|
---|
1202 | occurs while doing tb_phys_invalidate() */
|
---|
1203 | saved_tb = NULL;
|
---|
1204 | if (env) {
|
---|
1205 | saved_tb = env->current_tb;
|
---|
1206 | env->current_tb = NULL;
|
---|
1207 | }
|
---|
1208 | tb_phys_invalidate(tb, -1);
|
---|
1209 | if (env) {
|
---|
1210 | env->current_tb = saved_tb;
|
---|
1211 | if (env->interrupt_request && env->current_tb)
|
---|
1212 | cpu_interrupt(env, env->interrupt_request);
|
---|
1213 | }
|
---|
1214 | }
|
---|
1215 | tb = tb_next;
|
---|
1216 | }
|
---|
1217 | #if !defined(CONFIG_USER_ONLY)
|
---|
1218 | /* if no code remaining, no need to continue to use slow writes */
|
---|
1219 | if (!p->first_tb) {
|
---|
1220 | invalidate_page_bitmap(p);
|
---|
1221 | if (is_cpu_write_access) {
|
---|
1222 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 | #endif
|
---|
1226 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1227 | if (current_tb_modified) {
|
---|
1228 | /* we generate a block containing just the instruction
|
---|
1229 | modifying the memory. It will ensure that it cannot modify
|
---|
1230 | itself */
|
---|
1231 | env->current_tb = NULL;
|
---|
1232 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1233 | cpu_resume_from_signal(env, NULL);
|
---|
1234 | }
|
---|
1235 | #endif
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 | /* len must be <= 8 and start must be a multiple of len */
|
---|
1239 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
|
---|
1240 | {
|
---|
1241 | PageDesc *p;
|
---|
1242 | int offset, b;
|
---|
1243 | #if 0
|
---|
1244 | if (1) {
|
---|
1245 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
|
---|
1246 | cpu_single_env->mem_io_vaddr, len,
|
---|
1247 | cpu_single_env->eip,
|
---|
1248 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
|
---|
1249 | }
|
---|
1250 | #endif
|
---|
1251 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1252 | if (!p)
|
---|
1253 | return;
|
---|
1254 | if (p->code_bitmap) {
|
---|
1255 | offset = start & ~TARGET_PAGE_MASK;
|
---|
1256 | b = p->code_bitmap[offset >> 3] >> (offset & 7);
|
---|
1257 | if (b & ((1 << len) - 1))
|
---|
1258 | goto do_invalidate;
|
---|
1259 | } else {
|
---|
1260 | do_invalidate:
|
---|
1261 | tb_invalidate_phys_page_range(start, start + len, 1);
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | #if !defined(CONFIG_SOFTMMU)
|
---|
1266 | static void tb_invalidate_phys_page(target_phys_addr_t addr,
|
---|
1267 | unsigned long pc, void *puc)
|
---|
1268 | {
|
---|
1269 | TranslationBlock *tb;
|
---|
1270 | PageDesc *p;
|
---|
1271 | int n;
|
---|
1272 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1273 | TranslationBlock *current_tb = NULL;
|
---|
1274 | CPUState *env = cpu_single_env;
|
---|
1275 | int current_tb_modified = 0;
|
---|
1276 | target_ulong current_pc = 0;
|
---|
1277 | target_ulong current_cs_base = 0;
|
---|
1278 | int current_flags = 0;
|
---|
1279 | #endif
|
---|
1280 |
|
---|
1281 | addr &= TARGET_PAGE_MASK;
|
---|
1282 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
1283 | if (!p)
|
---|
1284 | return;
|
---|
1285 | tb = p->first_tb;
|
---|
1286 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1287 | if (tb && pc != 0) {
|
---|
1288 | current_tb = tb_find_pc(pc);
|
---|
1289 | }
|
---|
1290 | #endif
|
---|
1291 | while (tb != NULL) {
|
---|
1292 | n = (long)tb & 3;
|
---|
1293 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1294 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1295 | if (current_tb == tb &&
|
---|
1296 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1297 | /* If we are modifying the current TB, we must stop
|
---|
1298 | its execution. We could be more precise by checking
|
---|
1299 | that the modification is after the current PC, but it
|
---|
1300 | would require a specialized function to partially
|
---|
1301 | restore the CPU state */
|
---|
1302 |
|
---|
1303 | current_tb_modified = 1;
|
---|
1304 | cpu_restore_state(current_tb, env, pc, puc);
|
---|
1305 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1306 | ¤t_flags);
|
---|
1307 | }
|
---|
1308 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1309 | tb_phys_invalidate(tb, addr);
|
---|
1310 | tb = tb->page_next[n];
|
---|
1311 | }
|
---|
1312 | p->first_tb = NULL;
|
---|
1313 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1314 | if (current_tb_modified) {
|
---|
1315 | /* we generate a block containing just the instruction
|
---|
1316 | modifying the memory. It will ensure that it cannot modify
|
---|
1317 | itself */
|
---|
1318 | env->current_tb = NULL;
|
---|
1319 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1320 | cpu_resume_from_signal(env, puc);
|
---|
1321 | }
|
---|
1322 | #endif
|
---|
1323 | }
|
---|
1324 | #endif
|
---|
1325 |
|
---|
1326 | /* add the tb in the target page and protect it if necessary */
|
---|
1327 | static inline void tb_alloc_page(TranslationBlock *tb,
|
---|
1328 | unsigned int n, target_ulong page_addr)
|
---|
1329 | {
|
---|
1330 | PageDesc *p;
|
---|
1331 | TranslationBlock *last_first_tb;
|
---|
1332 |
|
---|
1333 | tb->page_addr[n] = page_addr;
|
---|
1334 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
|
---|
1335 | tb->page_next[n] = p->first_tb;
|
---|
1336 | last_first_tb = p->first_tb;
|
---|
1337 | p->first_tb = (TranslationBlock *)((long)tb | n);
|
---|
1338 | invalidate_page_bitmap(p);
|
---|
1339 |
|
---|
1340 | #if defined(TARGET_HAS_SMC) || 1
|
---|
1341 |
|
---|
1342 | #if defined(CONFIG_USER_ONLY)
|
---|
1343 | if (p->flags & PAGE_WRITE) {
|
---|
1344 | target_ulong addr;
|
---|
1345 | PageDesc *p2;
|
---|
1346 | int prot;
|
---|
1347 |
|
---|
1348 | /* force the host page as non writable (writes will have a
|
---|
1349 | page fault + mprotect overhead) */
|
---|
1350 | page_addr &= qemu_host_page_mask;
|
---|
1351 | prot = 0;
|
---|
1352 | for(addr = page_addr; addr < page_addr + qemu_host_page_size;
|
---|
1353 | addr += TARGET_PAGE_SIZE) {
|
---|
1354 |
|
---|
1355 | p2 = page_find (addr >> TARGET_PAGE_BITS);
|
---|
1356 | if (!p2)
|
---|
1357 | continue;
|
---|
1358 | prot |= p2->flags;
|
---|
1359 | p2->flags &= ~PAGE_WRITE;
|
---|
1360 | page_get_flags(addr);
|
---|
1361 | }
|
---|
1362 | mprotect(g2h(page_addr), qemu_host_page_size,
|
---|
1363 | (prot & PAGE_BITS) & ~PAGE_WRITE);
|
---|
1364 | #ifdef DEBUG_TB_INVALIDATE
|
---|
1365 | printf("protecting code page: 0x" TARGET_FMT_lx "\n",
|
---|
1366 | page_addr);
|
---|
1367 | #endif
|
---|
1368 | }
|
---|
1369 | #else
|
---|
1370 | /* if some code is already present, then the pages are already
|
---|
1371 | protected. So we handle the case where only the first TB is
|
---|
1372 | allocated in a physical page */
|
---|
1373 | if (!last_first_tb) {
|
---|
1374 | tlb_protect_code(page_addr);
|
---|
1375 | }
|
---|
1376 | #endif
|
---|
1377 |
|
---|
1378 | #endif /* TARGET_HAS_SMC */
|
---|
1379 | }
|
---|
1380 |
|
---|
1381 | /* Allocate a new translation block. Flush the translation buffer if
|
---|
1382 | too many translation blocks or too much generated code. */
|
---|
1383 | TranslationBlock *tb_alloc(target_ulong pc)
|
---|
1384 | {
|
---|
1385 | TranslationBlock *tb;
|
---|
1386 |
|
---|
1387 | if (nb_tbs >= code_gen_max_blocks ||
|
---|
1388 | #ifndef VBOX
|
---|
1389 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
|
---|
1390 | #else
|
---|
1391 | (code_gen_ptr - code_gen_buffer) >= (int)code_gen_buffer_max_size)
|
---|
1392 | #endif
|
---|
1393 | return NULL;
|
---|
1394 | tb = &tbs[nb_tbs++];
|
---|
1395 | tb->pc = pc;
|
---|
1396 | tb->cflags = 0;
|
---|
1397 | return tb;
|
---|
1398 | }
|
---|
1399 |
|
---|
1400 | void tb_free(TranslationBlock *tb)
|
---|
1401 | {
|
---|
1402 | /* In practice this is mostly used for single use temporary TB
|
---|
1403 | Ignore the hard cases and just back up if this TB happens to
|
---|
1404 | be the last one generated. */
|
---|
1405 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
|
---|
1406 | code_gen_ptr = tb->tc_ptr;
|
---|
1407 | nb_tbs--;
|
---|
1408 | }
|
---|
1409 | }
|
---|
1410 |
|
---|
1411 | /* add a new TB and link it to the physical page tables. phys_page2 is
|
---|
1412 | (-1) to indicate that only one page contains the TB. */
|
---|
1413 | void tb_link_phys(TranslationBlock *tb,
|
---|
1414 | target_ulong phys_pc, target_ulong phys_page2)
|
---|
1415 | {
|
---|
1416 | unsigned int h;
|
---|
1417 | TranslationBlock **ptb;
|
---|
1418 |
|
---|
1419 | /* Grab the mmap lock to stop another thread invalidating this TB
|
---|
1420 | before we are done. */
|
---|
1421 | mmap_lock();
|
---|
1422 | /* add in the physical hash table */
|
---|
1423 | h = tb_phys_hash_func(phys_pc);
|
---|
1424 | ptb = &tb_phys_hash[h];
|
---|
1425 | tb->phys_hash_next = *ptb;
|
---|
1426 | *ptb = tb;
|
---|
1427 |
|
---|
1428 | /* add in the page list */
|
---|
1429 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
|
---|
1430 | if (phys_page2 != -1)
|
---|
1431 | tb_alloc_page(tb, 1, phys_page2);
|
---|
1432 | else
|
---|
1433 | tb->page_addr[1] = -1;
|
---|
1434 |
|
---|
1435 | tb->jmp_first = (TranslationBlock *)((long)tb | 2);
|
---|
1436 | tb->jmp_next[0] = NULL;
|
---|
1437 | tb->jmp_next[1] = NULL;
|
---|
1438 |
|
---|
1439 | /* init original jump addresses */
|
---|
1440 | if (tb->tb_next_offset[0] != 0xffff)
|
---|
1441 | tb_reset_jump(tb, 0);
|
---|
1442 | if (tb->tb_next_offset[1] != 0xffff)
|
---|
1443 | tb_reset_jump(tb, 1);
|
---|
1444 |
|
---|
1445 | #ifdef DEBUG_TB_CHECK
|
---|
1446 | tb_page_check();
|
---|
1447 | #endif
|
---|
1448 | mmap_unlock();
|
---|
1449 | }
|
---|
1450 |
|
---|
1451 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
|
---|
1452 | tb[1].tc_ptr. Return NULL if not found */
|
---|
1453 | TranslationBlock *tb_find_pc(unsigned long tc_ptr)
|
---|
1454 | {
|
---|
1455 | int m_min, m_max, m;
|
---|
1456 | unsigned long v;
|
---|
1457 | TranslationBlock *tb;
|
---|
1458 |
|
---|
1459 | if (nb_tbs <= 0)
|
---|
1460 | return NULL;
|
---|
1461 | if (tc_ptr < (unsigned long)code_gen_buffer ||
|
---|
1462 | tc_ptr >= (unsigned long)code_gen_ptr)
|
---|
1463 | return NULL;
|
---|
1464 | /* binary search (cf Knuth) */
|
---|
1465 | m_min = 0;
|
---|
1466 | m_max = nb_tbs - 1;
|
---|
1467 | while (m_min <= m_max) {
|
---|
1468 | m = (m_min + m_max) >> 1;
|
---|
1469 | tb = &tbs[m];
|
---|
1470 | v = (unsigned long)tb->tc_ptr;
|
---|
1471 | if (v == tc_ptr)
|
---|
1472 | return tb;
|
---|
1473 | else if (tc_ptr < v) {
|
---|
1474 | m_max = m - 1;
|
---|
1475 | } else {
|
---|
1476 | m_min = m + 1;
|
---|
1477 | }
|
---|
1478 | }
|
---|
1479 | return &tbs[m_max];
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 | static void tb_reset_jump_recursive(TranslationBlock *tb);
|
---|
1483 |
|
---|
1484 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
|
---|
1485 | {
|
---|
1486 | TranslationBlock *tb1, *tb_next, **ptb;
|
---|
1487 | unsigned int n1;
|
---|
1488 |
|
---|
1489 | tb1 = tb->jmp_next[n];
|
---|
1490 | if (tb1 != NULL) {
|
---|
1491 | /* find head of list */
|
---|
1492 | for(;;) {
|
---|
1493 | n1 = (long)tb1 & 3;
|
---|
1494 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
1495 | if (n1 == 2)
|
---|
1496 | break;
|
---|
1497 | tb1 = tb1->jmp_next[n1];
|
---|
1498 | }
|
---|
1499 | /* we are now sure now that tb jumps to tb1 */
|
---|
1500 | tb_next = tb1;
|
---|
1501 |
|
---|
1502 | /* remove tb from the jmp_first list */
|
---|
1503 | ptb = &tb_next->jmp_first;
|
---|
1504 | for(;;) {
|
---|
1505 | tb1 = *ptb;
|
---|
1506 | n1 = (long)tb1 & 3;
|
---|
1507 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
1508 | if (n1 == n && tb1 == tb)
|
---|
1509 | break;
|
---|
1510 | ptb = &tb1->jmp_next[n1];
|
---|
1511 | }
|
---|
1512 | *ptb = tb->jmp_next[n];
|
---|
1513 | tb->jmp_next[n] = NULL;
|
---|
1514 |
|
---|
1515 | /* suppress the jump to next tb in generated code */
|
---|
1516 | tb_reset_jump(tb, n);
|
---|
1517 |
|
---|
1518 | /* suppress jumps in the tb on which we could have jumped */
|
---|
1519 | tb_reset_jump_recursive(tb_next);
|
---|
1520 | }
|
---|
1521 | }
|
---|
1522 |
|
---|
1523 | static void tb_reset_jump_recursive(TranslationBlock *tb)
|
---|
1524 | {
|
---|
1525 | tb_reset_jump_recursive2(tb, 0);
|
---|
1526 | tb_reset_jump_recursive2(tb, 1);
|
---|
1527 | }
|
---|
1528 |
|
---|
1529 | #if defined(TARGET_HAS_ICE)
|
---|
1530 | static void breakpoint_invalidate(CPUState *env, target_ulong pc)
|
---|
1531 | {
|
---|
1532 | target_phys_addr_t addr;
|
---|
1533 | target_ulong pd;
|
---|
1534 | ram_addr_t ram_addr;
|
---|
1535 | PhysPageDesc *p;
|
---|
1536 |
|
---|
1537 | addr = cpu_get_phys_page_debug(env, pc);
|
---|
1538 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1539 | if (!p) {
|
---|
1540 | pd = IO_MEM_UNASSIGNED;
|
---|
1541 | } else {
|
---|
1542 | pd = p->phys_offset;
|
---|
1543 | }
|
---|
1544 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
|
---|
1545 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
|
---|
1546 | }
|
---|
1547 | #endif
|
---|
1548 |
|
---|
1549 | /* Add a watchpoint. */
|
---|
1550 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1551 | int flags, CPUWatchpoint **watchpoint)
|
---|
1552 | {
|
---|
1553 | target_ulong len_mask = ~(len - 1);
|
---|
1554 | CPUWatchpoint *wp;
|
---|
1555 |
|
---|
1556 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
---|
1557 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
|
---|
1558 | fprintf(stderr, "qemu: tried to set invalid watchpoint at "
|
---|
1559 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
|
---|
1560 | #ifndef VBOX
|
---|
1561 | return -EINVAL;
|
---|
1562 | #else
|
---|
1563 | return VERR_INVALID_PARAMETER;
|
---|
1564 | #endif
|
---|
1565 | }
|
---|
1566 | wp = qemu_malloc(sizeof(*wp));
|
---|
1567 |
|
---|
1568 | wp->vaddr = addr;
|
---|
1569 | wp->len_mask = len_mask;
|
---|
1570 | wp->flags = flags;
|
---|
1571 |
|
---|
1572 | /* keep all GDB-injected watchpoints in front */
|
---|
1573 | if (flags & BP_GDB)
|
---|
1574 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
|
---|
1575 | else
|
---|
1576 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
|
---|
1577 |
|
---|
1578 | tlb_flush_page(env, addr);
|
---|
1579 |
|
---|
1580 | if (watchpoint)
|
---|
1581 | *watchpoint = wp;
|
---|
1582 | return 0;
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 | /* Remove a specific watchpoint. */
|
---|
1586 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1587 | int flags)
|
---|
1588 | {
|
---|
1589 | target_ulong len_mask = ~(len - 1);
|
---|
1590 | CPUWatchpoint *wp;
|
---|
1591 |
|
---|
1592 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
1593 | if (addr == wp->vaddr && len_mask == wp->len_mask
|
---|
1594 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
---|
1595 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1596 | return 0;
|
---|
1597 | }
|
---|
1598 | }
|
---|
1599 | #ifndef VBOX
|
---|
1600 | return -ENOENT;
|
---|
1601 | #else
|
---|
1602 | return VERR_NOT_FOUND;
|
---|
1603 | #endif
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | /* Remove a specific watchpoint by reference. */
|
---|
1607 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
|
---|
1608 | {
|
---|
1609 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
|
---|
1610 |
|
---|
1611 | tlb_flush_page(env, watchpoint->vaddr);
|
---|
1612 |
|
---|
1613 | qemu_free(watchpoint);
|
---|
1614 | }
|
---|
1615 |
|
---|
1616 | /* Remove all matching watchpoints. */
|
---|
1617 | void cpu_watchpoint_remove_all(CPUState *env, int mask)
|
---|
1618 | {
|
---|
1619 | CPUWatchpoint *wp, *next;
|
---|
1620 |
|
---|
1621 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
|
---|
1622 | if (wp->flags & mask)
|
---|
1623 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1624 | }
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 | /* Add a breakpoint. */
|
---|
1628 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
|
---|
1629 | CPUBreakpoint **breakpoint)
|
---|
1630 | {
|
---|
1631 | #if defined(TARGET_HAS_ICE)
|
---|
1632 | CPUBreakpoint *bp;
|
---|
1633 |
|
---|
1634 | bp = qemu_malloc(sizeof(*bp));
|
---|
1635 |
|
---|
1636 | bp->pc = pc;
|
---|
1637 | bp->flags = flags;
|
---|
1638 |
|
---|
1639 | /* keep all GDB-injected breakpoints in front */
|
---|
1640 | if (flags & BP_GDB)
|
---|
1641 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
|
---|
1642 | else
|
---|
1643 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
|
---|
1644 |
|
---|
1645 | breakpoint_invalidate(env, pc);
|
---|
1646 |
|
---|
1647 | if (breakpoint)
|
---|
1648 | *breakpoint = bp;
|
---|
1649 | return 0;
|
---|
1650 | #else
|
---|
1651 | return -ENOSYS;
|
---|
1652 | #endif
|
---|
1653 | }
|
---|
1654 |
|
---|
1655 | /* Remove a specific breakpoint. */
|
---|
1656 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
|
---|
1657 | {
|
---|
1658 | #if defined(TARGET_HAS_ICE)
|
---|
1659 | CPUBreakpoint *bp;
|
---|
1660 |
|
---|
1661 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
1662 | if (bp->pc == pc && bp->flags == flags) {
|
---|
1663 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1664 | return 0;
|
---|
1665 | }
|
---|
1666 | }
|
---|
1667 | # ifndef VBOX
|
---|
1668 | return -ENOENT;
|
---|
1669 | # else
|
---|
1670 | return VERR_NOT_FOUND;
|
---|
1671 | # endif
|
---|
1672 | #else
|
---|
1673 | return -ENOSYS;
|
---|
1674 | #endif
|
---|
1675 | }
|
---|
1676 |
|
---|
1677 | /* Remove a specific breakpoint by reference. */
|
---|
1678 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
|
---|
1679 | {
|
---|
1680 | #if defined(TARGET_HAS_ICE)
|
---|
1681 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
|
---|
1682 |
|
---|
1683 | breakpoint_invalidate(env, breakpoint->pc);
|
---|
1684 |
|
---|
1685 | qemu_free(breakpoint);
|
---|
1686 | #endif
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | /* Remove all matching breakpoints. */
|
---|
1690 | void cpu_breakpoint_remove_all(CPUState *env, int mask)
|
---|
1691 | {
|
---|
1692 | #if defined(TARGET_HAS_ICE)
|
---|
1693 | CPUBreakpoint *bp, *next;
|
---|
1694 |
|
---|
1695 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
|
---|
1696 | if (bp->flags & mask)
|
---|
1697 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1698 | }
|
---|
1699 | #endif
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /* enable or disable single step mode. EXCP_DEBUG is returned by the
|
---|
1703 | CPU loop after each instruction */
|
---|
1704 | void cpu_single_step(CPUState *env, int enabled)
|
---|
1705 | {
|
---|
1706 | #if defined(TARGET_HAS_ICE)
|
---|
1707 | if (env->singlestep_enabled != enabled) {
|
---|
1708 | env->singlestep_enabled = enabled;
|
---|
1709 | if (kvm_enabled())
|
---|
1710 | kvm_update_guest_debug(env, 0);
|
---|
1711 | else {
|
---|
1712 | /* must flush all the translated code to avoid inconsistencies */
|
---|
1713 | /* XXX: only flush what is necessary */
|
---|
1714 | tb_flush(env);
|
---|
1715 | }
|
---|
1716 | }
|
---|
1717 | #endif
|
---|
1718 | }
|
---|
1719 |
|
---|
1720 | #ifndef VBOX
|
---|
1721 |
|
---|
1722 | /* enable or disable low levels log */
|
---|
1723 | void cpu_set_log(int log_flags)
|
---|
1724 | {
|
---|
1725 | loglevel = log_flags;
|
---|
1726 | if (loglevel && !logfile) {
|
---|
1727 | logfile = fopen(logfilename, log_append ? "a" : "w");
|
---|
1728 | if (!logfile) {
|
---|
1729 | perror(logfilename);
|
---|
1730 | _exit(1);
|
---|
1731 | }
|
---|
1732 | #if !defined(CONFIG_SOFTMMU)
|
---|
1733 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
|
---|
1734 | {
|
---|
1735 | static char logfile_buf[4096];
|
---|
1736 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
|
---|
1737 | }
|
---|
1738 | #elif !defined(_WIN32)
|
---|
1739 | /* Win32 doesn't support line-buffering and requires size >= 2 */
|
---|
1740 | setvbuf(logfile, NULL, _IOLBF, 0);
|
---|
1741 | #endif
|
---|
1742 | log_append = 1;
|
---|
1743 | }
|
---|
1744 | if (!loglevel && logfile) {
|
---|
1745 | fclose(logfile);
|
---|
1746 | logfile = NULL;
|
---|
1747 | }
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 | void cpu_set_log_filename(const char *filename)
|
---|
1751 | {
|
---|
1752 | logfilename = strdup(filename);
|
---|
1753 | if (logfile) {
|
---|
1754 | fclose(logfile);
|
---|
1755 | logfile = NULL;
|
---|
1756 | }
|
---|
1757 | cpu_set_log(loglevel);
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | #endif /* !VBOX */
|
---|
1761 |
|
---|
1762 | static void cpu_unlink_tb(CPUState *env)
|
---|
1763 | {
|
---|
1764 | #if defined(CONFIG_USE_NPTL)
|
---|
1765 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
|
---|
1766 | problem and hope the cpu will stop of its own accord. For userspace
|
---|
1767 | emulation this often isn't actually as bad as it sounds. Often
|
---|
1768 | signals are used primarily to interrupt blocking syscalls. */
|
---|
1769 | #else
|
---|
1770 | TranslationBlock *tb;
|
---|
1771 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
|
---|
1772 |
|
---|
1773 | tb = env->current_tb;
|
---|
1774 | /* if the cpu is currently executing code, we must unlink it and
|
---|
1775 | all the potentially executing TB */
|
---|
1776 | if (tb && !testandset(&interrupt_lock)) {
|
---|
1777 | env->current_tb = NULL;
|
---|
1778 | tb_reset_jump_recursive(tb);
|
---|
1779 | resetlock(&interrupt_lock);
|
---|
1780 | }
|
---|
1781 | #endif
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | /* mask must never be zero, except for A20 change call */
|
---|
1785 | void cpu_interrupt(CPUState *env, int mask)
|
---|
1786 | {
|
---|
1787 | int old_mask;
|
---|
1788 |
|
---|
1789 | old_mask = env->interrupt_request;
|
---|
1790 | #ifndef VBOX
|
---|
1791 | env->interrupt_request |= mask;
|
---|
1792 | #else /* VBOX */
|
---|
1793 | VM_ASSERT_EMT(env->pVM);
|
---|
1794 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
|
---|
1795 | #endif /* VBOX */
|
---|
1796 |
|
---|
1797 | #ifndef VBOX
|
---|
1798 | #ifndef CONFIG_USER_ONLY
|
---|
1799 | /*
|
---|
1800 | * If called from iothread context, wake the target cpu in
|
---|
1801 | * case its halted.
|
---|
1802 | */
|
---|
1803 | if (!qemu_cpu_self(env)) {
|
---|
1804 | qemu_cpu_kick(env);
|
---|
1805 | return;
|
---|
1806 | }
|
---|
1807 | #endif
|
---|
1808 | #endif /* !VBOX */
|
---|
1809 |
|
---|
1810 | if (use_icount) {
|
---|
1811 | env->icount_decr.u16.high = 0xffff;
|
---|
1812 | #ifndef CONFIG_USER_ONLY
|
---|
1813 | if (!can_do_io(env)
|
---|
1814 | && (mask & ~old_mask) != 0) {
|
---|
1815 | cpu_abort(env, "Raised interrupt while not in I/O function");
|
---|
1816 | }
|
---|
1817 | #endif
|
---|
1818 | } else {
|
---|
1819 | cpu_unlink_tb(env);
|
---|
1820 | }
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | void cpu_reset_interrupt(CPUState *env, int mask)
|
---|
1824 | {
|
---|
1825 | #ifdef VBOX
|
---|
1826 | /*
|
---|
1827 | * Note: the current implementation can be executed by another thread without problems; make sure this remains true
|
---|
1828 | * for future changes!
|
---|
1829 | */
|
---|
1830 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
|
---|
1831 | #else /* !VBOX */
|
---|
1832 | env->interrupt_request &= ~mask;
|
---|
1833 | #endif /* !VBOX */
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 | void cpu_exit(CPUState *env)
|
---|
1837 | {
|
---|
1838 | env->exit_request = 1;
|
---|
1839 | cpu_unlink_tb(env);
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 | #ifndef VBOX
|
---|
1843 | const CPULogItem cpu_log_items[] = {
|
---|
1844 | { CPU_LOG_TB_OUT_ASM, "out_asm",
|
---|
1845 | "show generated host assembly code for each compiled TB" },
|
---|
1846 | { CPU_LOG_TB_IN_ASM, "in_asm",
|
---|
1847 | "show target assembly code for each compiled TB" },
|
---|
1848 | { CPU_LOG_TB_OP, "op",
|
---|
1849 | "show micro ops for each compiled TB" },
|
---|
1850 | { CPU_LOG_TB_OP_OPT, "op_opt",
|
---|
1851 | "show micro ops "
|
---|
1852 | #ifdef TARGET_I386
|
---|
1853 | "before eflags optimization and "
|
---|
1854 | #endif
|
---|
1855 | "after liveness analysis" },
|
---|
1856 | { CPU_LOG_INT, "int",
|
---|
1857 | "show interrupts/exceptions in short format" },
|
---|
1858 | { CPU_LOG_EXEC, "exec",
|
---|
1859 | "show trace before each executed TB (lots of logs)" },
|
---|
1860 | { CPU_LOG_TB_CPU, "cpu",
|
---|
1861 | "show CPU state before block translation" },
|
---|
1862 | #ifdef TARGET_I386
|
---|
1863 | { CPU_LOG_PCALL, "pcall",
|
---|
1864 | "show protected mode far calls/returns/exceptions" },
|
---|
1865 | { CPU_LOG_RESET, "cpu_reset",
|
---|
1866 | "show CPU state before CPU resets" },
|
---|
1867 | #endif
|
---|
1868 | #ifdef DEBUG_IOPORT
|
---|
1869 | { CPU_LOG_IOPORT, "ioport",
|
---|
1870 | "show all i/o ports accesses" },
|
---|
1871 | #endif
|
---|
1872 | { 0, NULL, NULL },
|
---|
1873 | };
|
---|
1874 |
|
---|
1875 | static int cmp1(const char *s1, int n, const char *s2)
|
---|
1876 | {
|
---|
1877 | if (strlen(s2) != n)
|
---|
1878 | return 0;
|
---|
1879 | return memcmp(s1, s2, n) == 0;
|
---|
1880 | }
|
---|
1881 |
|
---|
1882 | /* takes a comma separated list of log masks. Return 0 if error. */
|
---|
1883 | int cpu_str_to_log_mask(const char *str)
|
---|
1884 | {
|
---|
1885 | const CPULogItem *item;
|
---|
1886 | int mask;
|
---|
1887 | const char *p, *p1;
|
---|
1888 |
|
---|
1889 | p = str;
|
---|
1890 | mask = 0;
|
---|
1891 | for(;;) {
|
---|
1892 | p1 = strchr(p, ',');
|
---|
1893 | if (!p1)
|
---|
1894 | p1 = p + strlen(p);
|
---|
1895 | if(cmp1(p,p1-p,"all")) {
|
---|
1896 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1897 | mask |= item->mask;
|
---|
1898 | }
|
---|
1899 | } else {
|
---|
1900 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1901 | if (cmp1(p, p1 - p, item->name))
|
---|
1902 | goto found;
|
---|
1903 | }
|
---|
1904 | return 0;
|
---|
1905 | }
|
---|
1906 | found:
|
---|
1907 | mask |= item->mask;
|
---|
1908 | if (*p1 != ',')
|
---|
1909 | break;
|
---|
1910 | p = p1 + 1;
|
---|
1911 | }
|
---|
1912 | return mask;
|
---|
1913 | }
|
---|
1914 | #endif /* !VBOX */
|
---|
1915 |
|
---|
1916 | #ifndef VBOX /* VBOX: we have our own routine. */
|
---|
1917 | void cpu_abort(CPUState *env, const char *fmt, ...)
|
---|
1918 | {
|
---|
1919 | va_list ap;
|
---|
1920 | va_list ap2;
|
---|
1921 |
|
---|
1922 | va_start(ap, fmt);
|
---|
1923 | va_copy(ap2, ap);
|
---|
1924 | fprintf(stderr, "qemu: fatal: ");
|
---|
1925 | vfprintf(stderr, fmt, ap);
|
---|
1926 | fprintf(stderr, "\n");
|
---|
1927 | #ifdef TARGET_I386
|
---|
1928 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
1929 | #else
|
---|
1930 | cpu_dump_state(env, stderr, fprintf, 0);
|
---|
1931 | #endif
|
---|
1932 | if (qemu_log_enabled()) {
|
---|
1933 | qemu_log("qemu: fatal: ");
|
---|
1934 | qemu_log_vprintf(fmt, ap2);
|
---|
1935 | qemu_log("\n");
|
---|
1936 | #ifdef TARGET_I386
|
---|
1937 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
1938 | #else
|
---|
1939 | log_cpu_state(env, 0);
|
---|
1940 | #endif
|
---|
1941 | qemu_log_flush();
|
---|
1942 | qemu_log_close();
|
---|
1943 | }
|
---|
1944 | va_end(ap2);
|
---|
1945 | va_end(ap);
|
---|
1946 | abort();
|
---|
1947 | }
|
---|
1948 | #endif /* !VBOX */
|
---|
1949 |
|
---|
1950 | #ifndef VBOX /* not needed */
|
---|
1951 | CPUState *cpu_copy(CPUState *env)
|
---|
1952 | {
|
---|
1953 | CPUState *new_env = cpu_init(env->cpu_model_str);
|
---|
1954 | CPUState *next_cpu = new_env->next_cpu;
|
---|
1955 | int cpu_index = new_env->cpu_index;
|
---|
1956 | #if defined(TARGET_HAS_ICE)
|
---|
1957 | CPUBreakpoint *bp;
|
---|
1958 | CPUWatchpoint *wp;
|
---|
1959 | #endif
|
---|
1960 |
|
---|
1961 | memcpy(new_env, env, sizeof(CPUState));
|
---|
1962 |
|
---|
1963 | /* Preserve chaining and index. */
|
---|
1964 | new_env->next_cpu = next_cpu;
|
---|
1965 | new_env->cpu_index = cpu_index;
|
---|
1966 |
|
---|
1967 | /* Clone all break/watchpoints.
|
---|
1968 | Note: Once we support ptrace with hw-debug register access, make sure
|
---|
1969 | BP_CPU break/watchpoints are handled correctly on clone. */
|
---|
1970 | QTAILQ_INIT(&env->breakpoints);
|
---|
1971 | QTAILQ_INIT(&env->watchpoints);
|
---|
1972 | #if defined(TARGET_HAS_ICE)
|
---|
1973 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
1974 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
|
---|
1975 | }
|
---|
1976 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
1977 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
|
---|
1978 | wp->flags, NULL);
|
---|
1979 | }
|
---|
1980 | #endif
|
---|
1981 |
|
---|
1982 | return new_env;
|
---|
1983 | }
|
---|
1984 | #endif /* !VBOX */
|
---|
1985 |
|
---|
1986 | #if !defined(CONFIG_USER_ONLY)
|
---|
1987 |
|
---|
1988 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
|
---|
1989 | {
|
---|
1990 | unsigned int i;
|
---|
1991 |
|
---|
1992 | /* Discard jump cache entries for any tb which might potentially
|
---|
1993 | overlap the flushed page. */
|
---|
1994 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
|
---|
1995 | memset (&env->tb_jmp_cache[i], 0,
|
---|
1996 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
1997 |
|
---|
1998 | i = tb_jmp_cache_hash_page(addr);
|
---|
1999 | memset (&env->tb_jmp_cache[i], 0,
|
---|
2000 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
2001 |
|
---|
2002 | #ifdef VBOX
|
---|
2003 | /* inform raw mode about TLB page flush */
|
---|
2004 | remR3FlushPage(env, addr);
|
---|
2005 | #endif /* VBOX */
|
---|
2006 | }
|
---|
2007 |
|
---|
2008 | static CPUTLBEntry s_cputlb_empty_entry = {
|
---|
2009 | .addr_read = -1,
|
---|
2010 | .addr_write = -1,
|
---|
2011 | .addr_code = -1,
|
---|
2012 | .addend = -1,
|
---|
2013 | };
|
---|
2014 |
|
---|
2015 | /* NOTE: if flush_global is true, also flush global entries (not
|
---|
2016 | implemented yet) */
|
---|
2017 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2018 | {
|
---|
2019 | int i;
|
---|
2020 |
|
---|
2021 | #if defined(DEBUG_TLB)
|
---|
2022 | printf("tlb_flush:\n");
|
---|
2023 | #endif
|
---|
2024 | /* must reset current TB so that interrupts cannot modify the
|
---|
2025 | links while we are modifying them */
|
---|
2026 | env->current_tb = NULL;
|
---|
2027 |
|
---|
2028 | for(i = 0; i < CPU_TLB_SIZE; i++) {
|
---|
2029 | int mmu_idx;
|
---|
2030 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2031 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
|
---|
2032 | }
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
2036 |
|
---|
2037 | #ifdef VBOX
|
---|
2038 | /* inform raw mode about TLB flush */
|
---|
2039 | remR3FlushTLB(env, flush_global);
|
---|
2040 | #endif
|
---|
2041 | tlb_flush_count++;
|
---|
2042 | }
|
---|
2043 |
|
---|
2044 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
---|
2045 | {
|
---|
2046 | if (addr == (tlb_entry->addr_read &
|
---|
2047 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2048 | addr == (tlb_entry->addr_write &
|
---|
2049 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2050 | addr == (tlb_entry->addr_code &
|
---|
2051 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
---|
2052 | *tlb_entry = s_cputlb_empty_entry;
|
---|
2053 | }
|
---|
2054 | }
|
---|
2055 |
|
---|
2056 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2057 | {
|
---|
2058 | int i;
|
---|
2059 | int mmu_idx;
|
---|
2060 |
|
---|
2061 | #if defined(DEBUG_TLB)
|
---|
2062 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
---|
2063 | #endif
|
---|
2064 | /* must reset current TB so that interrupts cannot modify the
|
---|
2065 | links while we are modifying them */
|
---|
2066 | env->current_tb = NULL;
|
---|
2067 |
|
---|
2068 | addr &= TARGET_PAGE_MASK;
|
---|
2069 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2070 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2071 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
---|
2072 |
|
---|
2073 | tlb_flush_jmp_cache(env, addr);
|
---|
2074 | }
|
---|
2075 |
|
---|
2076 | /* update the TLBs so that writes to code in the virtual page 'addr'
|
---|
2077 | can be detected */
|
---|
2078 | static void tlb_protect_code(ram_addr_t ram_addr)
|
---|
2079 | {
|
---|
2080 | cpu_physical_memory_reset_dirty(ram_addr,
|
---|
2081 | ram_addr + TARGET_PAGE_SIZE,
|
---|
2082 | CODE_DIRTY_FLAG);
|
---|
2083 | #if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
|
---|
2084 | /** @todo Retest this? This function has changed... */
|
---|
2085 | remR3ProtectCode(cpu_single_env, ram_addr);
|
---|
2086 | #endif
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | /* update the TLB so that writes in physical page 'phys_addr' are no longer
|
---|
2090 | tested for self modifying code */
|
---|
2091 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
2092 | target_ulong vaddr)
|
---|
2093 | {
|
---|
2094 | #ifdef VBOX
|
---|
2095 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
2096 | #endif
|
---|
2097 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
|
---|
2098 | }
|
---|
2099 |
|
---|
2100 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
|
---|
2101 | unsigned long start, unsigned long length)
|
---|
2102 | {
|
---|
2103 | unsigned long addr;
|
---|
2104 |
|
---|
2105 | #ifdef VBOX
|
---|
2106 | if (start & 3)
|
---|
2107 | return;
|
---|
2108 | #endif
|
---|
2109 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2110 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2111 | if ((addr - start) < length) {
|
---|
2112 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
|
---|
2113 | }
|
---|
2114 | }
|
---|
2115 | }
|
---|
2116 |
|
---|
2117 | /* Note: start and end must be within the same ram block. */
|
---|
2118 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
---|
2119 | int dirty_flags)
|
---|
2120 | {
|
---|
2121 | CPUState *env;
|
---|
2122 | unsigned long length, start1;
|
---|
2123 | int i, mask, len;
|
---|
2124 | uint8_t *p;
|
---|
2125 |
|
---|
2126 | start &= TARGET_PAGE_MASK;
|
---|
2127 | end = TARGET_PAGE_ALIGN(end);
|
---|
2128 |
|
---|
2129 | length = end - start;
|
---|
2130 | if (length == 0)
|
---|
2131 | return;
|
---|
2132 | len = length >> TARGET_PAGE_BITS;
|
---|
2133 | mask = ~dirty_flags;
|
---|
2134 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
|
---|
2135 | #ifdef VBOX
|
---|
2136 | if (RT_LIKELY((start >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
2137 | #endif
|
---|
2138 | for(i = 0; i < len; i++)
|
---|
2139 | p[i] &= mask;
|
---|
2140 |
|
---|
2141 | /* we modify the TLB cache so that the dirty bit will be set again
|
---|
2142 | when accessing the range */
|
---|
2143 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2144 | start1 = start;
|
---|
2145 | #elif !defined(VBOX)
|
---|
2146 | start1 = (unsigned long)qemu_get_ram_ptr(start);
|
---|
2147 | /* Chek that we don't span multiple blocks - this breaks the
|
---|
2148 | address comparisons below. */
|
---|
2149 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
|
---|
2150 | != (end - 1) - start) {
|
---|
2151 | abort();
|
---|
2152 | }
|
---|
2153 | #else
|
---|
2154 | start1 = (unsigned long)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo page replacing (sharing or read only) may cause trouble, fix interface/whatever. */
|
---|
2155 | #endif
|
---|
2156 |
|
---|
2157 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2158 | int mmu_idx;
|
---|
2159 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2160 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2161 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
---|
2162 | start1, length);
|
---|
2163 | }
|
---|
2164 | }
|
---|
2165 | }
|
---|
2166 |
|
---|
2167 | #ifndef VBOX
|
---|
2168 | int cpu_physical_memory_set_dirty_tracking(int enable)
|
---|
2169 | {
|
---|
2170 | in_migration = enable;
|
---|
2171 | if (kvm_enabled()) {
|
---|
2172 | return kvm_set_migration_log(enable);
|
---|
2173 | }
|
---|
2174 | return 0;
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 | int cpu_physical_memory_get_dirty_tracking(void)
|
---|
2178 | {
|
---|
2179 | return in_migration;
|
---|
2180 | }
|
---|
2181 | #endif /* !VBOX */
|
---|
2182 |
|
---|
2183 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
|
---|
2184 | target_phys_addr_t end_addr)
|
---|
2185 | {
|
---|
2186 | #ifndef VBOX
|
---|
2187 | int ret = 0;
|
---|
2188 |
|
---|
2189 | if (kvm_enabled())
|
---|
2190 | ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
|
---|
2191 | return ret;
|
---|
2192 | #else
|
---|
2193 | return 0;
|
---|
2194 | #endif
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2198 | DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry, target_phys_addr_t phys_addend)
|
---|
2199 | #else
|
---|
2200 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
|
---|
2201 | #endif
|
---|
2202 | {
|
---|
2203 | ram_addr_t ram_addr;
|
---|
2204 | void *p;
|
---|
2205 |
|
---|
2206 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2207 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2208 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2209 | #elif !defined(VBOX)
|
---|
2210 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
|
---|
2211 | + tlb_entry->addend);
|
---|
2212 | ram_addr = qemu_ram_addr_from_host(p);
|
---|
2213 | #else
|
---|
2214 | Assert(phys_addend != -1);
|
---|
2215 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + phys_addend;
|
---|
2216 | #endif
|
---|
2217 | if (!cpu_physical_memory_is_dirty(ram_addr)) {
|
---|
2218 | tlb_entry->addr_write |= TLB_NOTDIRTY;
|
---|
2219 | }
|
---|
2220 | }
|
---|
2221 | }
|
---|
2222 |
|
---|
2223 | /* update the TLB according to the current state of the dirty bits */
|
---|
2224 | void cpu_tlb_update_dirty(CPUState *env)
|
---|
2225 | {
|
---|
2226 | int i;
|
---|
2227 | int mmu_idx;
|
---|
2228 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2229 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2230 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2231 | tlb_update_dirty(&env->tlb_table[mmu_idx][i], env->phys_addends[mmu_idx][i]);
|
---|
2232 | #else
|
---|
2233 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
|
---|
2234 | #endif
|
---|
2235 | }
|
---|
2236 | }
|
---|
2237 |
|
---|
2238 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
---|
2239 | {
|
---|
2240 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
|
---|
2241 | tlb_entry->addr_write = vaddr;
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | /* update the TLB corresponding to virtual page vaddr
|
---|
2245 | so that it is no longer dirty */
|
---|
2246 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
|
---|
2247 | {
|
---|
2248 | int i;
|
---|
2249 | int mmu_idx;
|
---|
2250 |
|
---|
2251 | vaddr &= TARGET_PAGE_MASK;
|
---|
2252 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2253 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2254 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 | /* add a new TLB entry. At most one entry for a given virtual address
|
---|
2258 | is permitted. Return 0 if OK or 2 if the page could not be mapped
|
---|
2259 | (can only happen in non SOFTMMU mode for I/O pages or pages
|
---|
2260 | conflicting with the host address space). */
|
---|
2261 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
|
---|
2262 | target_phys_addr_t paddr, int prot,
|
---|
2263 | int mmu_idx, int is_softmmu)
|
---|
2264 | {
|
---|
2265 | PhysPageDesc *p;
|
---|
2266 | unsigned long pd;
|
---|
2267 | unsigned int index;
|
---|
2268 | target_ulong address;
|
---|
2269 | target_ulong code_address;
|
---|
2270 | target_phys_addr_t addend;
|
---|
2271 | int ret;
|
---|
2272 | CPUTLBEntry *te;
|
---|
2273 | CPUWatchpoint *wp;
|
---|
2274 | target_phys_addr_t iotlb;
|
---|
2275 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2276 | int read_mods = 0, write_mods = 0, code_mods = 0;
|
---|
2277 | #endif
|
---|
2278 |
|
---|
2279 | p = phys_page_find(paddr >> TARGET_PAGE_BITS);
|
---|
2280 | if (!p) {
|
---|
2281 | pd = IO_MEM_UNASSIGNED;
|
---|
2282 | } else {
|
---|
2283 | pd = p->phys_offset;
|
---|
2284 | }
|
---|
2285 | #if defined(DEBUG_TLB)
|
---|
2286 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
|
---|
2287 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
|
---|
2288 | #endif
|
---|
2289 |
|
---|
2290 | ret = 0;
|
---|
2291 | address = vaddr;
|
---|
2292 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
|
---|
2293 | /* IO memory case (romd handled later) */
|
---|
2294 | address |= TLB_MMIO;
|
---|
2295 | }
|
---|
2296 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2297 | addend = pd & TARGET_PAGE_MASK;
|
---|
2298 | #elif !defined(VBOX)
|
---|
2299 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
|
---|
2300 | #else
|
---|
2301 | /** @todo this is racing the phys_page_find call above since it may register
|
---|
2302 | * a new chunk of memory... */
|
---|
2303 | addend = (unsigned long)remR3TlbGCPhys2Ptr(env, pd & TARGET_PAGE_MASK, !!(prot & PAGE_WRITE));
|
---|
2304 | #endif
|
---|
2305 |
|
---|
2306 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
|
---|
2307 | /* Normal RAM. */
|
---|
2308 | iotlb = pd & TARGET_PAGE_MASK;
|
---|
2309 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
|
---|
2310 | iotlb |= IO_MEM_NOTDIRTY;
|
---|
2311 | else
|
---|
2312 | iotlb |= IO_MEM_ROM;
|
---|
2313 | } else {
|
---|
2314 | /* IO handlers are currently passed a physical address.
|
---|
2315 | It would be nice to pass an offset from the base address
|
---|
2316 | of that region. This would avoid having to special case RAM,
|
---|
2317 | and avoid full address decoding in every device.
|
---|
2318 | We can't use the high bits of pd for this because
|
---|
2319 | IO_MEM_ROMD uses these as a ram address. */
|
---|
2320 | iotlb = (pd & ~TARGET_PAGE_MASK);
|
---|
2321 | if (p) {
|
---|
2322 | iotlb += p->region_offset;
|
---|
2323 | } else {
|
---|
2324 | iotlb += paddr;
|
---|
2325 | }
|
---|
2326 | }
|
---|
2327 |
|
---|
2328 | code_address = address;
|
---|
2329 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2330 |
|
---|
2331 | if (addend & 0x3)
|
---|
2332 | {
|
---|
2333 | if (addend & 0x2)
|
---|
2334 | {
|
---|
2335 | /* catch write */
|
---|
2336 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2337 | write_mods |= TLB_MMIO;
|
---|
2338 | }
|
---|
2339 | else if (addend & 0x1)
|
---|
2340 | {
|
---|
2341 | /* catch all */
|
---|
2342 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2343 | {
|
---|
2344 | read_mods |= TLB_MMIO;
|
---|
2345 | write_mods |= TLB_MMIO;
|
---|
2346 | code_mods |= TLB_MMIO;
|
---|
2347 | }
|
---|
2348 | }
|
---|
2349 | if ((iotlb & ~TARGET_PAGE_MASK) == 0)
|
---|
2350 | iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
|
---|
2351 | addend &= ~(target_ulong)0x3;
|
---|
2352 | }
|
---|
2353 |
|
---|
2354 | #endif
|
---|
2355 | /* Make accesses to pages with watchpoints go via the
|
---|
2356 | watchpoint trap routines. */
|
---|
2357 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
2358 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
---|
2359 | iotlb = io_mem_watch + paddr;
|
---|
2360 | /* TODO: The memory case can be optimized by not trapping
|
---|
2361 | reads of pages with a write breakpoint. */
|
---|
2362 | address |= TLB_MMIO;
|
---|
2363 | }
|
---|
2364 | }
|
---|
2365 |
|
---|
2366 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2367 | env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
---|
2368 | te = &env->tlb_table[mmu_idx][index];
|
---|
2369 | te->addend = addend - vaddr;
|
---|
2370 | if (prot & PAGE_READ) {
|
---|
2371 | te->addr_read = address;
|
---|
2372 | } else {
|
---|
2373 | te->addr_read = -1;
|
---|
2374 | }
|
---|
2375 |
|
---|
2376 | if (prot & PAGE_EXEC) {
|
---|
2377 | te->addr_code = code_address;
|
---|
2378 | } else {
|
---|
2379 | te->addr_code = -1;
|
---|
2380 | }
|
---|
2381 | if (prot & PAGE_WRITE) {
|
---|
2382 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
|
---|
2383 | (pd & IO_MEM_ROMD)) {
|
---|
2384 | /* Write access calls the I/O callback. */
|
---|
2385 | te->addr_write = address | TLB_MMIO;
|
---|
2386 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
|
---|
2387 | !cpu_physical_memory_is_dirty(pd)) {
|
---|
2388 | te->addr_write = address | TLB_NOTDIRTY;
|
---|
2389 | } else {
|
---|
2390 | te->addr_write = address;
|
---|
2391 | }
|
---|
2392 | } else {
|
---|
2393 | te->addr_write = -1;
|
---|
2394 | }
|
---|
2395 |
|
---|
2396 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2397 | if (prot & PAGE_READ)
|
---|
2398 | te->addr_read |= read_mods;
|
---|
2399 | if (prot & PAGE_EXEC)
|
---|
2400 | te->addr_code |= code_mods;
|
---|
2401 | if (prot & PAGE_WRITE)
|
---|
2402 | te->addr_write |= write_mods;
|
---|
2403 |
|
---|
2404 | env->phys_addends[mmu_idx][index] = (pd & TARGET_PAGE_MASK)- vaddr;
|
---|
2405 | #endif
|
---|
2406 |
|
---|
2407 | #ifdef VBOX
|
---|
2408 | /* inform raw mode about TLB page change */
|
---|
2409 | remR3FlushPage(env, vaddr);
|
---|
2410 | #endif
|
---|
2411 | return ret;
|
---|
2412 | }
|
---|
2413 |
|
---|
2414 | #else
|
---|
2415 |
|
---|
2416 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2417 | {
|
---|
2418 | }
|
---|
2419 |
|
---|
2420 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2421 | {
|
---|
2422 | }
|
---|
2423 |
|
---|
2424 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
|
---|
2425 | target_phys_addr_t paddr, int prot,
|
---|
2426 | int mmu_idx, int is_softmmu)
|
---|
2427 | {
|
---|
2428 | return 0;
|
---|
2429 | }
|
---|
2430 |
|
---|
2431 | #ifndef VBOX
|
---|
2432 |
|
---|
2433 | /*
|
---|
2434 | * Walks guest process memory "regions" one by one
|
---|
2435 | * and calls callback function 'fn' for each region.
|
---|
2436 | */
|
---|
2437 | int walk_memory_regions(void *priv,
|
---|
2438 | int (*fn)(void *, unsigned long, unsigned long, unsigned long))
|
---|
2439 | {
|
---|
2440 | unsigned long start, end;
|
---|
2441 | PageDesc *p = NULL;
|
---|
2442 | int i, j, prot, prot1;
|
---|
2443 | int rc = 0;
|
---|
2444 |
|
---|
2445 | start = end = -1;
|
---|
2446 | prot = 0;
|
---|
2447 |
|
---|
2448 | for (i = 0; i <= L1_SIZE; i++) {
|
---|
2449 | p = (i < L1_SIZE) ? l1_map[i] : NULL;
|
---|
2450 | for (j = 0; j < L2_SIZE; j++) {
|
---|
2451 | prot1 = (p == NULL) ? 0 : p[j].flags;
|
---|
2452 | /*
|
---|
2453 | * "region" is one continuous chunk of memory
|
---|
2454 | * that has same protection flags set.
|
---|
2455 | */
|
---|
2456 | if (prot1 != prot) {
|
---|
2457 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
|
---|
2458 | if (start != -1) {
|
---|
2459 | rc = (*fn)(priv, start, end, prot);
|
---|
2460 | /* callback can stop iteration by returning != 0 */
|
---|
2461 | if (rc != 0)
|
---|
2462 | return (rc);
|
---|
2463 | }
|
---|
2464 | if (prot1 != 0)
|
---|
2465 | start = end;
|
---|
2466 | else
|
---|
2467 | start = -1;
|
---|
2468 | prot = prot1;
|
---|
2469 | }
|
---|
2470 | if (p == NULL)
|
---|
2471 | break;
|
---|
2472 | }
|
---|
2473 | }
|
---|
2474 | return (rc);
|
---|
2475 | }
|
---|
2476 |
|
---|
2477 | static int dump_region(void *priv, unsigned long start,
|
---|
2478 | unsigned long end, unsigned long prot)
|
---|
2479 | {
|
---|
2480 | FILE *f = (FILE *)priv;
|
---|
2481 |
|
---|
2482 | (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
|
---|
2483 | start, end, end - start,
|
---|
2484 | ((prot & PAGE_READ) ? 'r' : '-'),
|
---|
2485 | ((prot & PAGE_WRITE) ? 'w' : '-'),
|
---|
2486 | ((prot & PAGE_EXEC) ? 'x' : '-'));
|
---|
2487 |
|
---|
2488 | return (0);
|
---|
2489 | }
|
---|
2490 |
|
---|
2491 | /* dump memory mappings */
|
---|
2492 | void page_dump(FILE *f)
|
---|
2493 | {
|
---|
2494 | (void) fprintf(f, "%-8s %-8s %-8s %s\n",
|
---|
2495 | "start", "end", "size", "prot");
|
---|
2496 | walk_memory_regions(f, dump_region);
|
---|
2497 | }
|
---|
2498 |
|
---|
2499 | #endif /* !VBOX */
|
---|
2500 |
|
---|
2501 | int page_get_flags(target_ulong address)
|
---|
2502 | {
|
---|
2503 | PageDesc *p;
|
---|
2504 |
|
---|
2505 | p = page_find(address >> TARGET_PAGE_BITS);
|
---|
2506 | if (!p)
|
---|
2507 | return 0;
|
---|
2508 | return p->flags;
|
---|
2509 | }
|
---|
2510 |
|
---|
2511 | /* modify the flags of a page and invalidate the code if
|
---|
2512 | necessary. The flag PAGE_WRITE_ORG is positioned automatically
|
---|
2513 | depending on PAGE_WRITE */
|
---|
2514 | void page_set_flags(target_ulong start, target_ulong end, int flags)
|
---|
2515 | {
|
---|
2516 | PageDesc *p;
|
---|
2517 | target_ulong addr;
|
---|
2518 |
|
---|
2519 | /* mmap_lock should already be held. */
|
---|
2520 | start = start & TARGET_PAGE_MASK;
|
---|
2521 | end = TARGET_PAGE_ALIGN(end);
|
---|
2522 | if (flags & PAGE_WRITE)
|
---|
2523 | flags |= PAGE_WRITE_ORG;
|
---|
2524 | #ifdef VBOX
|
---|
2525 | AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
|
---|
2526 | #endif
|
---|
2527 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
|
---|
2528 | p = page_find_alloc(addr >> TARGET_PAGE_BITS);
|
---|
2529 | /* We may be called for host regions that are outside guest
|
---|
2530 | address space. */
|
---|
2531 | if (!p)
|
---|
2532 | return;
|
---|
2533 | /* if the write protection is set, then we invalidate the code
|
---|
2534 | inside */
|
---|
2535 | if (!(p->flags & PAGE_WRITE) &&
|
---|
2536 | (flags & PAGE_WRITE) &&
|
---|
2537 | p->first_tb) {
|
---|
2538 | tb_invalidate_phys_page(addr, 0, NULL);
|
---|
2539 | }
|
---|
2540 | p->flags = flags;
|
---|
2541 | }
|
---|
2542 | }
|
---|
2543 |
|
---|
2544 | int page_check_range(target_ulong start, target_ulong len, int flags)
|
---|
2545 | {
|
---|
2546 | PageDesc *p;
|
---|
2547 | target_ulong end;
|
---|
2548 | target_ulong addr;
|
---|
2549 |
|
---|
2550 | if (start + len < start)
|
---|
2551 | /* we've wrapped around */
|
---|
2552 | return -1;
|
---|
2553 |
|
---|
2554 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
|
---|
2555 | start = start & TARGET_PAGE_MASK;
|
---|
2556 |
|
---|
2557 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
|
---|
2558 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
2559 | if( !p )
|
---|
2560 | return -1;
|
---|
2561 | if( !(p->flags & PAGE_VALID) )
|
---|
2562 | return -1;
|
---|
2563 |
|
---|
2564 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
|
---|
2565 | return -1;
|
---|
2566 | if (flags & PAGE_WRITE) {
|
---|
2567 | if (!(p->flags & PAGE_WRITE_ORG))
|
---|
2568 | return -1;
|
---|
2569 | /* unprotect the page if it was put read-only because it
|
---|
2570 | contains translated code */
|
---|
2571 | if (!(p->flags & PAGE_WRITE)) {
|
---|
2572 | if (!page_unprotect(addr, 0, NULL))
|
---|
2573 | return -1;
|
---|
2574 | }
|
---|
2575 | return 0;
|
---|
2576 | }
|
---|
2577 | }
|
---|
2578 | return 0;
|
---|
2579 | }
|
---|
2580 |
|
---|
2581 | /* called from signal handler: invalidate the code and unprotect the
|
---|
2582 | page. Return TRUE if the fault was successfully handled. */
|
---|
2583 | int page_unprotect(target_ulong address, unsigned long pc, void *puc)
|
---|
2584 | {
|
---|
2585 | unsigned int page_index, prot, pindex;
|
---|
2586 | PageDesc *p, *p1;
|
---|
2587 | target_ulong host_start, host_end, addr;
|
---|
2588 |
|
---|
2589 | /* Technically this isn't safe inside a signal handler. However we
|
---|
2590 | know this only ever happens in a synchronous SEGV handler, so in
|
---|
2591 | practice it seems to be ok. */
|
---|
2592 | mmap_lock();
|
---|
2593 |
|
---|
2594 | host_start = address & qemu_host_page_mask;
|
---|
2595 | page_index = host_start >> TARGET_PAGE_BITS;
|
---|
2596 | p1 = page_find(page_index);
|
---|
2597 | if (!p1) {
|
---|
2598 | mmap_unlock();
|
---|
2599 | return 0;
|
---|
2600 | }
|
---|
2601 | host_end = host_start + qemu_host_page_size;
|
---|
2602 | p = p1;
|
---|
2603 | prot = 0;
|
---|
2604 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
|
---|
2605 | prot |= p->flags;
|
---|
2606 | p++;
|
---|
2607 | }
|
---|
2608 | /* if the page was really writable, then we change its
|
---|
2609 | protection back to writable */
|
---|
2610 | if (prot & PAGE_WRITE_ORG) {
|
---|
2611 | pindex = (address - host_start) >> TARGET_PAGE_BITS;
|
---|
2612 | if (!(p1[pindex].flags & PAGE_WRITE)) {
|
---|
2613 | mprotect((void *)g2h(host_start), qemu_host_page_size,
|
---|
2614 | (prot & PAGE_BITS) | PAGE_WRITE);
|
---|
2615 | p1[pindex].flags |= PAGE_WRITE;
|
---|
2616 | /* and since the content will be modified, we must invalidate
|
---|
2617 | the corresponding translated code. */
|
---|
2618 | tb_invalidate_phys_page(address, pc, puc);
|
---|
2619 | #ifdef DEBUG_TB_CHECK
|
---|
2620 | tb_invalidate_check(address);
|
---|
2621 | #endif
|
---|
2622 | mmap_unlock();
|
---|
2623 | return 1;
|
---|
2624 | }
|
---|
2625 | }
|
---|
2626 | mmap_unlock();
|
---|
2627 | return 0;
|
---|
2628 | }
|
---|
2629 |
|
---|
2630 | static inline void tlb_set_dirty(CPUState *env,
|
---|
2631 | unsigned long addr, target_ulong vaddr)
|
---|
2632 | {
|
---|
2633 | }
|
---|
2634 | #endif /* defined(CONFIG_USER_ONLY) */
|
---|
2635 |
|
---|
2636 | #if !defined(CONFIG_USER_ONLY)
|
---|
2637 |
|
---|
2638 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
2639 | ram_addr_t memory, ram_addr_t region_offset);
|
---|
2640 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
2641 | ram_addr_t orig_memory, ram_addr_t region_offset);
|
---|
2642 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
|
---|
2643 | need_subpage) \
|
---|
2644 | do { \
|
---|
2645 | if (addr > start_addr) \
|
---|
2646 | start_addr2 = 0; \
|
---|
2647 | else { \
|
---|
2648 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
|
---|
2649 | if (start_addr2 > 0) \
|
---|
2650 | need_subpage = 1; \
|
---|
2651 | } \
|
---|
2652 | \
|
---|
2653 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
|
---|
2654 | end_addr2 = TARGET_PAGE_SIZE - 1; \
|
---|
2655 | else { \
|
---|
2656 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
|
---|
2657 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \
|
---|
2658 | need_subpage = 1; \
|
---|
2659 | } \
|
---|
2660 | } while (0)
|
---|
2661 |
|
---|
2662 | /* register physical memory.
|
---|
2663 | For RAM, 'size' must be a multiple of the target page size.
|
---|
2664 | If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
|
---|
2665 | io memory page. The address used when calling the IO function is
|
---|
2666 | the offset from the start of the region, plus region_offset. Both
|
---|
2667 | start_addr and region_offset are rounded down to a page boundary
|
---|
2668 | before calculating this offset. This should not be a problem unless
|
---|
2669 | the low bits of start_addr and region_offset differ. */
|
---|
2670 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
|
---|
2671 | ram_addr_t size,
|
---|
2672 | ram_addr_t phys_offset,
|
---|
2673 | ram_addr_t region_offset)
|
---|
2674 | {
|
---|
2675 | target_phys_addr_t addr, end_addr;
|
---|
2676 | PhysPageDesc *p;
|
---|
2677 | CPUState *env;
|
---|
2678 | ram_addr_t orig_size = size;
|
---|
2679 | void *subpage;
|
---|
2680 |
|
---|
2681 | if (kvm_enabled())
|
---|
2682 | kvm_set_phys_mem(start_addr, size, phys_offset);
|
---|
2683 |
|
---|
2684 | if (phys_offset == IO_MEM_UNASSIGNED) {
|
---|
2685 | region_offset = start_addr;
|
---|
2686 | }
|
---|
2687 | region_offset &= TARGET_PAGE_MASK;
|
---|
2688 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
|
---|
2689 | end_addr = start_addr + (target_phys_addr_t)size;
|
---|
2690 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
|
---|
2691 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2692 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
|
---|
2693 | ram_addr_t orig_memory = p->phys_offset;
|
---|
2694 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2695 | int need_subpage = 0;
|
---|
2696 |
|
---|
2697 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
|
---|
2698 | need_subpage);
|
---|
2699 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
|
---|
2700 | if (!(orig_memory & IO_MEM_SUBPAGE)) {
|
---|
2701 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2702 | &p->phys_offset, orig_memory,
|
---|
2703 | p->region_offset);
|
---|
2704 | } else {
|
---|
2705 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
|
---|
2706 | >> IO_MEM_SHIFT];
|
---|
2707 | }
|
---|
2708 | subpage_register(subpage, start_addr2, end_addr2, phys_offset,
|
---|
2709 | region_offset);
|
---|
2710 | p->region_offset = 0;
|
---|
2711 | } else {
|
---|
2712 | p->phys_offset = phys_offset;
|
---|
2713 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2714 | (phys_offset & IO_MEM_ROMD))
|
---|
2715 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2716 | }
|
---|
2717 | } else {
|
---|
2718 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
---|
2719 | p->phys_offset = phys_offset;
|
---|
2720 | p->region_offset = region_offset;
|
---|
2721 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2722 | (phys_offset & IO_MEM_ROMD)) {
|
---|
2723 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2724 | } else {
|
---|
2725 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2726 | int need_subpage = 0;
|
---|
2727 |
|
---|
2728 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
|
---|
2729 | end_addr2, need_subpage);
|
---|
2730 |
|
---|
2731 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
|
---|
2732 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2733 | &p->phys_offset, IO_MEM_UNASSIGNED,
|
---|
2734 | addr & TARGET_PAGE_MASK);
|
---|
2735 | subpage_register(subpage, start_addr2, end_addr2,
|
---|
2736 | phys_offset, region_offset);
|
---|
2737 | p->region_offset = 0;
|
---|
2738 | }
|
---|
2739 | }
|
---|
2740 | }
|
---|
2741 | region_offset += TARGET_PAGE_SIZE;
|
---|
2742 | }
|
---|
2743 |
|
---|
2744 | /* since each CPU stores ram addresses in its TLB cache, we must
|
---|
2745 | reset the modified entries */
|
---|
2746 | /* XXX: slow ! */
|
---|
2747 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2748 | tlb_flush(env, 1);
|
---|
2749 | }
|
---|
2750 | }
|
---|
2751 |
|
---|
2752 | /* XXX: temporary until new memory mapping API */
|
---|
2753 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
|
---|
2754 | {
|
---|
2755 | PhysPageDesc *p;
|
---|
2756 |
|
---|
2757 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2758 | if (!p)
|
---|
2759 | return IO_MEM_UNASSIGNED;
|
---|
2760 | return p->phys_offset;
|
---|
2761 | }
|
---|
2762 |
|
---|
2763 | #ifndef VBOX
|
---|
2764 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2765 | {
|
---|
2766 | if (kvm_enabled())
|
---|
2767 | kvm_coalesce_mmio_region(addr, size);
|
---|
2768 | }
|
---|
2769 |
|
---|
2770 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2771 | {
|
---|
2772 | if (kvm_enabled())
|
---|
2773 | kvm_uncoalesce_mmio_region(addr, size);
|
---|
2774 | }
|
---|
2775 |
|
---|
2776 | ram_addr_t qemu_ram_alloc(ram_addr_t size)
|
---|
2777 | {
|
---|
2778 | RAMBlock *new_block;
|
---|
2779 |
|
---|
2780 | size = TARGET_PAGE_ALIGN(size);
|
---|
2781 | new_block = qemu_malloc(sizeof(*new_block));
|
---|
2782 |
|
---|
2783 | #if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
---|
2784 | /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
|
---|
2785 | new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
|
---|
2786 | MAP_SHARED | MAP_ANONYMOUS, -1, 0);
|
---|
2787 | #else
|
---|
2788 | new_block->host = qemu_vmalloc(size);
|
---|
2789 | #endif
|
---|
2790 | #ifdef MADV_MERGEABLE
|
---|
2791 | madvise(new_block->host, size, MADV_MERGEABLE);
|
---|
2792 | #endif
|
---|
2793 | new_block->offset = last_ram_offset;
|
---|
2794 | new_block->length = size;
|
---|
2795 |
|
---|
2796 | new_block->next = ram_blocks;
|
---|
2797 | ram_blocks = new_block;
|
---|
2798 |
|
---|
2799 | phys_ram_dirty = qemu_realloc(phys_ram_dirty,
|
---|
2800 | (last_ram_offset + size) >> TARGET_PAGE_BITS);
|
---|
2801 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
|
---|
2802 | 0xff, size >> TARGET_PAGE_BITS);
|
---|
2803 |
|
---|
2804 | last_ram_offset += size;
|
---|
2805 |
|
---|
2806 | if (kvm_enabled())
|
---|
2807 | kvm_setup_guest_memory(new_block->host, size);
|
---|
2808 |
|
---|
2809 | return new_block->offset;
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | void qemu_ram_free(ram_addr_t addr)
|
---|
2813 | {
|
---|
2814 | /* TODO: implement this. */
|
---|
2815 | }
|
---|
2816 |
|
---|
2817 | /* Return a host pointer to ram allocated with qemu_ram_alloc.
|
---|
2818 | With the exception of the softmmu code in this file, this should
|
---|
2819 | only be used for local memory (e.g. video ram) that the device owns,
|
---|
2820 | and knows it isn't going to access beyond the end of the block.
|
---|
2821 |
|
---|
2822 | It should not be used for general purpose DMA.
|
---|
2823 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
---|
2824 | */
|
---|
2825 | void *qemu_get_ram_ptr(ram_addr_t addr)
|
---|
2826 | {
|
---|
2827 | RAMBlock *prev;
|
---|
2828 | RAMBlock **prevp;
|
---|
2829 | RAMBlock *block;
|
---|
2830 |
|
---|
2831 | prev = NULL;
|
---|
2832 | prevp = &ram_blocks;
|
---|
2833 | block = ram_blocks;
|
---|
2834 | while (block && (block->offset > addr
|
---|
2835 | || block->offset + block->length <= addr)) {
|
---|
2836 | if (prev)
|
---|
2837 | prevp = &prev->next;
|
---|
2838 | prev = block;
|
---|
2839 | block = block->next;
|
---|
2840 | }
|
---|
2841 | if (!block) {
|
---|
2842 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
---|
2843 | abort();
|
---|
2844 | }
|
---|
2845 | /* Move this entry to to start of the list. */
|
---|
2846 | if (prev) {
|
---|
2847 | prev->next = block->next;
|
---|
2848 | block->next = *prevp;
|
---|
2849 | *prevp = block;
|
---|
2850 | }
|
---|
2851 | return block->host + (addr - block->offset);
|
---|
2852 | }
|
---|
2853 |
|
---|
2854 | /* Some of the softmmu routines need to translate from a host pointer
|
---|
2855 | (typically a TLB entry) back to a ram offset. */
|
---|
2856 | ram_addr_t qemu_ram_addr_from_host(void *ptr)
|
---|
2857 | {
|
---|
2858 | RAMBlock *prev;
|
---|
2859 | RAMBlock **prevp;
|
---|
2860 | RAMBlock *block;
|
---|
2861 | uint8_t *host = ptr;
|
---|
2862 |
|
---|
2863 | prev = NULL;
|
---|
2864 | prevp = &ram_blocks;
|
---|
2865 | block = ram_blocks;
|
---|
2866 | while (block && (block->host > host
|
---|
2867 | || block->host + block->length <= host)) {
|
---|
2868 | if (prev)
|
---|
2869 | prevp = &prev->next;
|
---|
2870 | prev = block;
|
---|
2871 | block = block->next;
|
---|
2872 | }
|
---|
2873 | if (!block) {
|
---|
2874 | fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
---|
2875 | abort();
|
---|
2876 | }
|
---|
2877 | return block->offset + (host - block->host);
|
---|
2878 | }
|
---|
2879 |
|
---|
2880 | #endif /* !VBOX */
|
---|
2881 |
|
---|
2882 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
2883 | {
|
---|
2884 | #ifdef DEBUG_UNASSIGNED
|
---|
2885 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2886 | #endif
|
---|
2887 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2888 | do_unassigned_access(addr, 0, 0, 0, 1);
|
---|
2889 | #endif
|
---|
2890 | return 0;
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
2894 | {
|
---|
2895 | #ifdef DEBUG_UNASSIGNED
|
---|
2896 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2897 | #endif
|
---|
2898 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2899 | do_unassigned_access(addr, 0, 0, 0, 2);
|
---|
2900 | #endif
|
---|
2901 | return 0;
|
---|
2902 | }
|
---|
2903 |
|
---|
2904 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
2905 | {
|
---|
2906 | #ifdef DEBUG_UNASSIGNED
|
---|
2907 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2908 | #endif
|
---|
2909 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2910 | do_unassigned_access(addr, 0, 0, 0, 4);
|
---|
2911 | #endif
|
---|
2912 | return 0;
|
---|
2913 | }
|
---|
2914 |
|
---|
2915 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2916 | {
|
---|
2917 | #ifdef DEBUG_UNASSIGNED
|
---|
2918 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2919 | #endif
|
---|
2920 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2921 | do_unassigned_access(addr, 1, 0, 0, 1);
|
---|
2922 | #endif
|
---|
2923 | }
|
---|
2924 |
|
---|
2925 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2926 | {
|
---|
2927 | #ifdef DEBUG_UNASSIGNED
|
---|
2928 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2929 | #endif
|
---|
2930 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2931 | do_unassigned_access(addr, 1, 0, 0, 2);
|
---|
2932 | #endif
|
---|
2933 | }
|
---|
2934 |
|
---|
2935 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2936 | {
|
---|
2937 | #ifdef DEBUG_UNASSIGNED
|
---|
2938 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2939 | #endif
|
---|
2940 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
2941 | do_unassigned_access(addr, 1, 0, 0, 4);
|
---|
2942 | #endif
|
---|
2943 | }
|
---|
2944 |
|
---|
2945 | static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
|
---|
2946 | unassigned_mem_readb,
|
---|
2947 | unassigned_mem_readw,
|
---|
2948 | unassigned_mem_readl,
|
---|
2949 | };
|
---|
2950 |
|
---|
2951 | static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
|
---|
2952 | unassigned_mem_writeb,
|
---|
2953 | unassigned_mem_writew,
|
---|
2954 | unassigned_mem_writel,
|
---|
2955 | };
|
---|
2956 |
|
---|
2957 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
|
---|
2958 | uint32_t val)
|
---|
2959 | {
|
---|
2960 | int dirty_flags;
|
---|
2961 | #ifdef VBOX
|
---|
2962 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
2963 | dirty_flags = 0xff;
|
---|
2964 | else
|
---|
2965 | #endif /* VBOX */
|
---|
2966 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
2967 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
2968 | #if !defined(CONFIG_USER_ONLY)
|
---|
2969 | tb_invalidate_phys_page_fast(ram_addr, 1);
|
---|
2970 | # ifdef VBOX
|
---|
2971 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
2972 | dirty_flags = 0xff;
|
---|
2973 | else
|
---|
2974 | # endif /* VBOX */
|
---|
2975 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
2976 | #endif
|
---|
2977 | }
|
---|
2978 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2979 | remR3PhysWriteU8(ram_addr, val);
|
---|
2980 | #else
|
---|
2981 | stb_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
2982 | #endif
|
---|
2983 | #ifdef CONFIG_KQEMU
|
---|
2984 | if (cpu_single_env->kqemu_enabled &&
|
---|
2985 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
|
---|
2986 | kqemu_modify_page(cpu_single_env, ram_addr);
|
---|
2987 | #endif
|
---|
2988 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
2989 | #ifdef VBOX
|
---|
2990 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
2991 | #endif /* !VBOX */
|
---|
2992 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
2993 | /* we remove the notdirty callback only if the code has been
|
---|
2994 | flushed */
|
---|
2995 | if (dirty_flags == 0xff)
|
---|
2996 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
2997 | }
|
---|
2998 |
|
---|
2999 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
|
---|
3000 | uint32_t val)
|
---|
3001 | {
|
---|
3002 | int dirty_flags;
|
---|
3003 | #ifdef VBOX
|
---|
3004 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3005 | dirty_flags = 0xff;
|
---|
3006 | else
|
---|
3007 | #endif /* VBOX */
|
---|
3008 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3009 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3010 | #if !defined(CONFIG_USER_ONLY)
|
---|
3011 | tb_invalidate_phys_page_fast(ram_addr, 2);
|
---|
3012 | # ifdef VBOX
|
---|
3013 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3014 | dirty_flags = 0xff;
|
---|
3015 | else
|
---|
3016 | # endif /* VBOX */
|
---|
3017 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3018 | #endif
|
---|
3019 | }
|
---|
3020 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3021 | remR3PhysWriteU16(ram_addr, val);
|
---|
3022 | #else
|
---|
3023 | stw_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3024 | #endif
|
---|
3025 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3026 | #ifdef VBOX
|
---|
3027 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3028 | #endif
|
---|
3029 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
3030 | /* we remove the notdirty callback only if the code has been
|
---|
3031 | flushed */
|
---|
3032 | if (dirty_flags == 0xff)
|
---|
3033 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
|
---|
3037 | uint32_t val)
|
---|
3038 | {
|
---|
3039 | int dirty_flags;
|
---|
3040 | #ifdef VBOX
|
---|
3041 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3042 | dirty_flags = 0xff;
|
---|
3043 | else
|
---|
3044 | #endif /* VBOX */
|
---|
3045 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3046 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3047 | #if !defined(CONFIG_USER_ONLY)
|
---|
3048 | tb_invalidate_phys_page_fast(ram_addr, 4);
|
---|
3049 | # ifdef VBOX
|
---|
3050 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3051 | dirty_flags = 0xff;
|
---|
3052 | else
|
---|
3053 | # endif /* VBOX */
|
---|
3054 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3055 | #endif
|
---|
3056 | }
|
---|
3057 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3058 | remR3PhysWriteU32(ram_addr, val);
|
---|
3059 | #else
|
---|
3060 | stl_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3061 | #endif
|
---|
3062 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3063 | #ifdef VBOX
|
---|
3064 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3065 | #endif
|
---|
3066 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
3067 | /* we remove the notdirty callback only if the code has been
|
---|
3068 | flushed */
|
---|
3069 | if (dirty_flags == 0xff)
|
---|
3070 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 | static CPUReadMemoryFunc * const error_mem_read[3] = {
|
---|
3074 | NULL, /* never used */
|
---|
3075 | NULL, /* never used */
|
---|
3076 | NULL, /* never used */
|
---|
3077 | };
|
---|
3078 |
|
---|
3079 | static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
|
---|
3080 | notdirty_mem_writeb,
|
---|
3081 | notdirty_mem_writew,
|
---|
3082 | notdirty_mem_writel,
|
---|
3083 | };
|
---|
3084 |
|
---|
3085 | /* Generate a debug exception if a watchpoint has been hit. */
|
---|
3086 | static void check_watchpoint(int offset, int len_mask, int flags)
|
---|
3087 | {
|
---|
3088 | CPUState *env = cpu_single_env;
|
---|
3089 | target_ulong pc, cs_base;
|
---|
3090 | TranslationBlock *tb;
|
---|
3091 | target_ulong vaddr;
|
---|
3092 | CPUWatchpoint *wp;
|
---|
3093 | int cpu_flags;
|
---|
3094 |
|
---|
3095 | if (env->watchpoint_hit) {
|
---|
3096 | /* We re-entered the check after replacing the TB. Now raise
|
---|
3097 | * the debug interrupt so that is will trigger after the
|
---|
3098 | * current instruction. */
|
---|
3099 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
|
---|
3100 | return;
|
---|
3101 | }
|
---|
3102 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
---|
3103 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
3104 | if ((vaddr == (wp->vaddr & len_mask) ||
|
---|
3105 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
---|
3106 | wp->flags |= BP_WATCHPOINT_HIT;
|
---|
3107 | if (!env->watchpoint_hit) {
|
---|
3108 | env->watchpoint_hit = wp;
|
---|
3109 | tb = tb_find_pc(env->mem_io_pc);
|
---|
3110 | if (!tb) {
|
---|
3111 | cpu_abort(env, "check_watchpoint: could not find TB for "
|
---|
3112 | "pc=%p", (void *)env->mem_io_pc);
|
---|
3113 | }
|
---|
3114 | cpu_restore_state(tb, env, env->mem_io_pc, NULL);
|
---|
3115 | tb_phys_invalidate(tb, -1);
|
---|
3116 | if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
---|
3117 | env->exception_index = EXCP_DEBUG;
|
---|
3118 | } else {
|
---|
3119 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
---|
3120 | tb_gen_code(env, pc, cs_base, cpu_flags, 1);
|
---|
3121 | }
|
---|
3122 | cpu_resume_from_signal(env, NULL);
|
---|
3123 | }
|
---|
3124 | } else {
|
---|
3125 | wp->flags &= ~BP_WATCHPOINT_HIT;
|
---|
3126 | }
|
---|
3127 | }
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
---|
3131 | so these check for a hit then pass through to the normal out-of-line
|
---|
3132 | phys routines. */
|
---|
3133 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
3134 | {
|
---|
3135 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
|
---|
3136 | return ldub_phys(addr);
|
---|
3137 | }
|
---|
3138 |
|
---|
3139 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
3140 | {
|
---|
3141 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
|
---|
3142 | return lduw_phys(addr);
|
---|
3143 | }
|
---|
3144 |
|
---|
3145 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
3146 | {
|
---|
3147 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
|
---|
3148 | return ldl_phys(addr);
|
---|
3149 | }
|
---|
3150 |
|
---|
3151 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
|
---|
3152 | uint32_t val)
|
---|
3153 | {
|
---|
3154 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
|
---|
3155 | stb_phys(addr, val);
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
|
---|
3159 | uint32_t val)
|
---|
3160 | {
|
---|
3161 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
|
---|
3162 | stw_phys(addr, val);
|
---|
3163 | }
|
---|
3164 |
|
---|
3165 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
|
---|
3166 | uint32_t val)
|
---|
3167 | {
|
---|
3168 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
|
---|
3169 | stl_phys(addr, val);
|
---|
3170 | }
|
---|
3171 |
|
---|
3172 | static CPUReadMemoryFunc * const watch_mem_read[3] = {
|
---|
3173 | watch_mem_readb,
|
---|
3174 | watch_mem_readw,
|
---|
3175 | watch_mem_readl,
|
---|
3176 | };
|
---|
3177 |
|
---|
3178 | static CPUWriteMemoryFunc * const watch_mem_write[3] = {
|
---|
3179 | watch_mem_writeb,
|
---|
3180 | watch_mem_writew,
|
---|
3181 | watch_mem_writel,
|
---|
3182 | };
|
---|
3183 |
|
---|
3184 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
|
---|
3185 | unsigned int len)
|
---|
3186 | {
|
---|
3187 | uint32_t ret;
|
---|
3188 | unsigned int idx;
|
---|
3189 |
|
---|
3190 | idx = SUBPAGE_IDX(addr);
|
---|
3191 | #if defined(DEBUG_SUBPAGE)
|
---|
3192 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
|
---|
3193 | mmio, len, addr, idx);
|
---|
3194 | #endif
|
---|
3195 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
|
---|
3196 | addr + mmio->region_offset[idx][0][len]);
|
---|
3197 |
|
---|
3198 | return ret;
|
---|
3199 | }
|
---|
3200 |
|
---|
3201 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
|
---|
3202 | uint32_t value, unsigned int len)
|
---|
3203 | {
|
---|
3204 | unsigned int idx;
|
---|
3205 |
|
---|
3206 | idx = SUBPAGE_IDX(addr);
|
---|
3207 | #if defined(DEBUG_SUBPAGE)
|
---|
3208 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
|
---|
3209 | mmio, len, addr, idx, value);
|
---|
3210 | #endif
|
---|
3211 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
|
---|
3212 | addr + mmio->region_offset[idx][1][len],
|
---|
3213 | value);
|
---|
3214 | }
|
---|
3215 |
|
---|
3216 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
|
---|
3217 | {
|
---|
3218 | #if defined(DEBUG_SUBPAGE)
|
---|
3219 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3220 | #endif
|
---|
3221 |
|
---|
3222 | return subpage_readlen(opaque, addr, 0);
|
---|
3223 | }
|
---|
3224 |
|
---|
3225 | static void subpage_writeb (void *opaque, target_phys_addr_t addr,
|
---|
3226 | uint32_t value)
|
---|
3227 | {
|
---|
3228 | #if defined(DEBUG_SUBPAGE)
|
---|
3229 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3230 | #endif
|
---|
3231 | subpage_writelen(opaque, addr, value, 0);
|
---|
3232 | }
|
---|
3233 |
|
---|
3234 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
|
---|
3235 | {
|
---|
3236 | #if defined(DEBUG_SUBPAGE)
|
---|
3237 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3238 | #endif
|
---|
3239 |
|
---|
3240 | return subpage_readlen(opaque, addr, 1);
|
---|
3241 | }
|
---|
3242 |
|
---|
3243 | static void subpage_writew (void *opaque, target_phys_addr_t addr,
|
---|
3244 | uint32_t value)
|
---|
3245 | {
|
---|
3246 | #if defined(DEBUG_SUBPAGE)
|
---|
3247 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3248 | #endif
|
---|
3249 | subpage_writelen(opaque, addr, value, 1);
|
---|
3250 | }
|
---|
3251 |
|
---|
3252 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
|
---|
3253 | {
|
---|
3254 | #if defined(DEBUG_SUBPAGE)
|
---|
3255 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3256 | #endif
|
---|
3257 |
|
---|
3258 | return subpage_readlen(opaque, addr, 2);
|
---|
3259 | }
|
---|
3260 |
|
---|
3261 | static void subpage_writel (void *opaque,
|
---|
3262 | target_phys_addr_t addr, uint32_t value)
|
---|
3263 | {
|
---|
3264 | #if defined(DEBUG_SUBPAGE)
|
---|
3265 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3266 | #endif
|
---|
3267 | subpage_writelen(opaque, addr, value, 2);
|
---|
3268 | }
|
---|
3269 |
|
---|
3270 | static CPUReadMemoryFunc * const subpage_read[] = {
|
---|
3271 | &subpage_readb,
|
---|
3272 | &subpage_readw,
|
---|
3273 | &subpage_readl,
|
---|
3274 | };
|
---|
3275 |
|
---|
3276 | static CPUWriteMemoryFunc * const subpage_write[] = {
|
---|
3277 | &subpage_writeb,
|
---|
3278 | &subpage_writew,
|
---|
3279 | &subpage_writel,
|
---|
3280 | };
|
---|
3281 |
|
---|
3282 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
3283 | ram_addr_t memory, ram_addr_t region_offset)
|
---|
3284 | {
|
---|
3285 | int idx, eidx;
|
---|
3286 | unsigned int i;
|
---|
3287 |
|
---|
3288 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
---|
3289 | return -1;
|
---|
3290 | idx = SUBPAGE_IDX(start);
|
---|
3291 | eidx = SUBPAGE_IDX(end);
|
---|
3292 | #if defined(DEBUG_SUBPAGE)
|
---|
3293 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
|
---|
3294 | mmio, start, end, idx, eidx, memory);
|
---|
3295 | #endif
|
---|
3296 | memory >>= IO_MEM_SHIFT;
|
---|
3297 | for (; idx <= eidx; idx++) {
|
---|
3298 | for (i = 0; i < 4; i++) {
|
---|
3299 | if (io_mem_read[memory][i]) {
|
---|
3300 | mmio->mem_read[idx][i] = &io_mem_read[memory][i];
|
---|
3301 | mmio->opaque[idx][0][i] = io_mem_opaque[memory];
|
---|
3302 | mmio->region_offset[idx][0][i] = region_offset;
|
---|
3303 | }
|
---|
3304 | if (io_mem_write[memory][i]) {
|
---|
3305 | mmio->mem_write[idx][i] = &io_mem_write[memory][i];
|
---|
3306 | mmio->opaque[idx][1][i] = io_mem_opaque[memory];
|
---|
3307 | mmio->region_offset[idx][1][i] = region_offset;
|
---|
3308 | }
|
---|
3309 | }
|
---|
3310 | }
|
---|
3311 |
|
---|
3312 | return 0;
|
---|
3313 | }
|
---|
3314 |
|
---|
3315 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
3316 | ram_addr_t orig_memory, ram_addr_t region_offset)
|
---|
3317 | {
|
---|
3318 | subpage_t *mmio;
|
---|
3319 | int subpage_memory;
|
---|
3320 |
|
---|
3321 | mmio = qemu_mallocz(sizeof(subpage_t));
|
---|
3322 |
|
---|
3323 | mmio->base = base;
|
---|
3324 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
|
---|
3325 | #if defined(DEBUG_SUBPAGE)
|
---|
3326 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
|
---|
3327 | mmio, base, TARGET_PAGE_SIZE, subpage_memory);
|
---|
3328 | #endif
|
---|
3329 | *phys = subpage_memory | IO_MEM_SUBPAGE;
|
---|
3330 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
|
---|
3331 | region_offset);
|
---|
3332 |
|
---|
3333 | return mmio;
|
---|
3334 | }
|
---|
3335 |
|
---|
3336 | static int get_free_io_mem_idx(void)
|
---|
3337 | {
|
---|
3338 | int i;
|
---|
3339 |
|
---|
3340 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
|
---|
3341 | if (!io_mem_used[i]) {
|
---|
3342 | io_mem_used[i] = 1;
|
---|
3343 | return i;
|
---|
3344 | }
|
---|
3345 |
|
---|
3346 | return -1;
|
---|
3347 | }
|
---|
3348 |
|
---|
3349 | /* mem_read and mem_write are arrays of functions containing the
|
---|
3350 | function to access byte (index 0), word (index 1) and dword (index
|
---|
3351 | 2). Functions can be omitted with a NULL function pointer.
|
---|
3352 | If io_index is non zero, the corresponding io zone is
|
---|
3353 | modified. If it is zero, a new io zone is allocated. The return
|
---|
3354 | value can be used with cpu_register_physical_memory(). (-1) is
|
---|
3355 | returned if error. */
|
---|
3356 | static int cpu_register_io_memory_fixed(int io_index,
|
---|
3357 | CPUReadMemoryFunc * const *mem_read,
|
---|
3358 | CPUWriteMemoryFunc * const *mem_write,
|
---|
3359 | void *opaque)
|
---|
3360 | {
|
---|
3361 | int i, subwidth = 0;
|
---|
3362 |
|
---|
3363 | if (io_index <= 0) {
|
---|
3364 | io_index = get_free_io_mem_idx();
|
---|
3365 | if (io_index == -1)
|
---|
3366 | return io_index;
|
---|
3367 | } else {
|
---|
3368 | io_index >>= IO_MEM_SHIFT;
|
---|
3369 | if (io_index >= IO_MEM_NB_ENTRIES)
|
---|
3370 | return -1;
|
---|
3371 | }
|
---|
3372 |
|
---|
3373 | for(i = 0;i < 3; i++) {
|
---|
3374 | if (!mem_read[i] || !mem_write[i])
|
---|
3375 | subwidth = IO_MEM_SUBWIDTH;
|
---|
3376 | io_mem_read[io_index][i] = mem_read[i];
|
---|
3377 | io_mem_write[io_index][i] = mem_write[i];
|
---|
3378 | }
|
---|
3379 | io_mem_opaque[io_index] = opaque;
|
---|
3380 | return (io_index << IO_MEM_SHIFT) | subwidth;
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 | int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
|
---|
3384 | CPUWriteMemoryFunc * const *mem_write,
|
---|
3385 | void *opaque)
|
---|
3386 | {
|
---|
3387 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | void cpu_unregister_io_memory(int io_table_address)
|
---|
3391 | {
|
---|
3392 | int i;
|
---|
3393 | int io_index = io_table_address >> IO_MEM_SHIFT;
|
---|
3394 |
|
---|
3395 | for (i=0;i < 3; i++) {
|
---|
3396 | io_mem_read[io_index][i] = unassigned_mem_read[i];
|
---|
3397 | io_mem_write[io_index][i] = unassigned_mem_write[i];
|
---|
3398 | }
|
---|
3399 | io_mem_opaque[io_index] = NULL;
|
---|
3400 | io_mem_used[io_index] = 0;
|
---|
3401 | }
|
---|
3402 |
|
---|
3403 | static void io_mem_init(void)
|
---|
3404 | {
|
---|
3405 | int i;
|
---|
3406 |
|
---|
3407 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
|
---|
3408 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
|
---|
3409 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
|
---|
3410 | for (i=0; i<5; i++)
|
---|
3411 | io_mem_used[i] = 1;
|
---|
3412 |
|
---|
3413 | io_mem_watch = cpu_register_io_memory(watch_mem_read,
|
---|
3414 | watch_mem_write, NULL);
|
---|
3415 | }
|
---|
3416 |
|
---|
3417 | #endif /* !defined(CONFIG_USER_ONLY) */
|
---|
3418 |
|
---|
3419 | /* physical memory access (slow version, mainly for debug) */
|
---|
3420 | #if defined(CONFIG_USER_ONLY)
|
---|
3421 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
---|
3422 | int len, int is_write)
|
---|
3423 | {
|
---|
3424 | int l, flags;
|
---|
3425 | target_ulong page;
|
---|
3426 | void * p;
|
---|
3427 |
|
---|
3428 | while (len > 0) {
|
---|
3429 | page = addr & TARGET_PAGE_MASK;
|
---|
3430 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3431 | if (l > len)
|
---|
3432 | l = len;
|
---|
3433 | flags = page_get_flags(page);
|
---|
3434 | if (!(flags & PAGE_VALID))
|
---|
3435 | return;
|
---|
3436 | if (is_write) {
|
---|
3437 | if (!(flags & PAGE_WRITE))
|
---|
3438 | return;
|
---|
3439 | /* XXX: this code should not depend on lock_user */
|
---|
3440 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
---|
3441 | /* FIXME - should this return an error rather than just fail? */
|
---|
3442 | return;
|
---|
3443 | memcpy(p, buf, l);
|
---|
3444 | unlock_user(p, addr, l);
|
---|
3445 | } else {
|
---|
3446 | if (!(flags & PAGE_READ))
|
---|
3447 | return;
|
---|
3448 | /* XXX: this code should not depend on lock_user */
|
---|
3449 | if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
---|
3450 | /* FIXME - should this return an error rather than just fail? */
|
---|
3451 | return;
|
---|
3452 | memcpy(buf, p, l);
|
---|
3453 | unlock_user(p, addr, 0);
|
---|
3454 | }
|
---|
3455 | len -= l;
|
---|
3456 | buf += l;
|
---|
3457 | addr += l;
|
---|
3458 | }
|
---|
3459 | }
|
---|
3460 |
|
---|
3461 | #else
|
---|
3462 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
---|
3463 | int len, int is_write)
|
---|
3464 | {
|
---|
3465 | int l, io_index;
|
---|
3466 | uint8_t *ptr;
|
---|
3467 | uint32_t val;
|
---|
3468 | target_phys_addr_t page;
|
---|
3469 | unsigned long pd;
|
---|
3470 | PhysPageDesc *p;
|
---|
3471 |
|
---|
3472 | while (len > 0) {
|
---|
3473 | page = addr & TARGET_PAGE_MASK;
|
---|
3474 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3475 | if (l > len)
|
---|
3476 | l = len;
|
---|
3477 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3478 | if (!p) {
|
---|
3479 | pd = IO_MEM_UNASSIGNED;
|
---|
3480 | } else {
|
---|
3481 | pd = p->phys_offset;
|
---|
3482 | }
|
---|
3483 |
|
---|
3484 | if (is_write) {
|
---|
3485 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3486 | target_phys_addr_t addr1 = addr;
|
---|
3487 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3488 | if (p)
|
---|
3489 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3490 | /* XXX: could force cpu_single_env to NULL to avoid
|
---|
3491 | potential bugs */
|
---|
3492 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3493 | /* 32 bit write access */
|
---|
3494 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3495 | val = ldl_p(buf);
|
---|
3496 | #else
|
---|
3497 | val = *(const uint32_t *)buf;
|
---|
3498 | #endif
|
---|
3499 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
|
---|
3500 | l = 4;
|
---|
3501 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3502 | /* 16 bit write access */
|
---|
3503 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3504 | val = lduw_p(buf);
|
---|
3505 | #else
|
---|
3506 | val = *(const uint16_t *)buf;
|
---|
3507 | #endif
|
---|
3508 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
|
---|
3509 | l = 2;
|
---|
3510 | } else {
|
---|
3511 | /* 8 bit write access */
|
---|
3512 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3513 | val = ldub_p(buf);
|
---|
3514 | #else
|
---|
3515 | val = *(const uint8_t *)buf;
|
---|
3516 | #endif
|
---|
3517 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
|
---|
3518 | l = 1;
|
---|
3519 | }
|
---|
3520 | } else {
|
---|
3521 | unsigned long addr1;
|
---|
3522 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3523 | /* RAM case */
|
---|
3524 | #ifdef VBOX
|
---|
3525 | remR3PhysWrite(addr1, buf, l); NOREF(ptr);
|
---|
3526 | #else
|
---|
3527 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3528 | memcpy(ptr, buf, l);
|
---|
3529 | #endif
|
---|
3530 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3531 | /* invalidate code */
|
---|
3532 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
3533 | /* set dirty bit */
|
---|
3534 | #ifdef VBOX
|
---|
3535 | if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3536 | #endif
|
---|
3537 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3538 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3539 | }
|
---|
3540 | }
|
---|
3541 | } else {
|
---|
3542 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3543 | !(pd & IO_MEM_ROMD)) {
|
---|
3544 | target_phys_addr_t addr1 = addr;
|
---|
3545 | /* I/O case */
|
---|
3546 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3547 | if (p)
|
---|
3548 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3549 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3550 | /* 32 bit read access */
|
---|
3551 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
|
---|
3552 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3553 | stl_p(buf, val);
|
---|
3554 | #else
|
---|
3555 | *(uint32_t *)buf = val;
|
---|
3556 | #endif
|
---|
3557 | l = 4;
|
---|
3558 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3559 | /* 16 bit read access */
|
---|
3560 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
|
---|
3561 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3562 | stw_p(buf, val);
|
---|
3563 | #else
|
---|
3564 | *(uint16_t *)buf = val;
|
---|
3565 | #endif
|
---|
3566 | l = 2;
|
---|
3567 | } else {
|
---|
3568 | /* 8 bit read access */
|
---|
3569 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
|
---|
3570 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3571 | stb_p(buf, val);
|
---|
3572 | #else
|
---|
3573 | *(uint8_t *)buf = val;
|
---|
3574 | #endif
|
---|
3575 | l = 1;
|
---|
3576 | }
|
---|
3577 | } else {
|
---|
3578 | /* RAM case */
|
---|
3579 | #ifdef VBOX
|
---|
3580 | remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
|
---|
3581 | #else
|
---|
3582 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3583 | (addr & ~TARGET_PAGE_MASK);
|
---|
3584 | memcpy(buf, ptr, l);
|
---|
3585 | #endif
|
---|
3586 | }
|
---|
3587 | }
|
---|
3588 | len -= l;
|
---|
3589 | buf += l;
|
---|
3590 | addr += l;
|
---|
3591 | }
|
---|
3592 | }
|
---|
3593 |
|
---|
3594 | #ifndef VBOX
|
---|
3595 |
|
---|
3596 | /* used for ROM loading : can write in RAM and ROM */
|
---|
3597 | void cpu_physical_memory_write_rom(target_phys_addr_t addr,
|
---|
3598 | const uint8_t *buf, int len)
|
---|
3599 | {
|
---|
3600 | int l;
|
---|
3601 | uint8_t *ptr;
|
---|
3602 | target_phys_addr_t page;
|
---|
3603 | unsigned long pd;
|
---|
3604 | PhysPageDesc *p;
|
---|
3605 |
|
---|
3606 | while (len > 0) {
|
---|
3607 | page = addr & TARGET_PAGE_MASK;
|
---|
3608 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3609 | if (l > len)
|
---|
3610 | l = len;
|
---|
3611 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3612 | if (!p) {
|
---|
3613 | pd = IO_MEM_UNASSIGNED;
|
---|
3614 | } else {
|
---|
3615 | pd = p->phys_offset;
|
---|
3616 | }
|
---|
3617 |
|
---|
3618 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
|
---|
3619 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
|
---|
3620 | !(pd & IO_MEM_ROMD)) {
|
---|
3621 | /* do nothing */
|
---|
3622 | } else {
|
---|
3623 | unsigned long addr1;
|
---|
3624 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3625 | /* ROM/RAM case */
|
---|
3626 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3627 | memcpy(ptr, buf, l);
|
---|
3628 | }
|
---|
3629 | len -= l;
|
---|
3630 | buf += l;
|
---|
3631 | addr += l;
|
---|
3632 | }
|
---|
3633 | }
|
---|
3634 |
|
---|
3635 | typedef struct {
|
---|
3636 | void *buffer;
|
---|
3637 | target_phys_addr_t addr;
|
---|
3638 | target_phys_addr_t len;
|
---|
3639 | } BounceBuffer;
|
---|
3640 |
|
---|
3641 | static BounceBuffer bounce;
|
---|
3642 |
|
---|
3643 | typedef struct MapClient {
|
---|
3644 | void *opaque;
|
---|
3645 | void (*callback)(void *opaque);
|
---|
3646 | QLIST_ENTRY(MapClient) link;
|
---|
3647 | } MapClient;
|
---|
3648 |
|
---|
3649 | static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
---|
3650 | = QLIST_HEAD_INITIALIZER(map_client_list);
|
---|
3651 |
|
---|
3652 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
---|
3653 | {
|
---|
3654 | MapClient *client = qemu_malloc(sizeof(*client));
|
---|
3655 |
|
---|
3656 | client->opaque = opaque;
|
---|
3657 | client->callback = callback;
|
---|
3658 | QLIST_INSERT_HEAD(&map_client_list, client, link);
|
---|
3659 | return client;
|
---|
3660 | }
|
---|
3661 |
|
---|
3662 | void cpu_unregister_map_client(void *_client)
|
---|
3663 | {
|
---|
3664 | MapClient *client = (MapClient *)_client;
|
---|
3665 |
|
---|
3666 | QLIST_REMOVE(client, link);
|
---|
3667 | qemu_free(client);
|
---|
3668 | }
|
---|
3669 |
|
---|
3670 | static void cpu_notify_map_clients(void)
|
---|
3671 | {
|
---|
3672 | MapClient *client;
|
---|
3673 |
|
---|
3674 | while (!QLIST_EMPTY(&map_client_list)) {
|
---|
3675 | client = QLIST_FIRST(&map_client_list);
|
---|
3676 | client->callback(client->opaque);
|
---|
3677 | cpu_unregister_map_client(client);
|
---|
3678 | }
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | /* Map a physical memory region into a host virtual address.
|
---|
3682 | * May map a subset of the requested range, given by and returned in *plen.
|
---|
3683 | * May return NULL if resources needed to perform the mapping are exhausted.
|
---|
3684 | * Use only for reads OR writes - not for read-modify-write operations.
|
---|
3685 | * Use cpu_register_map_client() to know when retrying the map operation is
|
---|
3686 | * likely to succeed.
|
---|
3687 | */
|
---|
3688 | void *cpu_physical_memory_map(target_phys_addr_t addr,
|
---|
3689 | target_phys_addr_t *plen,
|
---|
3690 | int is_write)
|
---|
3691 | {
|
---|
3692 | target_phys_addr_t len = *plen;
|
---|
3693 | target_phys_addr_t done = 0;
|
---|
3694 | int l;
|
---|
3695 | uint8_t *ret = NULL;
|
---|
3696 | uint8_t *ptr;
|
---|
3697 | target_phys_addr_t page;
|
---|
3698 | unsigned long pd;
|
---|
3699 | PhysPageDesc *p;
|
---|
3700 | unsigned long addr1;
|
---|
3701 |
|
---|
3702 | while (len > 0) {
|
---|
3703 | page = addr & TARGET_PAGE_MASK;
|
---|
3704 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3705 | if (l > len)
|
---|
3706 | l = len;
|
---|
3707 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3708 | if (!p) {
|
---|
3709 | pd = IO_MEM_UNASSIGNED;
|
---|
3710 | } else {
|
---|
3711 | pd = p->phys_offset;
|
---|
3712 | }
|
---|
3713 |
|
---|
3714 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3715 | if (done || bounce.buffer) {
|
---|
3716 | break;
|
---|
3717 | }
|
---|
3718 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
|
---|
3719 | bounce.addr = addr;
|
---|
3720 | bounce.len = l;
|
---|
3721 | if (!is_write) {
|
---|
3722 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
|
---|
3723 | }
|
---|
3724 | ptr = bounce.buffer;
|
---|
3725 | } else {
|
---|
3726 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3727 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3728 | }
|
---|
3729 | if (!done) {
|
---|
3730 | ret = ptr;
|
---|
3731 | } else if (ret + done != ptr) {
|
---|
3732 | break;
|
---|
3733 | }
|
---|
3734 |
|
---|
3735 | len -= l;
|
---|
3736 | addr += l;
|
---|
3737 | done += l;
|
---|
3738 | }
|
---|
3739 | *plen = done;
|
---|
3740 | return ret;
|
---|
3741 | }
|
---|
3742 |
|
---|
3743 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
|
---|
3744 | * Will also mark the memory as dirty if is_write == 1. access_len gives
|
---|
3745 | * the amount of memory that was actually read or written by the caller.
|
---|
3746 | */
|
---|
3747 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
|
---|
3748 | int is_write, target_phys_addr_t access_len)
|
---|
3749 | {
|
---|
3750 | if (buffer != bounce.buffer) {
|
---|
3751 | if (is_write) {
|
---|
3752 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
|
---|
3753 | while (access_len) {
|
---|
3754 | unsigned l;
|
---|
3755 | l = TARGET_PAGE_SIZE;
|
---|
3756 | if (l > access_len)
|
---|
3757 | l = access_len;
|
---|
3758 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3759 | /* invalidate code */
|
---|
3760 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
3761 | /* set dirty bit */
|
---|
3762 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3763 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3764 | }
|
---|
3765 | addr1 += l;
|
---|
3766 | access_len -= l;
|
---|
3767 | }
|
---|
3768 | }
|
---|
3769 | return;
|
---|
3770 | }
|
---|
3771 | if (is_write) {
|
---|
3772 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
|
---|
3773 | }
|
---|
3774 | qemu_vfree(bounce.buffer);
|
---|
3775 | bounce.buffer = NULL;
|
---|
3776 | cpu_notify_map_clients();
|
---|
3777 | }
|
---|
3778 |
|
---|
3779 | #endif /* !VBOX */
|
---|
3780 |
|
---|
3781 | /* warning: addr must be aligned */
|
---|
3782 | uint32_t ldl_phys(target_phys_addr_t addr)
|
---|
3783 | {
|
---|
3784 | int io_index;
|
---|
3785 | uint8_t *ptr;
|
---|
3786 | uint32_t val;
|
---|
3787 | unsigned long pd;
|
---|
3788 | PhysPageDesc *p;
|
---|
3789 |
|
---|
3790 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3791 | if (!p) {
|
---|
3792 | pd = IO_MEM_UNASSIGNED;
|
---|
3793 | } else {
|
---|
3794 | pd = p->phys_offset;
|
---|
3795 | }
|
---|
3796 |
|
---|
3797 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3798 | !(pd & IO_MEM_ROMD)) {
|
---|
3799 | /* I/O case */
|
---|
3800 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3801 | if (p)
|
---|
3802 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3803 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
3804 | } else {
|
---|
3805 | /* RAM case */
|
---|
3806 | #ifndef VBOX
|
---|
3807 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3808 | (addr & ~TARGET_PAGE_MASK);
|
---|
3809 | val = ldl_p(ptr);
|
---|
3810 | #else
|
---|
3811 | val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
3812 | #endif
|
---|
3813 | }
|
---|
3814 | return val;
|
---|
3815 | }
|
---|
3816 |
|
---|
3817 | /* warning: addr must be aligned */
|
---|
3818 | uint64_t ldq_phys(target_phys_addr_t addr)
|
---|
3819 | {
|
---|
3820 | int io_index;
|
---|
3821 | uint8_t *ptr;
|
---|
3822 | uint64_t val;
|
---|
3823 | unsigned long pd;
|
---|
3824 | PhysPageDesc *p;
|
---|
3825 |
|
---|
3826 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3827 | if (!p) {
|
---|
3828 | pd = IO_MEM_UNASSIGNED;
|
---|
3829 | } else {
|
---|
3830 | pd = p->phys_offset;
|
---|
3831 | }
|
---|
3832 |
|
---|
3833 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3834 | !(pd & IO_MEM_ROMD)) {
|
---|
3835 | /* I/O case */
|
---|
3836 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3837 | if (p)
|
---|
3838 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3839 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
3840 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
|
---|
3841 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
|
---|
3842 | #else
|
---|
3843 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
3844 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
|
---|
3845 | #endif
|
---|
3846 | } else {
|
---|
3847 | /* RAM case */
|
---|
3848 | #ifndef VBOX
|
---|
3849 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3850 | (addr & ~TARGET_PAGE_MASK);
|
---|
3851 | val = ldq_p(ptr);
|
---|
3852 | #else
|
---|
3853 | val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
3854 | #endif
|
---|
3855 | }
|
---|
3856 | return val;
|
---|
3857 | }
|
---|
3858 |
|
---|
3859 | /* XXX: optimize */
|
---|
3860 | uint32_t ldub_phys(target_phys_addr_t addr)
|
---|
3861 | {
|
---|
3862 | uint8_t val;
|
---|
3863 | cpu_physical_memory_read(addr, &val, 1);
|
---|
3864 | return val;
|
---|
3865 | }
|
---|
3866 |
|
---|
3867 | /* XXX: optimize */
|
---|
3868 | uint32_t lduw_phys(target_phys_addr_t addr)
|
---|
3869 | {
|
---|
3870 | uint16_t val;
|
---|
3871 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
|
---|
3872 | return tswap16(val);
|
---|
3873 | }
|
---|
3874 |
|
---|
3875 | /* warning: addr must be aligned. The ram page is not masked as dirty
|
---|
3876 | and the code inside is not invalidated. It is useful if the dirty
|
---|
3877 | bits are used to track modified PTEs */
|
---|
3878 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
|
---|
3879 | {
|
---|
3880 | int io_index;
|
---|
3881 | uint8_t *ptr;
|
---|
3882 | unsigned long pd;
|
---|
3883 | PhysPageDesc *p;
|
---|
3884 |
|
---|
3885 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3886 | if (!p) {
|
---|
3887 | pd = IO_MEM_UNASSIGNED;
|
---|
3888 | } else {
|
---|
3889 | pd = p->phys_offset;
|
---|
3890 | }
|
---|
3891 |
|
---|
3892 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3893 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3894 | if (p)
|
---|
3895 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3896 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
3897 | } else {
|
---|
3898 | #ifndef VBOX
|
---|
3899 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3900 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3901 | stl_p(ptr, val);
|
---|
3902 | #else
|
---|
3903 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
3904 | #endif
|
---|
3905 |
|
---|
3906 | #ifndef VBOX
|
---|
3907 | if (unlikely(in_migration)) {
|
---|
3908 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3909 | /* invalidate code */
|
---|
3910 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
3911 | /* set dirty bit */
|
---|
3912 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3913 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3914 | }
|
---|
3915 | }
|
---|
3916 | #endif /* !VBOX */
|
---|
3917 | }
|
---|
3918 | }
|
---|
3919 |
|
---|
3920 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
|
---|
3921 | {
|
---|
3922 | int io_index;
|
---|
3923 | uint8_t *ptr;
|
---|
3924 | unsigned long pd;
|
---|
3925 | PhysPageDesc *p;
|
---|
3926 |
|
---|
3927 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3928 | if (!p) {
|
---|
3929 | pd = IO_MEM_UNASSIGNED;
|
---|
3930 | } else {
|
---|
3931 | pd = p->phys_offset;
|
---|
3932 | }
|
---|
3933 |
|
---|
3934 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3935 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3936 | if (p)
|
---|
3937 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3938 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
3939 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
|
---|
3940 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
|
---|
3941 | #else
|
---|
3942 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
3943 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
|
---|
3944 | #endif
|
---|
3945 | } else {
|
---|
3946 | #ifndef VBOX
|
---|
3947 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3948 | (addr & ~TARGET_PAGE_MASK);
|
---|
3949 | stq_p(ptr, val);
|
---|
3950 | #else
|
---|
3951 | remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
3952 | #endif
|
---|
3953 | }
|
---|
3954 | }
|
---|
3955 |
|
---|
3956 | /* warning: addr must be aligned */
|
---|
3957 | void stl_phys(target_phys_addr_t addr, uint32_t val)
|
---|
3958 | {
|
---|
3959 | int io_index;
|
---|
3960 | uint8_t *ptr;
|
---|
3961 | unsigned long pd;
|
---|
3962 | PhysPageDesc *p;
|
---|
3963 |
|
---|
3964 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3965 | if (!p) {
|
---|
3966 | pd = IO_MEM_UNASSIGNED;
|
---|
3967 | } else {
|
---|
3968 | pd = p->phys_offset;
|
---|
3969 | }
|
---|
3970 |
|
---|
3971 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3972 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3973 | if (p)
|
---|
3974 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3975 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
3976 | } else {
|
---|
3977 | unsigned long addr1;
|
---|
3978 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3979 | /* RAM case */
|
---|
3980 | #ifndef VBOX
|
---|
3981 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3982 | stl_p(ptr, val);
|
---|
3983 | #else
|
---|
3984 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
3985 | #endif
|
---|
3986 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3987 | /* invalidate code */
|
---|
3988 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
3989 | /* set dirty bit */
|
---|
3990 | #ifdef VBOX
|
---|
3991 | if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3992 | #endif
|
---|
3993 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3994 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3995 | }
|
---|
3996 | }
|
---|
3997 | }
|
---|
3998 |
|
---|
3999 | /* XXX: optimize */
|
---|
4000 | void stb_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4001 | {
|
---|
4002 | uint8_t v = val;
|
---|
4003 | cpu_physical_memory_write(addr, &v, 1);
|
---|
4004 | }
|
---|
4005 |
|
---|
4006 | /* XXX: optimize */
|
---|
4007 | void stw_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4008 | {
|
---|
4009 | uint16_t v = tswap16(val);
|
---|
4010 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
|
---|
4011 | }
|
---|
4012 |
|
---|
4013 | /* XXX: optimize */
|
---|
4014 | void stq_phys(target_phys_addr_t addr, uint64_t val)
|
---|
4015 | {
|
---|
4016 | val = tswap64(val);
|
---|
4017 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
|
---|
4018 | }
|
---|
4019 |
|
---|
4020 | #endif
|
---|
4021 |
|
---|
4022 | #ifndef VBOX
|
---|
4023 | /* virtual memory access for debug (includes writing to ROM) */
|
---|
4024 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
|
---|
4025 | uint8_t *buf, int len, int is_write)
|
---|
4026 | {
|
---|
4027 | int l;
|
---|
4028 | target_phys_addr_t phys_addr;
|
---|
4029 | target_ulong page;
|
---|
4030 |
|
---|
4031 | while (len > 0) {
|
---|
4032 | page = addr & TARGET_PAGE_MASK;
|
---|
4033 | phys_addr = cpu_get_phys_page_debug(env, page);
|
---|
4034 | /* if no physical page mapped, return an error */
|
---|
4035 | if (phys_addr == -1)
|
---|
4036 | return -1;
|
---|
4037 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
4038 | if (l > len)
|
---|
4039 | l = len;
|
---|
4040 | phys_addr += (addr & ~TARGET_PAGE_MASK);
|
---|
4041 | #if !defined(CONFIG_USER_ONLY)
|
---|
4042 | if (is_write)
|
---|
4043 | cpu_physical_memory_write_rom(phys_addr, buf, l);
|
---|
4044 | else
|
---|
4045 | #endif
|
---|
4046 | cpu_physical_memory_rw(phys_addr, buf, l, is_write);
|
---|
4047 | len -= l;
|
---|
4048 | buf += l;
|
---|
4049 | addr += l;
|
---|
4050 | }
|
---|
4051 | return 0;
|
---|
4052 | }
|
---|
4053 | #endif /* !VBOX */
|
---|
4054 |
|
---|
4055 | /* in deterministic execution mode, instructions doing device I/Os
|
---|
4056 | must be at the end of the TB */
|
---|
4057 | void cpu_io_recompile(CPUState *env, void *retaddr)
|
---|
4058 | {
|
---|
4059 | TranslationBlock *tb;
|
---|
4060 | uint32_t n, cflags;
|
---|
4061 | target_ulong pc, cs_base;
|
---|
4062 | uint64_t flags;
|
---|
4063 |
|
---|
4064 | tb = tb_find_pc((unsigned long)retaddr);
|
---|
4065 | if (!tb) {
|
---|
4066 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
|
---|
4067 | retaddr);
|
---|
4068 | }
|
---|
4069 | n = env->icount_decr.u16.low + tb->icount;
|
---|
4070 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
|
---|
4071 | /* Calculate how many instructions had been executed before the fault
|
---|
4072 | occurred. */
|
---|
4073 | n = n - env->icount_decr.u16.low;
|
---|
4074 | /* Generate a new TB ending on the I/O insn. */
|
---|
4075 | n++;
|
---|
4076 | /* On MIPS and SH, delay slot instructions can only be restarted if
|
---|
4077 | they were already the first instruction in the TB. If this is not
|
---|
4078 | the first instruction in a TB then re-execute the preceding
|
---|
4079 | branch. */
|
---|
4080 | #if defined(TARGET_MIPS)
|
---|
4081 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
|
---|
4082 | env->active_tc.PC -= 4;
|
---|
4083 | env->icount_decr.u16.low++;
|
---|
4084 | env->hflags &= ~MIPS_HFLAG_BMASK;
|
---|
4085 | }
|
---|
4086 | #elif defined(TARGET_SH4)
|
---|
4087 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
|
---|
4088 | && n > 1) {
|
---|
4089 | env->pc -= 2;
|
---|
4090 | env->icount_decr.u16.low++;
|
---|
4091 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
|
---|
4092 | }
|
---|
4093 | #endif
|
---|
4094 | /* This should never happen. */
|
---|
4095 | if (n > CF_COUNT_MASK)
|
---|
4096 | cpu_abort(env, "TB too big during recompile");
|
---|
4097 |
|
---|
4098 | cflags = n | CF_LAST_IO;
|
---|
4099 | pc = tb->pc;
|
---|
4100 | cs_base = tb->cs_base;
|
---|
4101 | flags = tb->flags;
|
---|
4102 | tb_phys_invalidate(tb, -1);
|
---|
4103 | /* FIXME: In theory this could raise an exception. In practice
|
---|
4104 | we have already translated the block once so it's probably ok. */
|
---|
4105 | tb_gen_code(env, pc, cs_base, flags, cflags);
|
---|
4106 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
|
---|
4107 | the first in the TB) then we end up generating a whole new TB and
|
---|
4108 | repeating the fault, which is horribly inefficient.
|
---|
4109 | Better would be to execute just this insn uncached, or generate a
|
---|
4110 | second new TB. */
|
---|
4111 | cpu_resume_from_signal(env, NULL);
|
---|
4112 | }
|
---|
4113 |
|
---|
4114 | #ifndef VBOX
|
---|
4115 | void dump_exec_info(FILE *f,
|
---|
4116 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
|
---|
4117 | {
|
---|
4118 | int i, target_code_size, max_target_code_size;
|
---|
4119 | int direct_jmp_count, direct_jmp2_count, cross_page;
|
---|
4120 | TranslationBlock *tb;
|
---|
4121 |
|
---|
4122 | target_code_size = 0;
|
---|
4123 | max_target_code_size = 0;
|
---|
4124 | cross_page = 0;
|
---|
4125 | direct_jmp_count = 0;
|
---|
4126 | direct_jmp2_count = 0;
|
---|
4127 | for(i = 0; i < nb_tbs; i++) {
|
---|
4128 | tb = &tbs[i];
|
---|
4129 | target_code_size += tb->size;
|
---|
4130 | if (tb->size > max_target_code_size)
|
---|
4131 | max_target_code_size = tb->size;
|
---|
4132 | if (tb->page_addr[1] != -1)
|
---|
4133 | cross_page++;
|
---|
4134 | if (tb->tb_next_offset[0] != 0xffff) {
|
---|
4135 | direct_jmp_count++;
|
---|
4136 | if (tb->tb_next_offset[1] != 0xffff) {
|
---|
4137 | direct_jmp2_count++;
|
---|
4138 | }
|
---|
4139 | }
|
---|
4140 | }
|
---|
4141 | /* XXX: avoid using doubles ? */
|
---|
4142 | cpu_fprintf(f, "Translation buffer state:\n");
|
---|
4143 | cpu_fprintf(f, "gen code size %ld/%ld\n",
|
---|
4144 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
|
---|
4145 | cpu_fprintf(f, "TB count %d/%d\n",
|
---|
4146 | nb_tbs, code_gen_max_blocks);
|
---|
4147 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
|
---|
4148 | nb_tbs ? target_code_size / nb_tbs : 0,
|
---|
4149 | max_target_code_size);
|
---|
4150 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
|
---|
4151 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
|
---|
4152 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
|
---|
4153 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
|
---|
4154 | cross_page,
|
---|
4155 | nb_tbs ? (cross_page * 100) / nb_tbs : 0);
|
---|
4156 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
|
---|
4157 | direct_jmp_count,
|
---|
4158 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
|
---|
4159 | direct_jmp2_count,
|
---|
4160 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
|
---|
4161 | cpu_fprintf(f, "\nStatistics:\n");
|
---|
4162 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
|
---|
4163 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
|
---|
4164 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
|
---|
4165 | tcg_dump_info(f, cpu_fprintf);
|
---|
4166 | }
|
---|
4167 | #endif /* !VBOX */
|
---|
4168 |
|
---|
4169 | #if !defined(CONFIG_USER_ONLY)
|
---|
4170 |
|
---|
4171 | #define MMUSUFFIX _cmmu
|
---|
4172 | #define GETPC() NULL
|
---|
4173 | #define env cpu_single_env
|
---|
4174 | #define SOFTMMU_CODE_ACCESS
|
---|
4175 |
|
---|
4176 | #define SHIFT 0
|
---|
4177 | #include "softmmu_template.h"
|
---|
4178 |
|
---|
4179 | #define SHIFT 1
|
---|
4180 | #include "softmmu_template.h"
|
---|
4181 |
|
---|
4182 | #define SHIFT 2
|
---|
4183 | #include "softmmu_template.h"
|
---|
4184 |
|
---|
4185 | #define SHIFT 3
|
---|
4186 | #include "softmmu_template.h"
|
---|
4187 |
|
---|
4188 | #undef env
|
---|
4189 |
|
---|
4190 | #endif
|
---|