1 |
|
---|
2 | /*============================================================================
|
---|
3 |
|
---|
4 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
---|
5 | Arithmetic Package, Release 2b.
|
---|
6 |
|
---|
7 | Written by John R. Hauser. This work was made possible in part by the
|
---|
8 | International Computer Science Institute, located at Suite 600, 1947 Center
|
---|
9 | Street, Berkeley, California 94704. Funding was partially provided by the
|
---|
10 | National Science Foundation under grant MIP-9311980. The original version
|
---|
11 | of this code was written as part of a project to build a fixed-point vector
|
---|
12 | processor in collaboration with the University of California at Berkeley,
|
---|
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
---|
14 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
---|
15 | arithmetic/SoftFloat.html'.
|
---|
16 |
|
---|
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
---|
18 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
---|
19 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
---|
20 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
---|
21 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
---|
22 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
---|
23 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
---|
24 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
---|
25 |
|
---|
26 | Derivative works are acceptable, even for commercial purposes, so long as
|
---|
27 | (1) the source code for the derivative work includes prominent notice that
|
---|
28 | the work is derivative, and (2) the source code includes prominent notice with
|
---|
29 | these four paragraphs for those parts of this code that are retained.
|
---|
30 |
|
---|
31 | =============================================================================*/
|
---|
32 |
|
---|
33 | #if defined(TARGET_MIPS) || defined(TARGET_HPPA)
|
---|
34 | #define SNAN_BIT_IS_ONE 1
|
---|
35 | #else
|
---|
36 | #define SNAN_BIT_IS_ONE 0
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | /*----------------------------------------------------------------------------
|
---|
40 | | Underflow tininess-detection mode, statically initialized to default value.
|
---|
41 | | (The declaration in `softfloat.h' must match the `int8' type here.)
|
---|
42 | *----------------------------------------------------------------------------*/
|
---|
43 | int8 float_detect_tininess = float_tininess_after_rounding;
|
---|
44 |
|
---|
45 | /*----------------------------------------------------------------------------
|
---|
46 | | Raises the exceptions specified by `flags'. Floating-point traps can be
|
---|
47 | | defined here if desired. It is currently not possible for such a trap
|
---|
48 | | to substitute a result value. If traps are not implemented, this routine
|
---|
49 | | should be simply `float_exception_flags |= flags;'.
|
---|
50 | *----------------------------------------------------------------------------*/
|
---|
51 |
|
---|
52 | void float_raise( int8 flags STATUS_PARAM )
|
---|
53 | {
|
---|
54 | STATUS(float_exception_flags) |= flags;
|
---|
55 | }
|
---|
56 |
|
---|
57 | /*----------------------------------------------------------------------------
|
---|
58 | | Internal canonical NaN format.
|
---|
59 | *----------------------------------------------------------------------------*/
|
---|
60 | typedef struct {
|
---|
61 | flag sign;
|
---|
62 | bits64 high, low;
|
---|
63 | } commonNaNT;
|
---|
64 |
|
---|
65 | /*----------------------------------------------------------------------------
|
---|
66 | | The pattern for a default generated single-precision NaN.
|
---|
67 | *----------------------------------------------------------------------------*/
|
---|
68 | #if defined(TARGET_SPARC)
|
---|
69 | #define float32_default_nan make_float32(0x7FFFFFFF)
|
---|
70 | #elif defined(TARGET_POWERPC)
|
---|
71 | #define float32_default_nan make_float32(0x7FC00000)
|
---|
72 | #elif defined(TARGET_HPPA)
|
---|
73 | #define float32_default_nan make_float32(0x7FA00000)
|
---|
74 | #elif SNAN_BIT_IS_ONE
|
---|
75 | #define float32_default_nan make_float32(0x7FBFFFFF)
|
---|
76 | #else
|
---|
77 | #define float32_default_nan make_float32(0xFFC00000)
|
---|
78 | #endif
|
---|
79 |
|
---|
80 | /*----------------------------------------------------------------------------
|
---|
81 | | Returns 1 if the single-precision floating-point value `a' is a quiet
|
---|
82 | | NaN; otherwise returns 0.
|
---|
83 | *----------------------------------------------------------------------------*/
|
---|
84 |
|
---|
85 | int float32_is_nan( float32 a_ )
|
---|
86 | {
|
---|
87 | uint32_t a = float32_val(a_);
|
---|
88 | #if SNAN_BIT_IS_ONE
|
---|
89 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
---|
90 | #else
|
---|
91 | return ( 0xFF800000 <= (bits32) ( a<<1 ) );
|
---|
92 | #endif
|
---|
93 | }
|
---|
94 |
|
---|
95 | /*----------------------------------------------------------------------------
|
---|
96 | | Returns 1 if the single-precision floating-point value `a' is a signaling
|
---|
97 | | NaN; otherwise returns 0.
|
---|
98 | *----------------------------------------------------------------------------*/
|
---|
99 |
|
---|
100 | int float32_is_signaling_nan( float32 a_ )
|
---|
101 | {
|
---|
102 | uint32_t a = float32_val(a_);
|
---|
103 | #if SNAN_BIT_IS_ONE
|
---|
104 | return ( 0xFF800000 <= (bits32) ( a<<1 ) );
|
---|
105 | #else
|
---|
106 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
---|
107 | #endif
|
---|
108 | }
|
---|
109 |
|
---|
110 | /*----------------------------------------------------------------------------
|
---|
111 | | Returns the result of converting the single-precision floating-point NaN
|
---|
112 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
113 | | exception is raised.
|
---|
114 | *----------------------------------------------------------------------------*/
|
---|
115 |
|
---|
116 | static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
|
---|
117 | {
|
---|
118 | commonNaNT z;
|
---|
119 |
|
---|
120 | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
|
---|
121 | z.sign = float32_val(a)>>31;
|
---|
122 | z.low = 0;
|
---|
123 | z.high = ( (bits64) float32_val(a) )<<41;
|
---|
124 | return z;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /*----------------------------------------------------------------------------
|
---|
128 | | Returns the result of converting the canonical NaN `a' to the single-
|
---|
129 | | precision floating-point format.
|
---|
130 | *----------------------------------------------------------------------------*/
|
---|
131 |
|
---|
132 | static float32 commonNaNToFloat32( commonNaNT a )
|
---|
133 | {
|
---|
134 | bits32 mantissa = a.high>>41;
|
---|
135 | if ( mantissa )
|
---|
136 | return make_float32(
|
---|
137 | ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
|
---|
138 | else
|
---|
139 | return float32_default_nan;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /*----------------------------------------------------------------------------
|
---|
143 | | Takes two single-precision floating-point values `a' and `b', one of which
|
---|
144 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
---|
145 | | signaling NaN, the invalid exception is raised.
|
---|
146 | *----------------------------------------------------------------------------*/
|
---|
147 |
|
---|
148 | static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
|
---|
149 | {
|
---|
150 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
151 | bits32 av, bv, res;
|
---|
152 |
|
---|
153 | aIsNaN = float32_is_nan( a );
|
---|
154 | aIsSignalingNaN = float32_is_signaling_nan( a );
|
---|
155 | bIsNaN = float32_is_nan( b );
|
---|
156 | bIsSignalingNaN = float32_is_signaling_nan( b );
|
---|
157 | av = float32_val(a);
|
---|
158 | bv = float32_val(b);
|
---|
159 | #if SNAN_BIT_IS_ONE
|
---|
160 | av &= ~0x00400000;
|
---|
161 | bv &= ~0x00400000;
|
---|
162 | #else
|
---|
163 | av |= 0x00400000;
|
---|
164 | bv |= 0x00400000;
|
---|
165 | #endif
|
---|
166 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
167 | if ( aIsSignalingNaN ) {
|
---|
168 | if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
---|
169 | res = bIsNaN ? bv : av;
|
---|
170 | }
|
---|
171 | else if ( aIsNaN ) {
|
---|
172 | if ( bIsSignalingNaN | ! bIsNaN )
|
---|
173 | res = av;
|
---|
174 | else {
|
---|
175 | returnLargerSignificand:
|
---|
176 | if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) )
|
---|
177 | res = bv;
|
---|
178 | else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) )
|
---|
179 | res = av;
|
---|
180 | else
|
---|
181 | res = ( av < bv ) ? av : bv;
|
---|
182 | }
|
---|
183 | }
|
---|
184 | else {
|
---|
185 | res = bv;
|
---|
186 | }
|
---|
187 | return make_float32(res);
|
---|
188 | }
|
---|
189 |
|
---|
190 | /*----------------------------------------------------------------------------
|
---|
191 | | The pattern for a default generated double-precision NaN.
|
---|
192 | *----------------------------------------------------------------------------*/
|
---|
193 | #if defined(TARGET_SPARC)
|
---|
194 | #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
|
---|
195 | #elif defined(TARGET_POWERPC)
|
---|
196 | #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
|
---|
197 | #elif defined(TARGET_HPPA)
|
---|
198 | #define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 ))
|
---|
199 | #elif SNAN_BIT_IS_ONE
|
---|
200 | #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
|
---|
201 | #else
|
---|
202 | #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
|
---|
203 | #endif
|
---|
204 |
|
---|
205 | /*----------------------------------------------------------------------------
|
---|
206 | | Returns 1 if the double-precision floating-point value `a' is a quiet
|
---|
207 | | NaN; otherwise returns 0.
|
---|
208 | *----------------------------------------------------------------------------*/
|
---|
209 |
|
---|
210 | int float64_is_nan( float64 a_ )
|
---|
211 | {
|
---|
212 | bits64 a = float64_val(a_);
|
---|
213 | #if SNAN_BIT_IS_ONE
|
---|
214 | return
|
---|
215 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
---|
216 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
---|
217 | #else
|
---|
218 | return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
|
---|
219 | #endif
|
---|
220 | }
|
---|
221 |
|
---|
222 | /*----------------------------------------------------------------------------
|
---|
223 | | Returns 1 if the double-precision floating-point value `a' is a signaling
|
---|
224 | | NaN; otherwise returns 0.
|
---|
225 | *----------------------------------------------------------------------------*/
|
---|
226 |
|
---|
227 | int float64_is_signaling_nan( float64 a_ )
|
---|
228 | {
|
---|
229 | bits64 a = float64_val(a_);
|
---|
230 | #if SNAN_BIT_IS_ONE
|
---|
231 | return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
|
---|
232 | #else
|
---|
233 | return
|
---|
234 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
---|
235 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
---|
236 | #endif
|
---|
237 | }
|
---|
238 |
|
---|
239 | /*----------------------------------------------------------------------------
|
---|
240 | | Returns the result of converting the double-precision floating-point NaN
|
---|
241 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
242 | | exception is raised.
|
---|
243 | *----------------------------------------------------------------------------*/
|
---|
244 |
|
---|
245 | static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
|
---|
246 | {
|
---|
247 | commonNaNT z;
|
---|
248 |
|
---|
249 | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
250 | z.sign = float64_val(a)>>63;
|
---|
251 | z.low = 0;
|
---|
252 | z.high = float64_val(a)<<12;
|
---|
253 | return z;
|
---|
254 | }
|
---|
255 |
|
---|
256 | /*----------------------------------------------------------------------------
|
---|
257 | | Returns the result of converting the canonical NaN `a' to the double-
|
---|
258 | | precision floating-point format.
|
---|
259 | *----------------------------------------------------------------------------*/
|
---|
260 |
|
---|
261 | static float64 commonNaNToFloat64( commonNaNT a )
|
---|
262 | {
|
---|
263 | bits64 mantissa = a.high>>12;
|
---|
264 |
|
---|
265 | if ( mantissa )
|
---|
266 | return make_float64(
|
---|
267 | ( ( (bits64) a.sign )<<63 )
|
---|
268 | | LIT64( 0x7FF0000000000000 )
|
---|
269 | | ( a.high>>12 ));
|
---|
270 | else
|
---|
271 | return float64_default_nan;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /*----------------------------------------------------------------------------
|
---|
275 | | Takes two double-precision floating-point values `a' and `b', one of which
|
---|
276 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
---|
277 | | signaling NaN, the invalid exception is raised.
|
---|
278 | *----------------------------------------------------------------------------*/
|
---|
279 |
|
---|
280 | static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
|
---|
281 | {
|
---|
282 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
283 | bits64 av, bv, res;
|
---|
284 |
|
---|
285 | aIsNaN = float64_is_nan( a );
|
---|
286 | aIsSignalingNaN = float64_is_signaling_nan( a );
|
---|
287 | bIsNaN = float64_is_nan( b );
|
---|
288 | bIsSignalingNaN = float64_is_signaling_nan( b );
|
---|
289 | av = float64_val(a);
|
---|
290 | bv = float64_val(b);
|
---|
291 | #if SNAN_BIT_IS_ONE
|
---|
292 | av &= ~LIT64( 0x0008000000000000 );
|
---|
293 | bv &= ~LIT64( 0x0008000000000000 );
|
---|
294 | #else
|
---|
295 | av |= LIT64( 0x0008000000000000 );
|
---|
296 | bv |= LIT64( 0x0008000000000000 );
|
---|
297 | #endif
|
---|
298 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
299 | if ( aIsSignalingNaN ) {
|
---|
300 | if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
---|
301 | res = bIsNaN ? bv : av;
|
---|
302 | }
|
---|
303 | else if ( aIsNaN ) {
|
---|
304 | if ( bIsSignalingNaN | ! bIsNaN )
|
---|
305 | res = av;
|
---|
306 | else {
|
---|
307 | returnLargerSignificand:
|
---|
308 | if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) )
|
---|
309 | res = bv;
|
---|
310 | else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) )
|
---|
311 | res = av;
|
---|
312 | else
|
---|
313 | res = ( av < bv ) ? av : bv;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | else {
|
---|
317 | res = bv;
|
---|
318 | }
|
---|
319 | return make_float64(res);
|
---|
320 | }
|
---|
321 |
|
---|
322 | #ifdef FLOATX80
|
---|
323 |
|
---|
324 | /*----------------------------------------------------------------------------
|
---|
325 | | The pattern for a default generated extended double-precision NaN. The
|
---|
326 | | `high' and `low' values hold the most- and least-significant bits,
|
---|
327 | | respectively.
|
---|
328 | *----------------------------------------------------------------------------*/
|
---|
329 | #if SNAN_BIT_IS_ONE
|
---|
330 | #define floatx80_default_nan_high 0x7FFF
|
---|
331 | #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
|
---|
332 | #else
|
---|
333 | #define floatx80_default_nan_high 0xFFFF
|
---|
334 | #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
|
---|
335 | #endif
|
---|
336 |
|
---|
337 | /*----------------------------------------------------------------------------
|
---|
338 | | Returns 1 if the extended double-precision floating-point value `a' is a
|
---|
339 | | quiet NaN; otherwise returns 0.
|
---|
340 | *----------------------------------------------------------------------------*/
|
---|
341 |
|
---|
342 | int floatx80_is_nan( floatx80 a )
|
---|
343 | {
|
---|
344 | #if SNAN_BIT_IS_ONE
|
---|
345 | bits64 aLow;
|
---|
346 |
|
---|
347 | aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
---|
348 | return
|
---|
349 | ( ( a.high & 0x7FFF ) == 0x7FFF )
|
---|
350 | && (bits64) ( aLow<<1 )
|
---|
351 | && ( a.low == aLow );
|
---|
352 | #else
|
---|
353 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
---|
354 | #endif
|
---|
355 | }
|
---|
356 |
|
---|
357 | /*----------------------------------------------------------------------------
|
---|
358 | | Returns 1 if the extended double-precision floating-point value `a' is a
|
---|
359 | | signaling NaN; otherwise returns 0.
|
---|
360 | *----------------------------------------------------------------------------*/
|
---|
361 |
|
---|
362 | int floatx80_is_signaling_nan( floatx80 a )
|
---|
363 | {
|
---|
364 | #if SNAN_BIT_IS_ONE
|
---|
365 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
---|
366 | #else
|
---|
367 | bits64 aLow;
|
---|
368 |
|
---|
369 | aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
---|
370 | return
|
---|
371 | ( ( a.high & 0x7FFF ) == 0x7FFF )
|
---|
372 | && (bits64) ( aLow<<1 )
|
---|
373 | && ( a.low == aLow );
|
---|
374 | #endif
|
---|
375 | }
|
---|
376 |
|
---|
377 | /*----------------------------------------------------------------------------
|
---|
378 | | Returns the result of converting the extended double-precision floating-
|
---|
379 | | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
---|
380 | | invalid exception is raised.
|
---|
381 | *----------------------------------------------------------------------------*/
|
---|
382 |
|
---|
383 | static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
|
---|
384 | {
|
---|
385 | commonNaNT z;
|
---|
386 |
|
---|
387 | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
388 | z.sign = a.high>>15;
|
---|
389 | z.low = 0;
|
---|
390 | z.high = a.low;
|
---|
391 | return z;
|
---|
392 | }
|
---|
393 |
|
---|
394 | /*----------------------------------------------------------------------------
|
---|
395 | | Returns the result of converting the canonical NaN `a' to the extended
|
---|
396 | | double-precision floating-point format.
|
---|
397 | *----------------------------------------------------------------------------*/
|
---|
398 |
|
---|
399 | static floatx80 commonNaNToFloatx80( commonNaNT a )
|
---|
400 | {
|
---|
401 | floatx80 z;
|
---|
402 |
|
---|
403 | if (a.high)
|
---|
404 | z.low = a.high;
|
---|
405 | else
|
---|
406 | z.low = floatx80_default_nan_low;
|
---|
407 | z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
---|
408 | return z;
|
---|
409 | }
|
---|
410 |
|
---|
411 | /*----------------------------------------------------------------------------
|
---|
412 | | Takes two extended double-precision floating-point values `a' and `b', one
|
---|
413 | | of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
---|
414 | | `b' is a signaling NaN, the invalid exception is raised.
|
---|
415 | *----------------------------------------------------------------------------*/
|
---|
416 |
|
---|
417 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
|
---|
418 | {
|
---|
419 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
420 |
|
---|
421 | aIsNaN = floatx80_is_nan( a );
|
---|
422 | aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
---|
423 | bIsNaN = floatx80_is_nan( b );
|
---|
424 | bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
---|
425 | #if SNAN_BIT_IS_ONE
|
---|
426 | a.low &= ~LIT64( 0xC000000000000000 );
|
---|
427 | b.low &= ~LIT64( 0xC000000000000000 );
|
---|
428 | #else
|
---|
429 | a.low |= LIT64( 0xC000000000000000 );
|
---|
430 | b.low |= LIT64( 0xC000000000000000 );
|
---|
431 | #endif
|
---|
432 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
433 | if ( aIsSignalingNaN ) {
|
---|
434 | if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
---|
435 | return bIsNaN ? b : a;
|
---|
436 | }
|
---|
437 | else if ( aIsNaN ) {
|
---|
438 | if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
---|
439 | returnLargerSignificand:
|
---|
440 | if ( a.low < b.low ) return b;
|
---|
441 | if ( b.low < a.low ) return a;
|
---|
442 | return ( a.high < b.high ) ? a : b;
|
---|
443 | }
|
---|
444 | else {
|
---|
445 | return b;
|
---|
446 | }
|
---|
447 | }
|
---|
448 |
|
---|
449 | #endif
|
---|
450 |
|
---|
451 | #ifdef FLOAT128
|
---|
452 |
|
---|
453 | /*----------------------------------------------------------------------------
|
---|
454 | | The pattern for a default generated quadruple-precision NaN. The `high' and
|
---|
455 | | `low' values hold the most- and least-significant bits, respectively.
|
---|
456 | *----------------------------------------------------------------------------*/
|
---|
457 | #if SNAN_BIT_IS_ONE
|
---|
458 | #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
|
---|
459 | #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
460 | #else
|
---|
461 | #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
|
---|
462 | #define float128_default_nan_low LIT64( 0x0000000000000000 )
|
---|
463 | #endif
|
---|
464 |
|
---|
465 | /*----------------------------------------------------------------------------
|
---|
466 | | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
|
---|
467 | | NaN; otherwise returns 0.
|
---|
468 | *----------------------------------------------------------------------------*/
|
---|
469 |
|
---|
470 | int float128_is_nan( float128 a )
|
---|
471 | {
|
---|
472 | #if SNAN_BIT_IS_ONE
|
---|
473 | return
|
---|
474 | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
---|
475 | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
---|
476 | #else
|
---|
477 | return
|
---|
478 | ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
---|
479 | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
---|
480 | #endif
|
---|
481 | }
|
---|
482 |
|
---|
483 | /*----------------------------------------------------------------------------
|
---|
484 | | Returns 1 if the quadruple-precision floating-point value `a' is a
|
---|
485 | | signaling NaN; otherwise returns 0.
|
---|
486 | *----------------------------------------------------------------------------*/
|
---|
487 |
|
---|
488 | int float128_is_signaling_nan( float128 a )
|
---|
489 | {
|
---|
490 | #if SNAN_BIT_IS_ONE
|
---|
491 | return
|
---|
492 | ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
---|
493 | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
---|
494 | #else
|
---|
495 | return
|
---|
496 | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
---|
497 | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
---|
498 | #endif
|
---|
499 | }
|
---|
500 |
|
---|
501 | /*----------------------------------------------------------------------------
|
---|
502 | | Returns the result of converting the quadruple-precision floating-point NaN
|
---|
503 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
---|
504 | | exception is raised.
|
---|
505 | *----------------------------------------------------------------------------*/
|
---|
506 |
|
---|
507 | static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
|
---|
508 | {
|
---|
509 | commonNaNT z;
|
---|
510 |
|
---|
511 | if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
512 | z.sign = a.high>>63;
|
---|
513 | shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
---|
514 | return z;
|
---|
515 | }
|
---|
516 |
|
---|
517 | /*----------------------------------------------------------------------------
|
---|
518 | | Returns the result of converting the canonical NaN `a' to the quadruple-
|
---|
519 | | precision floating-point format.
|
---|
520 | *----------------------------------------------------------------------------*/
|
---|
521 |
|
---|
522 | static float128 commonNaNToFloat128( commonNaNT a )
|
---|
523 | {
|
---|
524 | float128 z;
|
---|
525 |
|
---|
526 | shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
---|
527 | z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
|
---|
528 | return z;
|
---|
529 | }
|
---|
530 |
|
---|
531 | /*----------------------------------------------------------------------------
|
---|
532 | | Takes two quadruple-precision floating-point values `a' and `b', one of
|
---|
533 | | which is a NaN, and returns the appropriate NaN result. If either `a' or
|
---|
534 | | `b' is a signaling NaN, the invalid exception is raised.
|
---|
535 | *----------------------------------------------------------------------------*/
|
---|
536 |
|
---|
537 | static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
|
---|
538 | {
|
---|
539 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
---|
540 |
|
---|
541 | aIsNaN = float128_is_nan( a );
|
---|
542 | aIsSignalingNaN = float128_is_signaling_nan( a );
|
---|
543 | bIsNaN = float128_is_nan( b );
|
---|
544 | bIsSignalingNaN = float128_is_signaling_nan( b );
|
---|
545 | #if SNAN_BIT_IS_ONE
|
---|
546 | a.high &= ~LIT64( 0x0000800000000000 );
|
---|
547 | b.high &= ~LIT64( 0x0000800000000000 );
|
---|
548 | #else
|
---|
549 | a.high |= LIT64( 0x0000800000000000 );
|
---|
550 | b.high |= LIT64( 0x0000800000000000 );
|
---|
551 | #endif
|
---|
552 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
---|
553 | if ( aIsSignalingNaN ) {
|
---|
554 | if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
---|
555 | return bIsNaN ? b : a;
|
---|
556 | }
|
---|
557 | else if ( aIsNaN ) {
|
---|
558 | if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
---|
559 | returnLargerSignificand:
|
---|
560 | if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
|
---|
561 | if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
|
---|
562 | return ( a.high < b.high ) ? a : b;
|
---|
563 | }
|
---|
564 | else {
|
---|
565 | return b;
|
---|
566 | }
|
---|
567 | }
|
---|
568 |
|
---|
569 | #endif
|
---|