1 |
|
---|
2 | /*============================================================================
|
---|
3 |
|
---|
4 | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
---|
5 | Package, Release 2b.
|
---|
6 |
|
---|
7 | Written by John R. Hauser. This work was made possible in part by the
|
---|
8 | International Computer Science Institute, located at Suite 600, 1947 Center
|
---|
9 | Street, Berkeley, California 94704. Funding was partially provided by the
|
---|
10 | National Science Foundation under grant MIP-9311980. The original version
|
---|
11 | of this code was written as part of a project to build a fixed-point vector
|
---|
12 | processor in collaboration with the University of California at Berkeley,
|
---|
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
---|
14 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
---|
15 | arithmetic/SoftFloat.html'.
|
---|
16 |
|
---|
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
---|
18 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
---|
19 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
---|
20 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
---|
21 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
---|
22 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
---|
23 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
---|
24 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
---|
25 |
|
---|
26 | Derivative works are acceptable, even for commercial purposes, so long as
|
---|
27 | (1) the source code for the derivative work includes prominent notice that
|
---|
28 | the work is derivative, and (2) the source code includes prominent notice with
|
---|
29 | these four paragraphs for those parts of this code that are retained.
|
---|
30 |
|
---|
31 | =============================================================================*/
|
---|
32 |
|
---|
33 | /* FIXME: Flush-To-Zero only effects results. Denormal inputs should also
|
---|
34 | be flushed to zero. */
|
---|
35 | #include "softfloat.h"
|
---|
36 |
|
---|
37 | /*----------------------------------------------------------------------------
|
---|
38 | | Primitive arithmetic functions, including multi-word arithmetic, and
|
---|
39 | | division and square root approximations. (Can be specialized to target if
|
---|
40 | | desired.)
|
---|
41 | *----------------------------------------------------------------------------*/
|
---|
42 | #include "softfloat-macros.h"
|
---|
43 |
|
---|
44 | /*----------------------------------------------------------------------------
|
---|
45 | | Functions and definitions to determine: (1) whether tininess for underflow
|
---|
46 | | is detected before or after rounding by default, (2) what (if anything)
|
---|
47 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
---|
48 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
---|
49 | | are propagated from function inputs to output. These details are target-
|
---|
50 | | specific.
|
---|
51 | *----------------------------------------------------------------------------*/
|
---|
52 | #include "softfloat-specialize.h"
|
---|
53 |
|
---|
54 | void set_float_rounding_mode(int val STATUS_PARAM)
|
---|
55 | {
|
---|
56 | STATUS(float_rounding_mode) = val;
|
---|
57 | }
|
---|
58 |
|
---|
59 | void set_float_exception_flags(int val STATUS_PARAM)
|
---|
60 | {
|
---|
61 | STATUS(float_exception_flags) = val;
|
---|
62 | }
|
---|
63 |
|
---|
64 | #ifdef FLOATX80
|
---|
65 | void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
---|
66 | {
|
---|
67 | STATUS(floatx80_rounding_precision) = val;
|
---|
68 | }
|
---|
69 | #endif
|
---|
70 |
|
---|
71 | /*----------------------------------------------------------------------------
|
---|
72 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
---|
73 | | and 7, and returns the properly rounded 32-bit integer corresponding to the
|
---|
74 | | input. If `zSign' is 1, the input is negated before being converted to an
|
---|
75 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
|
---|
76 | | is simply rounded to an integer, with the inexact exception raised if the
|
---|
77 | | input cannot be represented exactly as an integer. However, if the fixed-
|
---|
78 | | point input is too large, the invalid exception is raised and the largest
|
---|
79 | | positive or negative integer is returned.
|
---|
80 | *----------------------------------------------------------------------------*/
|
---|
81 |
|
---|
82 | static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
|
---|
83 | {
|
---|
84 | int8 roundingMode;
|
---|
85 | flag roundNearestEven;
|
---|
86 | int8 roundIncrement, roundBits;
|
---|
87 | int32 z;
|
---|
88 |
|
---|
89 | roundingMode = STATUS(float_rounding_mode);
|
---|
90 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
91 | roundIncrement = 0x40;
|
---|
92 | if ( ! roundNearestEven ) {
|
---|
93 | if ( roundingMode == float_round_to_zero ) {
|
---|
94 | roundIncrement = 0;
|
---|
95 | }
|
---|
96 | else {
|
---|
97 | roundIncrement = 0x7F;
|
---|
98 | if ( zSign ) {
|
---|
99 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
100 | }
|
---|
101 | else {
|
---|
102 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 | roundBits = absZ & 0x7F;
|
---|
107 | absZ = ( absZ + roundIncrement )>>7;
|
---|
108 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
---|
109 | z = absZ;
|
---|
110 | if ( zSign ) z = - z;
|
---|
111 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
|
---|
112 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
113 | return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
114 | }
|
---|
115 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
116 | return z;
|
---|
117 |
|
---|
118 | }
|
---|
119 |
|
---|
120 | /*----------------------------------------------------------------------------
|
---|
121 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
---|
122 | | `absZ1', with binary point between bits 63 and 64 (between the input words),
|
---|
123 | | and returns the properly rounded 64-bit integer corresponding to the input.
|
---|
124 | | If `zSign' is 1, the input is negated before being converted to an integer.
|
---|
125 | | Ordinarily, the fixed-point input is simply rounded to an integer, with
|
---|
126 | | the inexact exception raised if the input cannot be represented exactly as
|
---|
127 | | an integer. However, if the fixed-point input is too large, the invalid
|
---|
128 | | exception is raised and the largest positive or negative integer is
|
---|
129 | | returned.
|
---|
130 | *----------------------------------------------------------------------------*/
|
---|
131 |
|
---|
132 | static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM)
|
---|
133 | {
|
---|
134 | int8 roundingMode;
|
---|
135 | flag roundNearestEven, increment;
|
---|
136 | int64 z;
|
---|
137 |
|
---|
138 | roundingMode = STATUS(float_rounding_mode);
|
---|
139 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
140 | increment = ( (sbits64) absZ1 < 0 );
|
---|
141 | if ( ! roundNearestEven ) {
|
---|
142 | if ( roundingMode == float_round_to_zero ) {
|
---|
143 | increment = 0;
|
---|
144 | }
|
---|
145 | else {
|
---|
146 | if ( zSign ) {
|
---|
147 | increment = ( roundingMode == float_round_down ) && absZ1;
|
---|
148 | }
|
---|
149 | else {
|
---|
150 | increment = ( roundingMode == float_round_up ) && absZ1;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 | if ( increment ) {
|
---|
155 | ++absZ0;
|
---|
156 | if ( absZ0 == 0 ) goto overflow;
|
---|
157 | absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
|
---|
158 | }
|
---|
159 | z = absZ0;
|
---|
160 | if ( zSign ) z = - z;
|
---|
161 | if ( z && ( ( z < 0 ) ^ zSign ) ) {
|
---|
162 | overflow:
|
---|
163 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
164 | return
|
---|
165 | zSign ? (sbits64) LIT64( 0x8000000000000000 )
|
---|
166 | : LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
167 | }
|
---|
168 | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
169 | return z;
|
---|
170 |
|
---|
171 | }
|
---|
172 |
|
---|
173 | /*----------------------------------------------------------------------------
|
---|
174 | | Returns the fraction bits of the single-precision floating-point value `a'.
|
---|
175 | *----------------------------------------------------------------------------*/
|
---|
176 |
|
---|
177 | INLINE bits32 extractFloat32Frac( float32 a )
|
---|
178 | {
|
---|
179 |
|
---|
180 | return float32_val(a) & 0x007FFFFF;
|
---|
181 |
|
---|
182 | }
|
---|
183 |
|
---|
184 | /*----------------------------------------------------------------------------
|
---|
185 | | Returns the exponent bits of the single-precision floating-point value `a'.
|
---|
186 | *----------------------------------------------------------------------------*/
|
---|
187 |
|
---|
188 | INLINE int16 extractFloat32Exp( float32 a )
|
---|
189 | {
|
---|
190 |
|
---|
191 | return ( float32_val(a)>>23 ) & 0xFF;
|
---|
192 |
|
---|
193 | }
|
---|
194 |
|
---|
195 | /*----------------------------------------------------------------------------
|
---|
196 | | Returns the sign bit of the single-precision floating-point value `a'.
|
---|
197 | *----------------------------------------------------------------------------*/
|
---|
198 |
|
---|
199 | INLINE flag extractFloat32Sign( float32 a )
|
---|
200 | {
|
---|
201 |
|
---|
202 | return float32_val(a)>>31;
|
---|
203 |
|
---|
204 | }
|
---|
205 |
|
---|
206 | /*----------------------------------------------------------------------------
|
---|
207 | | Normalizes the subnormal single-precision floating-point value represented
|
---|
208 | | by the denormalized significand `aSig'. The normalized exponent and
|
---|
209 | | significand are stored at the locations pointed to by `zExpPtr' and
|
---|
210 | | `zSigPtr', respectively.
|
---|
211 | *----------------------------------------------------------------------------*/
|
---|
212 |
|
---|
213 | static void
|
---|
214 | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
|
---|
215 | {
|
---|
216 | int8 shiftCount;
|
---|
217 |
|
---|
218 | shiftCount = countLeadingZeros32( aSig ) - 8;
|
---|
219 | *zSigPtr = aSig<<shiftCount;
|
---|
220 | *zExpPtr = 1 - shiftCount;
|
---|
221 |
|
---|
222 | }
|
---|
223 |
|
---|
224 | /*----------------------------------------------------------------------------
|
---|
225 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
---|
226 | | single-precision floating-point value, returning the result. After being
|
---|
227 | | shifted into the proper positions, the three fields are simply added
|
---|
228 | | together to form the result. This means that any integer portion of `zSig'
|
---|
229 | | will be added into the exponent. Since a properly normalized significand
|
---|
230 | | will have an integer portion equal to 1, the `zExp' input should be 1 less
|
---|
231 | | than the desired result exponent whenever `zSig' is a complete, normalized
|
---|
232 | | significand.
|
---|
233 | *----------------------------------------------------------------------------*/
|
---|
234 |
|
---|
235 | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
|
---|
236 | {
|
---|
237 |
|
---|
238 | return make_float32(
|
---|
239 | ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig);
|
---|
240 |
|
---|
241 | }
|
---|
242 |
|
---|
243 | /*----------------------------------------------------------------------------
|
---|
244 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
245 | | and significand `zSig', and returns the proper single-precision floating-
|
---|
246 | | point value corresponding to the abstract input. Ordinarily, the abstract
|
---|
247 | | value is simply rounded and packed into the single-precision format, with
|
---|
248 | | the inexact exception raised if the abstract input cannot be represented
|
---|
249 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
250 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
251 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
252 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
253 | | the abstract input cannot be represented exactly as a subnormal single-
|
---|
254 | | precision floating-point number.
|
---|
255 | | The input significand `zSig' has its binary point between bits 30
|
---|
256 | | and 29, which is 7 bits to the left of the usual location. This shifted
|
---|
257 | | significand must be normalized or smaller. If `zSig' is not normalized,
|
---|
258 | | `zExp' must be 0; in that case, the result returned is a subnormal number,
|
---|
259 | | and it must not require rounding. In the usual case that `zSig' is
|
---|
260 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
---|
261 | | The handling of underflow and overflow follows the IEC/IEEE Standard for
|
---|
262 | | Binary Floating-Point Arithmetic.
|
---|
263 | *----------------------------------------------------------------------------*/
|
---|
264 |
|
---|
265 | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
|
---|
266 | {
|
---|
267 | int8 roundingMode;
|
---|
268 | flag roundNearestEven;
|
---|
269 | int8 roundIncrement, roundBits;
|
---|
270 | flag isTiny;
|
---|
271 |
|
---|
272 | roundingMode = STATUS(float_rounding_mode);
|
---|
273 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
274 | roundIncrement = 0x40;
|
---|
275 | if ( ! roundNearestEven ) {
|
---|
276 | if ( roundingMode == float_round_to_zero ) {
|
---|
277 | roundIncrement = 0;
|
---|
278 | }
|
---|
279 | else {
|
---|
280 | roundIncrement = 0x7F;
|
---|
281 | if ( zSign ) {
|
---|
282 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
283 | }
|
---|
284 | else {
|
---|
285 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
286 | }
|
---|
287 | }
|
---|
288 | }
|
---|
289 | roundBits = zSig & 0x7F;
|
---|
290 | if ( 0xFD <= (bits16) zExp ) {
|
---|
291 | if ( ( 0xFD < zExp )
|
---|
292 | || ( ( zExp == 0xFD )
|
---|
293 | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
|
---|
294 | ) {
|
---|
295 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
296 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
|
---|
297 | }
|
---|
298 | if ( zExp < 0 ) {
|
---|
299 | if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 );
|
---|
300 | isTiny =
|
---|
301 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
302 | || ( zExp < -1 )
|
---|
303 | || ( zSig + roundIncrement < 0x80000000 );
|
---|
304 | shift32RightJamming( zSig, - zExp, &zSig );
|
---|
305 | zExp = 0;
|
---|
306 | roundBits = zSig & 0x7F;
|
---|
307 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
308 | }
|
---|
309 | }
|
---|
310 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
311 | zSig = ( zSig + roundIncrement )>>7;
|
---|
312 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
---|
313 | if ( zSig == 0 ) zExp = 0;
|
---|
314 | return packFloat32( zSign, zExp, zSig );
|
---|
315 |
|
---|
316 | }
|
---|
317 |
|
---|
318 | /*----------------------------------------------------------------------------
|
---|
319 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
320 | | and significand `zSig', and returns the proper single-precision floating-
|
---|
321 | | point value corresponding to the abstract input. This routine is just like
|
---|
322 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
---|
323 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
---|
324 | | floating-point exponent.
|
---|
325 | *----------------------------------------------------------------------------*/
|
---|
326 |
|
---|
327 | static float32
|
---|
328 | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
|
---|
329 | {
|
---|
330 | int8 shiftCount;
|
---|
331 |
|
---|
332 | shiftCount = countLeadingZeros32( zSig ) - 1;
|
---|
333 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
---|
334 |
|
---|
335 | }
|
---|
336 |
|
---|
337 | /*----------------------------------------------------------------------------
|
---|
338 | | Returns the fraction bits of the double-precision floating-point value `a'.
|
---|
339 | *----------------------------------------------------------------------------*/
|
---|
340 |
|
---|
341 | INLINE bits64 extractFloat64Frac( float64 a )
|
---|
342 | {
|
---|
343 |
|
---|
344 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
|
---|
345 |
|
---|
346 | }
|
---|
347 |
|
---|
348 | /*----------------------------------------------------------------------------
|
---|
349 | | Returns the exponent bits of the double-precision floating-point value `a'.
|
---|
350 | *----------------------------------------------------------------------------*/
|
---|
351 |
|
---|
352 | INLINE int16 extractFloat64Exp( float64 a )
|
---|
353 | {
|
---|
354 |
|
---|
355 | return ( float64_val(a)>>52 ) & 0x7FF;
|
---|
356 |
|
---|
357 | }
|
---|
358 |
|
---|
359 | /*----------------------------------------------------------------------------
|
---|
360 | | Returns the sign bit of the double-precision floating-point value `a'.
|
---|
361 | *----------------------------------------------------------------------------*/
|
---|
362 |
|
---|
363 | INLINE flag extractFloat64Sign( float64 a )
|
---|
364 | {
|
---|
365 |
|
---|
366 | return float64_val(a)>>63;
|
---|
367 |
|
---|
368 | }
|
---|
369 |
|
---|
370 | /*----------------------------------------------------------------------------
|
---|
371 | | Normalizes the subnormal double-precision floating-point value represented
|
---|
372 | | by the denormalized significand `aSig'. The normalized exponent and
|
---|
373 | | significand are stored at the locations pointed to by `zExpPtr' and
|
---|
374 | | `zSigPtr', respectively.
|
---|
375 | *----------------------------------------------------------------------------*/
|
---|
376 |
|
---|
377 | static void
|
---|
378 | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
|
---|
379 | {
|
---|
380 | int8 shiftCount;
|
---|
381 |
|
---|
382 | shiftCount = countLeadingZeros64( aSig ) - 11;
|
---|
383 | *zSigPtr = aSig<<shiftCount;
|
---|
384 | *zExpPtr = 1 - shiftCount;
|
---|
385 |
|
---|
386 | }
|
---|
387 |
|
---|
388 | /*----------------------------------------------------------------------------
|
---|
389 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
---|
390 | | double-precision floating-point value, returning the result. After being
|
---|
391 | | shifted into the proper positions, the three fields are simply added
|
---|
392 | | together to form the result. This means that any integer portion of `zSig'
|
---|
393 | | will be added into the exponent. Since a properly normalized significand
|
---|
394 | | will have an integer portion equal to 1, the `zExp' input should be 1 less
|
---|
395 | | than the desired result exponent whenever `zSig' is a complete, normalized
|
---|
396 | | significand.
|
---|
397 | *----------------------------------------------------------------------------*/
|
---|
398 |
|
---|
399 | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
|
---|
400 | {
|
---|
401 |
|
---|
402 | return make_float64(
|
---|
403 | ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig);
|
---|
404 |
|
---|
405 | }
|
---|
406 |
|
---|
407 | /*----------------------------------------------------------------------------
|
---|
408 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
409 | | and significand `zSig', and returns the proper double-precision floating-
|
---|
410 | | point value corresponding to the abstract input. Ordinarily, the abstract
|
---|
411 | | value is simply rounded and packed into the double-precision format, with
|
---|
412 | | the inexact exception raised if the abstract input cannot be represented
|
---|
413 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
414 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
415 | | returned. If the abstract value is too small, the input value is rounded
|
---|
416 | | to a subnormal number, and the underflow and inexact exceptions are raised
|
---|
417 | | if the abstract input cannot be represented exactly as a subnormal double-
|
---|
418 | | precision floating-point number.
|
---|
419 | | The input significand `zSig' has its binary point between bits 62
|
---|
420 | | and 61, which is 10 bits to the left of the usual location. This shifted
|
---|
421 | | significand must be normalized or smaller. If `zSig' is not normalized,
|
---|
422 | | `zExp' must be 0; in that case, the result returned is a subnormal number,
|
---|
423 | | and it must not require rounding. In the usual case that `zSig' is
|
---|
424 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
---|
425 | | The handling of underflow and overflow follows the IEC/IEEE Standard for
|
---|
426 | | Binary Floating-Point Arithmetic.
|
---|
427 | *----------------------------------------------------------------------------*/
|
---|
428 |
|
---|
429 | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
|
---|
430 | {
|
---|
431 | int8 roundingMode;
|
---|
432 | flag roundNearestEven;
|
---|
433 | int16 roundIncrement, roundBits;
|
---|
434 | flag isTiny;
|
---|
435 |
|
---|
436 | roundingMode = STATUS(float_rounding_mode);
|
---|
437 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
438 | roundIncrement = 0x200;
|
---|
439 | if ( ! roundNearestEven ) {
|
---|
440 | if ( roundingMode == float_round_to_zero ) {
|
---|
441 | roundIncrement = 0;
|
---|
442 | }
|
---|
443 | else {
|
---|
444 | roundIncrement = 0x3FF;
|
---|
445 | if ( zSign ) {
|
---|
446 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
447 | }
|
---|
448 | else {
|
---|
449 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
450 | }
|
---|
451 | }
|
---|
452 | }
|
---|
453 | roundBits = zSig & 0x3FF;
|
---|
454 | if ( 0x7FD <= (bits16) zExp ) {
|
---|
455 | if ( ( 0x7FD < zExp )
|
---|
456 | || ( ( zExp == 0x7FD )
|
---|
457 | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
|
---|
458 | ) {
|
---|
459 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
460 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
|
---|
461 | }
|
---|
462 | if ( zExp < 0 ) {
|
---|
463 | if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 );
|
---|
464 | isTiny =
|
---|
465 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
466 | || ( zExp < -1 )
|
---|
467 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
|
---|
468 | shift64RightJamming( zSig, - zExp, &zSig );
|
---|
469 | zExp = 0;
|
---|
470 | roundBits = zSig & 0x3FF;
|
---|
471 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
472 | }
|
---|
473 | }
|
---|
474 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
475 | zSig = ( zSig + roundIncrement )>>10;
|
---|
476 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
|
---|
477 | if ( zSig == 0 ) zExp = 0;
|
---|
478 | return packFloat64( zSign, zExp, zSig );
|
---|
479 |
|
---|
480 | }
|
---|
481 |
|
---|
482 | /*----------------------------------------------------------------------------
|
---|
483 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
484 | | and significand `zSig', and returns the proper double-precision floating-
|
---|
485 | | point value corresponding to the abstract input. This routine is just like
|
---|
486 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
|
---|
487 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
---|
488 | | floating-point exponent.
|
---|
489 | *----------------------------------------------------------------------------*/
|
---|
490 |
|
---|
491 | static float64
|
---|
492 | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
|
---|
493 | {
|
---|
494 | int8 shiftCount;
|
---|
495 |
|
---|
496 | shiftCount = countLeadingZeros64( zSig ) - 1;
|
---|
497 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
---|
498 |
|
---|
499 | }
|
---|
500 |
|
---|
501 | #ifdef FLOATX80
|
---|
502 |
|
---|
503 | /*----------------------------------------------------------------------------
|
---|
504 | | Returns the fraction bits of the extended double-precision floating-point
|
---|
505 | | value `a'.
|
---|
506 | *----------------------------------------------------------------------------*/
|
---|
507 |
|
---|
508 | INLINE bits64 extractFloatx80Frac( floatx80 a )
|
---|
509 | {
|
---|
510 |
|
---|
511 | return a.low;
|
---|
512 |
|
---|
513 | }
|
---|
514 |
|
---|
515 | /*----------------------------------------------------------------------------
|
---|
516 | | Returns the exponent bits of the extended double-precision floating-point
|
---|
517 | | value `a'.
|
---|
518 | *----------------------------------------------------------------------------*/
|
---|
519 |
|
---|
520 | INLINE int32 extractFloatx80Exp( floatx80 a )
|
---|
521 | {
|
---|
522 |
|
---|
523 | return a.high & 0x7FFF;
|
---|
524 |
|
---|
525 | }
|
---|
526 |
|
---|
527 | /*----------------------------------------------------------------------------
|
---|
528 | | Returns the sign bit of the extended double-precision floating-point value
|
---|
529 | | `a'.
|
---|
530 | *----------------------------------------------------------------------------*/
|
---|
531 |
|
---|
532 | INLINE flag extractFloatx80Sign( floatx80 a )
|
---|
533 | {
|
---|
534 |
|
---|
535 | return a.high>>15;
|
---|
536 |
|
---|
537 | }
|
---|
538 |
|
---|
539 | /*----------------------------------------------------------------------------
|
---|
540 | | Normalizes the subnormal extended double-precision floating-point value
|
---|
541 | | represented by the denormalized significand `aSig'. The normalized exponent
|
---|
542 | | and significand are stored at the locations pointed to by `zExpPtr' and
|
---|
543 | | `zSigPtr', respectively.
|
---|
544 | *----------------------------------------------------------------------------*/
|
---|
545 |
|
---|
546 | static void
|
---|
547 | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
|
---|
548 | {
|
---|
549 | int8 shiftCount;
|
---|
550 |
|
---|
551 | shiftCount = countLeadingZeros64( aSig );
|
---|
552 | *zSigPtr = aSig<<shiftCount;
|
---|
553 | *zExpPtr = 1 - shiftCount;
|
---|
554 |
|
---|
555 | }
|
---|
556 |
|
---|
557 | /*----------------------------------------------------------------------------
|
---|
558 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
---|
559 | | extended double-precision floating-point value, returning the result.
|
---|
560 | *----------------------------------------------------------------------------*/
|
---|
561 |
|
---|
562 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
|
---|
563 | {
|
---|
564 | floatx80 z;
|
---|
565 |
|
---|
566 | z.low = zSig;
|
---|
567 | z.high = ( ( (bits16) zSign )<<15 ) + zExp;
|
---|
568 | return z;
|
---|
569 |
|
---|
570 | }
|
---|
571 |
|
---|
572 | /*----------------------------------------------------------------------------
|
---|
573 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
574 | | and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
---|
575 | | and returns the proper extended double-precision floating-point value
|
---|
576 | | corresponding to the abstract input. Ordinarily, the abstract value is
|
---|
577 | | rounded and packed into the extended double-precision format, with the
|
---|
578 | | inexact exception raised if the abstract input cannot be represented
|
---|
579 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
580 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
581 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
582 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
583 | | the abstract input cannot be represented exactly as a subnormal extended
|
---|
584 | | double-precision floating-point number.
|
---|
585 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
---|
586 | | number of bits as single or double precision, respectively. Otherwise, the
|
---|
587 | | result is rounded to the full precision of the extended double-precision
|
---|
588 | | format.
|
---|
589 | | The input significand must be normalized or smaller. If the input
|
---|
590 | | significand is not normalized, `zExp' must be 0; in that case, the result
|
---|
591 | | returned is a subnormal number, and it must not require rounding. The
|
---|
592 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
---|
593 | | Floating-Point Arithmetic.
|
---|
594 | *----------------------------------------------------------------------------*/
|
---|
595 |
|
---|
596 | static floatx80
|
---|
597 | roundAndPackFloatx80(
|
---|
598 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
|
---|
599 | STATUS_PARAM)
|
---|
600 | {
|
---|
601 | int8 roundingMode;
|
---|
602 | flag roundNearestEven, increment, isTiny;
|
---|
603 | int64 roundIncrement, roundMask, roundBits;
|
---|
604 |
|
---|
605 | roundingMode = STATUS(float_rounding_mode);
|
---|
606 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
607 | if ( roundingPrecision == 80 ) goto precision80;
|
---|
608 | if ( roundingPrecision == 64 ) {
|
---|
609 | roundIncrement = LIT64( 0x0000000000000400 );
|
---|
610 | roundMask = LIT64( 0x00000000000007FF );
|
---|
611 | }
|
---|
612 | else if ( roundingPrecision == 32 ) {
|
---|
613 | roundIncrement = LIT64( 0x0000008000000000 );
|
---|
614 | roundMask = LIT64( 0x000000FFFFFFFFFF );
|
---|
615 | }
|
---|
616 | else {
|
---|
617 | goto precision80;
|
---|
618 | }
|
---|
619 | zSig0 |= ( zSig1 != 0 );
|
---|
620 | if ( ! roundNearestEven ) {
|
---|
621 | if ( roundingMode == float_round_to_zero ) {
|
---|
622 | roundIncrement = 0;
|
---|
623 | }
|
---|
624 | else {
|
---|
625 | roundIncrement = roundMask;
|
---|
626 | if ( zSign ) {
|
---|
627 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
628 | }
|
---|
629 | else {
|
---|
630 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | }
|
---|
634 | roundBits = zSig0 & roundMask;
|
---|
635 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
|
---|
636 | if ( ( 0x7FFE < zExp )
|
---|
637 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
|
---|
638 | ) {
|
---|
639 | goto overflow;
|
---|
640 | }
|
---|
641 | if ( zExp <= 0 ) {
|
---|
642 | if ( STATUS(flush_to_zero) ) return packFloatx80( zSign, 0, 0 );
|
---|
643 | isTiny =
|
---|
644 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
645 | || ( zExp < 0 )
|
---|
646 | || ( zSig0 <= zSig0 + roundIncrement );
|
---|
647 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
|
---|
648 | zExp = 0;
|
---|
649 | roundBits = zSig0 & roundMask;
|
---|
650 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
651 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
652 | zSig0 += roundIncrement;
|
---|
653 | if ( (sbits64) zSig0 < 0 ) zExp = 1;
|
---|
654 | roundIncrement = roundMask + 1;
|
---|
655 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
---|
656 | roundMask |= roundIncrement;
|
---|
657 | }
|
---|
658 | zSig0 &= ~ roundMask;
|
---|
659 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
660 | }
|
---|
661 | }
|
---|
662 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
663 | zSig0 += roundIncrement;
|
---|
664 | if ( zSig0 < roundIncrement ) {
|
---|
665 | ++zExp;
|
---|
666 | zSig0 = LIT64( 0x8000000000000000 );
|
---|
667 | }
|
---|
668 | roundIncrement = roundMask + 1;
|
---|
669 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
---|
670 | roundMask |= roundIncrement;
|
---|
671 | }
|
---|
672 | zSig0 &= ~ roundMask;
|
---|
673 | if ( zSig0 == 0 ) zExp = 0;
|
---|
674 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
675 | precision80:
|
---|
676 | increment = ( (sbits64) zSig1 < 0 );
|
---|
677 | if ( ! roundNearestEven ) {
|
---|
678 | if ( roundingMode == float_round_to_zero ) {
|
---|
679 | increment = 0;
|
---|
680 | }
|
---|
681 | else {
|
---|
682 | if ( zSign ) {
|
---|
683 | increment = ( roundingMode == float_round_down ) && zSig1;
|
---|
684 | }
|
---|
685 | else {
|
---|
686 | increment = ( roundingMode == float_round_up ) && zSig1;
|
---|
687 | }
|
---|
688 | }
|
---|
689 | }
|
---|
690 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
|
---|
691 | if ( ( 0x7FFE < zExp )
|
---|
692 | || ( ( zExp == 0x7FFE )
|
---|
693 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
|
---|
694 | && increment
|
---|
695 | )
|
---|
696 | ) {
|
---|
697 | roundMask = 0;
|
---|
698 | overflow:
|
---|
699 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
700 | if ( ( roundingMode == float_round_to_zero )
|
---|
701 | || ( zSign && ( roundingMode == float_round_up ) )
|
---|
702 | || ( ! zSign && ( roundingMode == float_round_down ) )
|
---|
703 | ) {
|
---|
704 | return packFloatx80( zSign, 0x7FFE, ~ roundMask );
|
---|
705 | }
|
---|
706 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
707 | }
|
---|
708 | if ( zExp <= 0 ) {
|
---|
709 | isTiny =
|
---|
710 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
711 | || ( zExp < 0 )
|
---|
712 | || ! increment
|
---|
713 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
|
---|
714 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
|
---|
715 | zExp = 0;
|
---|
716 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
717 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
718 | if ( roundNearestEven ) {
|
---|
719 | increment = ( (sbits64) zSig1 < 0 );
|
---|
720 | }
|
---|
721 | else {
|
---|
722 | if ( zSign ) {
|
---|
723 | increment = ( roundingMode == float_round_down ) && zSig1;
|
---|
724 | }
|
---|
725 | else {
|
---|
726 | increment = ( roundingMode == float_round_up ) && zSig1;
|
---|
727 | }
|
---|
728 | }
|
---|
729 | if ( increment ) {
|
---|
730 | ++zSig0;
|
---|
731 | zSig0 &=
|
---|
732 | ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
---|
733 | if ( (sbits64) zSig0 < 0 ) zExp = 1;
|
---|
734 | }
|
---|
735 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
736 | }
|
---|
737 | }
|
---|
738 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
739 | if ( increment ) {
|
---|
740 | ++zSig0;
|
---|
741 | if ( zSig0 == 0 ) {
|
---|
742 | ++zExp;
|
---|
743 | zSig0 = LIT64( 0x8000000000000000 );
|
---|
744 | }
|
---|
745 | else {
|
---|
746 | zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
---|
747 | }
|
---|
748 | }
|
---|
749 | else {
|
---|
750 | if ( zSig0 == 0 ) zExp = 0;
|
---|
751 | }
|
---|
752 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
753 |
|
---|
754 | }
|
---|
755 |
|
---|
756 | /*----------------------------------------------------------------------------
|
---|
757 | | Takes an abstract floating-point value having sign `zSign', exponent
|
---|
758 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
---|
759 | | and returns the proper extended double-precision floating-point value
|
---|
760 | | corresponding to the abstract input. This routine is just like
|
---|
761 | | `roundAndPackFloatx80' except that the input significand does not have to be
|
---|
762 | | normalized.
|
---|
763 | *----------------------------------------------------------------------------*/
|
---|
764 |
|
---|
765 | static floatx80
|
---|
766 | normalizeRoundAndPackFloatx80(
|
---|
767 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
|
---|
768 | STATUS_PARAM)
|
---|
769 | {
|
---|
770 | int8 shiftCount;
|
---|
771 |
|
---|
772 | if ( zSig0 == 0 ) {
|
---|
773 | zSig0 = zSig1;
|
---|
774 | zSig1 = 0;
|
---|
775 | zExp -= 64;
|
---|
776 | }
|
---|
777 | shiftCount = countLeadingZeros64( zSig0 );
|
---|
778 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
779 | zExp -= shiftCount;
|
---|
780 | return
|
---|
781 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);
|
---|
782 |
|
---|
783 | }
|
---|
784 |
|
---|
785 | #endif
|
---|
786 |
|
---|
787 | #ifdef FLOAT128
|
---|
788 |
|
---|
789 | /*----------------------------------------------------------------------------
|
---|
790 | | Returns the least-significant 64 fraction bits of the quadruple-precision
|
---|
791 | | floating-point value `a'.
|
---|
792 | *----------------------------------------------------------------------------*/
|
---|
793 |
|
---|
794 | INLINE bits64 extractFloat128Frac1( float128 a )
|
---|
795 | {
|
---|
796 |
|
---|
797 | return a.low;
|
---|
798 |
|
---|
799 | }
|
---|
800 |
|
---|
801 | /*----------------------------------------------------------------------------
|
---|
802 | | Returns the most-significant 48 fraction bits of the quadruple-precision
|
---|
803 | | floating-point value `a'.
|
---|
804 | *----------------------------------------------------------------------------*/
|
---|
805 |
|
---|
806 | INLINE bits64 extractFloat128Frac0( float128 a )
|
---|
807 | {
|
---|
808 |
|
---|
809 | return a.high & LIT64( 0x0000FFFFFFFFFFFF );
|
---|
810 |
|
---|
811 | }
|
---|
812 |
|
---|
813 | /*----------------------------------------------------------------------------
|
---|
814 | | Returns the exponent bits of the quadruple-precision floating-point value
|
---|
815 | | `a'.
|
---|
816 | *----------------------------------------------------------------------------*/
|
---|
817 |
|
---|
818 | INLINE int32 extractFloat128Exp( float128 a )
|
---|
819 | {
|
---|
820 |
|
---|
821 | return ( a.high>>48 ) & 0x7FFF;
|
---|
822 |
|
---|
823 | }
|
---|
824 |
|
---|
825 | /*----------------------------------------------------------------------------
|
---|
826 | | Returns the sign bit of the quadruple-precision floating-point value `a'.
|
---|
827 | *----------------------------------------------------------------------------*/
|
---|
828 |
|
---|
829 | INLINE flag extractFloat128Sign( float128 a )
|
---|
830 | {
|
---|
831 |
|
---|
832 | return a.high>>63;
|
---|
833 |
|
---|
834 | }
|
---|
835 |
|
---|
836 | /*----------------------------------------------------------------------------
|
---|
837 | | Normalizes the subnormal quadruple-precision floating-point value
|
---|
838 | | represented by the denormalized significand formed by the concatenation of
|
---|
839 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location
|
---|
840 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
|
---|
841 | | significand are stored at the location pointed to by `zSig0Ptr', and the
|
---|
842 | | least significant 64 bits of the normalized significand are stored at the
|
---|
843 | | location pointed to by `zSig1Ptr'.
|
---|
844 | *----------------------------------------------------------------------------*/
|
---|
845 |
|
---|
846 | static void
|
---|
847 | normalizeFloat128Subnormal(
|
---|
848 | bits64 aSig0,
|
---|
849 | bits64 aSig1,
|
---|
850 | int32 *zExpPtr,
|
---|
851 | bits64 *zSig0Ptr,
|
---|
852 | bits64 *zSig1Ptr
|
---|
853 | )
|
---|
854 | {
|
---|
855 | int8 shiftCount;
|
---|
856 |
|
---|
857 | if ( aSig0 == 0 ) {
|
---|
858 | shiftCount = countLeadingZeros64( aSig1 ) - 15;
|
---|
859 | if ( shiftCount < 0 ) {
|
---|
860 | *zSig0Ptr = aSig1>>( - shiftCount );
|
---|
861 | *zSig1Ptr = aSig1<<( shiftCount & 63 );
|
---|
862 | }
|
---|
863 | else {
|
---|
864 | *zSig0Ptr = aSig1<<shiftCount;
|
---|
865 | *zSig1Ptr = 0;
|
---|
866 | }
|
---|
867 | *zExpPtr = - shiftCount - 63;
|
---|
868 | }
|
---|
869 | else {
|
---|
870 | shiftCount = countLeadingZeros64( aSig0 ) - 15;
|
---|
871 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
|
---|
872 | *zExpPtr = 1 - shiftCount;
|
---|
873 | }
|
---|
874 |
|
---|
875 | }
|
---|
876 |
|
---|
877 | /*----------------------------------------------------------------------------
|
---|
878 | | Packs the sign `zSign', the exponent `zExp', and the significand formed
|
---|
879 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
|
---|
880 | | floating-point value, returning the result. After being shifted into the
|
---|
881 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
|
---|
882 | | added together to form the most significant 32 bits of the result. This
|
---|
883 | | means that any integer portion of `zSig0' will be added into the exponent.
|
---|
884 | | Since a properly normalized significand will have an integer portion equal
|
---|
885 | | to 1, the `zExp' input should be 1 less than the desired result exponent
|
---|
886 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
|
---|
887 | | significand.
|
---|
888 | *----------------------------------------------------------------------------*/
|
---|
889 |
|
---|
890 | INLINE float128
|
---|
891 | packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
|
---|
892 | {
|
---|
893 | float128 z;
|
---|
894 |
|
---|
895 | z.low = zSig1;
|
---|
896 | z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
|
---|
897 | return z;
|
---|
898 |
|
---|
899 | }
|
---|
900 |
|
---|
901 | /*----------------------------------------------------------------------------
|
---|
902 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
903 | | and extended significand formed by the concatenation of `zSig0', `zSig1',
|
---|
904 | | and `zSig2', and returns the proper quadruple-precision floating-point value
|
---|
905 | | corresponding to the abstract input. Ordinarily, the abstract value is
|
---|
906 | | simply rounded and packed into the quadruple-precision format, with the
|
---|
907 | | inexact exception raised if the abstract input cannot be represented
|
---|
908 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
909 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
910 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
911 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
912 | | the abstract input cannot be represented exactly as a subnormal quadruple-
|
---|
913 | | precision floating-point number.
|
---|
914 | | The input significand must be normalized or smaller. If the input
|
---|
915 | | significand is not normalized, `zExp' must be 0; in that case, the result
|
---|
916 | | returned is a subnormal number, and it must not require rounding. In the
|
---|
917 | | usual case that the input significand is normalized, `zExp' must be 1 less
|
---|
918 | | than the ``true'' floating-point exponent. The handling of underflow and
|
---|
919 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
920 | *----------------------------------------------------------------------------*/
|
---|
921 |
|
---|
922 | static float128
|
---|
923 | roundAndPackFloat128(
|
---|
924 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM)
|
---|
925 | {
|
---|
926 | int8 roundingMode;
|
---|
927 | flag roundNearestEven, increment, isTiny;
|
---|
928 |
|
---|
929 | roundingMode = STATUS(float_rounding_mode);
|
---|
930 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
931 | increment = ( (sbits64) zSig2 < 0 );
|
---|
932 | if ( ! roundNearestEven ) {
|
---|
933 | if ( roundingMode == float_round_to_zero ) {
|
---|
934 | increment = 0;
|
---|
935 | }
|
---|
936 | else {
|
---|
937 | if ( zSign ) {
|
---|
938 | increment = ( roundingMode == float_round_down ) && zSig2;
|
---|
939 | }
|
---|
940 | else {
|
---|
941 | increment = ( roundingMode == float_round_up ) && zSig2;
|
---|
942 | }
|
---|
943 | }
|
---|
944 | }
|
---|
945 | if ( 0x7FFD <= (bits32) zExp ) {
|
---|
946 | if ( ( 0x7FFD < zExp )
|
---|
947 | || ( ( zExp == 0x7FFD )
|
---|
948 | && eq128(
|
---|
949 | LIT64( 0x0001FFFFFFFFFFFF ),
|
---|
950 | LIT64( 0xFFFFFFFFFFFFFFFF ),
|
---|
951 | zSig0,
|
---|
952 | zSig1
|
---|
953 | )
|
---|
954 | && increment
|
---|
955 | )
|
---|
956 | ) {
|
---|
957 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
958 | if ( ( roundingMode == float_round_to_zero )
|
---|
959 | || ( zSign && ( roundingMode == float_round_up ) )
|
---|
960 | || ( ! zSign && ( roundingMode == float_round_down ) )
|
---|
961 | ) {
|
---|
962 | return
|
---|
963 | packFloat128(
|
---|
964 | zSign,
|
---|
965 | 0x7FFE,
|
---|
966 | LIT64( 0x0000FFFFFFFFFFFF ),
|
---|
967 | LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
968 | );
|
---|
969 | }
|
---|
970 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
971 | }
|
---|
972 | if ( zExp < 0 ) {
|
---|
973 | if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 );
|
---|
974 | isTiny =
|
---|
975 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
976 | || ( zExp < -1 )
|
---|
977 | || ! increment
|
---|
978 | || lt128(
|
---|
979 | zSig0,
|
---|
980 | zSig1,
|
---|
981 | LIT64( 0x0001FFFFFFFFFFFF ),
|
---|
982 | LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
983 | );
|
---|
984 | shift128ExtraRightJamming(
|
---|
985 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
---|
986 | zExp = 0;
|
---|
987 | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
988 | if ( roundNearestEven ) {
|
---|
989 | increment = ( (sbits64) zSig2 < 0 );
|
---|
990 | }
|
---|
991 | else {
|
---|
992 | if ( zSign ) {
|
---|
993 | increment = ( roundingMode == float_round_down ) && zSig2;
|
---|
994 | }
|
---|
995 | else {
|
---|
996 | increment = ( roundingMode == float_round_up ) && zSig2;
|
---|
997 | }
|
---|
998 | }
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1002 | if ( increment ) {
|
---|
1003 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
---|
1004 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
---|
1005 | }
|
---|
1006 | else {
|
---|
1007 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
---|
1008 | }
|
---|
1009 | return packFloat128( zSign, zExp, zSig0, zSig1 );
|
---|
1010 |
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | /*----------------------------------------------------------------------------
|
---|
1014 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
1015 | | and significand formed by the concatenation of `zSig0' and `zSig1', and
|
---|
1016 | | returns the proper quadruple-precision floating-point value corresponding
|
---|
1017 | | to the abstract input. This routine is just like `roundAndPackFloat128'
|
---|
1018 | | except that the input significand has fewer bits and does not have to be
|
---|
1019 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
---|
1020 | | point exponent.
|
---|
1021 | *----------------------------------------------------------------------------*/
|
---|
1022 |
|
---|
1023 | static float128
|
---|
1024 | normalizeRoundAndPackFloat128(
|
---|
1025 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM)
|
---|
1026 | {
|
---|
1027 | int8 shiftCount;
|
---|
1028 | bits64 zSig2;
|
---|
1029 |
|
---|
1030 | if ( zSig0 == 0 ) {
|
---|
1031 | zSig0 = zSig1;
|
---|
1032 | zSig1 = 0;
|
---|
1033 | zExp -= 64;
|
---|
1034 | }
|
---|
1035 | shiftCount = countLeadingZeros64( zSig0 ) - 15;
|
---|
1036 | if ( 0 <= shiftCount ) {
|
---|
1037 | zSig2 = 0;
|
---|
1038 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
1039 | }
|
---|
1040 | else {
|
---|
1041 | shift128ExtraRightJamming(
|
---|
1042 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
---|
1043 | }
|
---|
1044 | zExp -= shiftCount;
|
---|
1045 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);
|
---|
1046 |
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 | #endif
|
---|
1050 |
|
---|
1051 | /*----------------------------------------------------------------------------
|
---|
1052 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1053 | | to the single-precision floating-point format. The conversion is performed
|
---|
1054 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1055 | *----------------------------------------------------------------------------*/
|
---|
1056 |
|
---|
1057 | float32 int32_to_float32( int32 a STATUS_PARAM )
|
---|
1058 | {
|
---|
1059 | flag zSign;
|
---|
1060 |
|
---|
1061 | if ( a == 0 ) return float32_zero;
|
---|
1062 | if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
|
---|
1063 | zSign = ( a < 0 );
|
---|
1064 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );
|
---|
1065 |
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | /*----------------------------------------------------------------------------
|
---|
1069 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1070 | | to the double-precision floating-point format. The conversion is performed
|
---|
1071 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1072 | *----------------------------------------------------------------------------*/
|
---|
1073 |
|
---|
1074 | float64 int32_to_float64( int32 a STATUS_PARAM )
|
---|
1075 | {
|
---|
1076 | flag zSign;
|
---|
1077 | uint32 absA;
|
---|
1078 | int8 shiftCount;
|
---|
1079 | bits64 zSig;
|
---|
1080 |
|
---|
1081 | if ( a == 0 ) return float64_zero;
|
---|
1082 | zSign = ( a < 0 );
|
---|
1083 | absA = zSign ? - a : a;
|
---|
1084 | shiftCount = countLeadingZeros32( absA ) + 21;
|
---|
1085 | zSig = absA;
|
---|
1086 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
|
---|
1087 |
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | #ifdef FLOATX80
|
---|
1091 |
|
---|
1092 | /*----------------------------------------------------------------------------
|
---|
1093 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1094 | | to the extended double-precision floating-point format. The conversion
|
---|
1095 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1096 | | Arithmetic.
|
---|
1097 | *----------------------------------------------------------------------------*/
|
---|
1098 |
|
---|
1099 | floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
|
---|
1100 | {
|
---|
1101 | flag zSign;
|
---|
1102 | uint32 absA;
|
---|
1103 | int8 shiftCount;
|
---|
1104 | bits64 zSig;
|
---|
1105 |
|
---|
1106 | if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
1107 | zSign = ( a < 0 );
|
---|
1108 | absA = zSign ? - a : a;
|
---|
1109 | shiftCount = countLeadingZeros32( absA ) + 32;
|
---|
1110 | zSig = absA;
|
---|
1111 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
|
---|
1112 |
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | #endif
|
---|
1116 |
|
---|
1117 | #ifdef FLOAT128
|
---|
1118 |
|
---|
1119 | /*----------------------------------------------------------------------------
|
---|
1120 | | Returns the result of converting the 32-bit two's complement integer `a' to
|
---|
1121 | | the quadruple-precision floating-point format. The conversion is performed
|
---|
1122 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1123 | *----------------------------------------------------------------------------*/
|
---|
1124 |
|
---|
1125 | float128 int32_to_float128( int32 a STATUS_PARAM )
|
---|
1126 | {
|
---|
1127 | flag zSign;
|
---|
1128 | uint32 absA;
|
---|
1129 | int8 shiftCount;
|
---|
1130 | bits64 zSig0;
|
---|
1131 |
|
---|
1132 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
1133 | zSign = ( a < 0 );
|
---|
1134 | absA = zSign ? - a : a;
|
---|
1135 | shiftCount = countLeadingZeros32( absA ) + 17;
|
---|
1136 | zSig0 = absA;
|
---|
1137 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
|
---|
1138 |
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | #endif
|
---|
1142 |
|
---|
1143 | /*----------------------------------------------------------------------------
|
---|
1144 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1145 | | to the single-precision floating-point format. The conversion is performed
|
---|
1146 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1147 | *----------------------------------------------------------------------------*/
|
---|
1148 |
|
---|
1149 | float32 int64_to_float32( int64 a STATUS_PARAM )
|
---|
1150 | {
|
---|
1151 | flag zSign;
|
---|
1152 | uint64 absA;
|
---|
1153 | int8 shiftCount;
|
---|
1154 |
|
---|
1155 | if ( a == 0 ) return float32_zero;
|
---|
1156 | zSign = ( a < 0 );
|
---|
1157 | absA = zSign ? - a : a;
|
---|
1158 | shiftCount = countLeadingZeros64( absA ) - 40;
|
---|
1159 | if ( 0 <= shiftCount ) {
|
---|
1160 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
|
---|
1161 | }
|
---|
1162 | else {
|
---|
1163 | shiftCount += 7;
|
---|
1164 | if ( shiftCount < 0 ) {
|
---|
1165 | shift64RightJamming( absA, - shiftCount, &absA );
|
---|
1166 | }
|
---|
1167 | else {
|
---|
1168 | absA <<= shiftCount;
|
---|
1169 | }
|
---|
1170 | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | float32 uint64_to_float32( uint64 a STATUS_PARAM )
|
---|
1176 | {
|
---|
1177 | int8 shiftCount;
|
---|
1178 |
|
---|
1179 | if ( a == 0 ) return float32_zero;
|
---|
1180 | shiftCount = countLeadingZeros64( a ) - 40;
|
---|
1181 | if ( 0 <= shiftCount ) {
|
---|
1182 | return packFloat32( 1 > 0, 0x95 - shiftCount, a<<shiftCount );
|
---|
1183 | }
|
---|
1184 | else {
|
---|
1185 | shiftCount += 7;
|
---|
1186 | if ( shiftCount < 0 ) {
|
---|
1187 | shift64RightJamming( a, - shiftCount, &a );
|
---|
1188 | }
|
---|
1189 | else {
|
---|
1190 | a <<= shiftCount;
|
---|
1191 | }
|
---|
1192 | return roundAndPackFloat32( 1 > 0, 0x9C - shiftCount, a STATUS_VAR );
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 | /*----------------------------------------------------------------------------
|
---|
1197 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1198 | | to the double-precision floating-point format. The conversion is performed
|
---|
1199 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1200 | *----------------------------------------------------------------------------*/
|
---|
1201 |
|
---|
1202 | float64 int64_to_float64( int64 a STATUS_PARAM )
|
---|
1203 | {
|
---|
1204 | flag zSign;
|
---|
1205 |
|
---|
1206 | if ( a == 0 ) return float64_zero;
|
---|
1207 | if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
|
---|
1208 | return packFloat64( 1, 0x43E, 0 );
|
---|
1209 | }
|
---|
1210 | zSign = ( a < 0 );
|
---|
1211 | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );
|
---|
1212 |
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | float64 uint64_to_float64( uint64 a STATUS_PARAM )
|
---|
1216 | {
|
---|
1217 | if ( a == 0 ) return float64_zero;
|
---|
1218 | return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR );
|
---|
1219 |
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | #ifdef FLOATX80
|
---|
1223 |
|
---|
1224 | /*----------------------------------------------------------------------------
|
---|
1225 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1226 | | to the extended double-precision floating-point format. The conversion
|
---|
1227 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1228 | | Arithmetic.
|
---|
1229 | *----------------------------------------------------------------------------*/
|
---|
1230 |
|
---|
1231 | floatx80 int64_to_floatx80( int64 a STATUS_PARAM )
|
---|
1232 | {
|
---|
1233 | flag zSign;
|
---|
1234 | uint64 absA;
|
---|
1235 | int8 shiftCount;
|
---|
1236 |
|
---|
1237 | if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
1238 | zSign = ( a < 0 );
|
---|
1239 | absA = zSign ? - a : a;
|
---|
1240 | shiftCount = countLeadingZeros64( absA );
|
---|
1241 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
|
---|
1242 |
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | #endif
|
---|
1246 |
|
---|
1247 | #ifdef FLOAT128
|
---|
1248 |
|
---|
1249 | /*----------------------------------------------------------------------------
|
---|
1250 | | Returns the result of converting the 64-bit two's complement integer `a' to
|
---|
1251 | | the quadruple-precision floating-point format. The conversion is performed
|
---|
1252 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1253 | *----------------------------------------------------------------------------*/
|
---|
1254 |
|
---|
1255 | float128 int64_to_float128( int64 a STATUS_PARAM )
|
---|
1256 | {
|
---|
1257 | flag zSign;
|
---|
1258 | uint64 absA;
|
---|
1259 | int8 shiftCount;
|
---|
1260 | int32 zExp;
|
---|
1261 | bits64 zSig0, zSig1;
|
---|
1262 |
|
---|
1263 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
1264 | zSign = ( a < 0 );
|
---|
1265 | absA = zSign ? - a : a;
|
---|
1266 | shiftCount = countLeadingZeros64( absA ) + 49;
|
---|
1267 | zExp = 0x406E - shiftCount;
|
---|
1268 | if ( 64 <= shiftCount ) {
|
---|
1269 | zSig1 = 0;
|
---|
1270 | zSig0 = absA;
|
---|
1271 | shiftCount -= 64;
|
---|
1272 | }
|
---|
1273 | else {
|
---|
1274 | zSig1 = absA;
|
---|
1275 | zSig0 = 0;
|
---|
1276 | }
|
---|
1277 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
1278 | return packFloat128( zSign, zExp, zSig0, zSig1 );
|
---|
1279 |
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 | #endif
|
---|
1283 |
|
---|
1284 | /*----------------------------------------------------------------------------
|
---|
1285 | | Returns the result of converting the single-precision floating-point value
|
---|
1286 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
1287 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1288 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
1289 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
1290 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
1291 | | largest integer with the same sign as `a' is returned.
|
---|
1292 | *----------------------------------------------------------------------------*/
|
---|
1293 |
|
---|
1294 | int32 float32_to_int32( float32 a STATUS_PARAM )
|
---|
1295 | {
|
---|
1296 | flag aSign;
|
---|
1297 | int16 aExp, shiftCount;
|
---|
1298 | bits32 aSig;
|
---|
1299 | bits64 aSig64;
|
---|
1300 |
|
---|
1301 | aSig = extractFloat32Frac( a );
|
---|
1302 | aExp = extractFloat32Exp( a );
|
---|
1303 | aSign = extractFloat32Sign( a );
|
---|
1304 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
|
---|
1305 | if ( aExp ) aSig |= 0x00800000;
|
---|
1306 | shiftCount = 0xAF - aExp;
|
---|
1307 | aSig64 = aSig;
|
---|
1308 | aSig64 <<= 32;
|
---|
1309 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
|
---|
1310 | return roundAndPackInt32( aSign, aSig64 STATUS_VAR );
|
---|
1311 |
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /*----------------------------------------------------------------------------
|
---|
1315 | | Returns the result of converting the single-precision floating-point value
|
---|
1316 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
1317 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1318 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
1319 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
1320 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
1321 | | returned.
|
---|
1322 | *----------------------------------------------------------------------------*/
|
---|
1323 |
|
---|
1324 | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
|
---|
1325 | {
|
---|
1326 | flag aSign;
|
---|
1327 | int16 aExp, shiftCount;
|
---|
1328 | bits32 aSig;
|
---|
1329 | int32 z;
|
---|
1330 |
|
---|
1331 | aSig = extractFloat32Frac( a );
|
---|
1332 | aExp = extractFloat32Exp( a );
|
---|
1333 | aSign = extractFloat32Sign( a );
|
---|
1334 | shiftCount = aExp - 0x9E;
|
---|
1335 | if ( 0 <= shiftCount ) {
|
---|
1336 | if ( float32_val(a) != 0xCF000000 ) {
|
---|
1337 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1338 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
---|
1339 | }
|
---|
1340 | return (sbits32) 0x80000000;
|
---|
1341 | }
|
---|
1342 | else if ( aExp <= 0x7E ) {
|
---|
1343 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1344 | return 0;
|
---|
1345 | }
|
---|
1346 | aSig = ( aSig | 0x00800000 )<<8;
|
---|
1347 | z = aSig>>( - shiftCount );
|
---|
1348 | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
|
---|
1349 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1350 | }
|
---|
1351 | if ( aSign ) z = - z;
|
---|
1352 | return z;
|
---|
1353 |
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /*----------------------------------------------------------------------------
|
---|
1357 | | Returns the result of converting the single-precision floating-point value
|
---|
1358 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
1359 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1360 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
1361 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
1362 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
1363 | | largest integer with the same sign as `a' is returned.
|
---|
1364 | *----------------------------------------------------------------------------*/
|
---|
1365 |
|
---|
1366 | int64 float32_to_int64( float32 a STATUS_PARAM )
|
---|
1367 | {
|
---|
1368 | flag aSign;
|
---|
1369 | int16 aExp, shiftCount;
|
---|
1370 | bits32 aSig;
|
---|
1371 | bits64 aSig64, aSigExtra;
|
---|
1372 |
|
---|
1373 | aSig = extractFloat32Frac( a );
|
---|
1374 | aExp = extractFloat32Exp( a );
|
---|
1375 | aSign = extractFloat32Sign( a );
|
---|
1376 | shiftCount = 0xBE - aExp;
|
---|
1377 | if ( shiftCount < 0 ) {
|
---|
1378 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1379 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
---|
1380 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
1381 | }
|
---|
1382 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
1383 | }
|
---|
1384 | if ( aExp ) aSig |= 0x00800000;
|
---|
1385 | aSig64 = aSig;
|
---|
1386 | aSig64 <<= 40;
|
---|
1387 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
|
---|
1388 | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );
|
---|
1389 |
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 | /*----------------------------------------------------------------------------
|
---|
1393 | | Returns the result of converting the single-precision floating-point value
|
---|
1394 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
1395 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1396 | | Arithmetic, except that the conversion is always rounded toward zero. If
|
---|
1397 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
---|
1398 | | conversion overflows, the largest integer with the same sign as `a' is
|
---|
1399 | | returned.
|
---|
1400 | *----------------------------------------------------------------------------*/
|
---|
1401 |
|
---|
1402 | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
|
---|
1403 | {
|
---|
1404 | flag aSign;
|
---|
1405 | int16 aExp, shiftCount;
|
---|
1406 | bits32 aSig;
|
---|
1407 | bits64 aSig64;
|
---|
1408 | int64 z;
|
---|
1409 |
|
---|
1410 | aSig = extractFloat32Frac( a );
|
---|
1411 | aExp = extractFloat32Exp( a );
|
---|
1412 | aSign = extractFloat32Sign( a );
|
---|
1413 | shiftCount = aExp - 0xBE;
|
---|
1414 | if ( 0 <= shiftCount ) {
|
---|
1415 | if ( float32_val(a) != 0xDF000000 ) {
|
---|
1416 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1417 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
---|
1418 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
1419 | }
|
---|
1420 | }
|
---|
1421 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
1422 | }
|
---|
1423 | else if ( aExp <= 0x7E ) {
|
---|
1424 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1425 | return 0;
|
---|
1426 | }
|
---|
1427 | aSig64 = aSig | 0x00800000;
|
---|
1428 | aSig64 <<= 40;
|
---|
1429 | z = aSig64>>( - shiftCount );
|
---|
1430 | if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
|
---|
1431 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1432 | }
|
---|
1433 | if ( aSign ) z = - z;
|
---|
1434 | return z;
|
---|
1435 |
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | /*----------------------------------------------------------------------------
|
---|
1439 | | Returns the result of converting the single-precision floating-point value
|
---|
1440 | | `a' to the double-precision floating-point format. The conversion is
|
---|
1441 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1442 | | Arithmetic.
|
---|
1443 | *----------------------------------------------------------------------------*/
|
---|
1444 |
|
---|
1445 | float64 float32_to_float64( float32 a STATUS_PARAM )
|
---|
1446 | {
|
---|
1447 | flag aSign;
|
---|
1448 | int16 aExp;
|
---|
1449 | bits32 aSig;
|
---|
1450 |
|
---|
1451 | aSig = extractFloat32Frac( a );
|
---|
1452 | aExp = extractFloat32Exp( a );
|
---|
1453 | aSign = extractFloat32Sign( a );
|
---|
1454 | if ( aExp == 0xFF ) {
|
---|
1455 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ));
|
---|
1456 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
1457 | }
|
---|
1458 | if ( aExp == 0 ) {
|
---|
1459 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
|
---|
1460 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1461 | --aExp;
|
---|
1462 | }
|
---|
1463 | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
|
---|
1464 |
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 | #ifdef FLOATX80
|
---|
1468 |
|
---|
1469 | /*----------------------------------------------------------------------------
|
---|
1470 | | Returns the result of converting the single-precision floating-point value
|
---|
1471 | | `a' to the extended double-precision floating-point format. The conversion
|
---|
1472 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1473 | | Arithmetic.
|
---|
1474 | *----------------------------------------------------------------------------*/
|
---|
1475 |
|
---|
1476 | floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
|
---|
1477 | {
|
---|
1478 | flag aSign;
|
---|
1479 | int16 aExp;
|
---|
1480 | bits32 aSig;
|
---|
1481 |
|
---|
1482 | aSig = extractFloat32Frac( a );
|
---|
1483 | aExp = extractFloat32Exp( a );
|
---|
1484 | aSign = extractFloat32Sign( a );
|
---|
1485 | if ( aExp == 0xFF ) {
|
---|
1486 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) );
|
---|
1487 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
1488 | }
|
---|
1489 | if ( aExp == 0 ) {
|
---|
1490 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
1491 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1492 | }
|
---|
1493 | aSig |= 0x00800000;
|
---|
1494 | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
|
---|
1495 |
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | #endif
|
---|
1499 |
|
---|
1500 | #ifdef FLOAT128
|
---|
1501 |
|
---|
1502 | /*----------------------------------------------------------------------------
|
---|
1503 | | Returns the result of converting the single-precision floating-point value
|
---|
1504 | | `a' to the double-precision floating-point format. The conversion is
|
---|
1505 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1506 | | Arithmetic.
|
---|
1507 | *----------------------------------------------------------------------------*/
|
---|
1508 |
|
---|
1509 | float128 float32_to_float128( float32 a STATUS_PARAM )
|
---|
1510 | {
|
---|
1511 | flag aSign;
|
---|
1512 | int16 aExp;
|
---|
1513 | bits32 aSig;
|
---|
1514 |
|
---|
1515 | aSig = extractFloat32Frac( a );
|
---|
1516 | aExp = extractFloat32Exp( a );
|
---|
1517 | aSign = extractFloat32Sign( a );
|
---|
1518 | if ( aExp == 0xFF ) {
|
---|
1519 | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) );
|
---|
1520 | return packFloat128( aSign, 0x7FFF, 0, 0 );
|
---|
1521 | }
|
---|
1522 | if ( aExp == 0 ) {
|
---|
1523 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
---|
1524 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1525 | --aExp;
|
---|
1526 | }
|
---|
1527 | return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
|
---|
1528 |
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 | #endif
|
---|
1532 |
|
---|
1533 | /*----------------------------------------------------------------------------
|
---|
1534 | | Rounds the single-precision floating-point value `a' to an integer, and
|
---|
1535 | | returns the result as a single-precision floating-point value. The
|
---|
1536 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
1537 | | Floating-Point Arithmetic.
|
---|
1538 | *----------------------------------------------------------------------------*/
|
---|
1539 |
|
---|
1540 | float32 float32_round_to_int( float32 a STATUS_PARAM)
|
---|
1541 | {
|
---|
1542 | flag aSign;
|
---|
1543 | int16 aExp;
|
---|
1544 | bits32 lastBitMask, roundBitsMask;
|
---|
1545 | int8 roundingMode;
|
---|
1546 | bits32 z;
|
---|
1547 |
|
---|
1548 | aExp = extractFloat32Exp( a );
|
---|
1549 | if ( 0x96 <= aExp ) {
|
---|
1550 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
---|
1551 | return propagateFloat32NaN( a, a STATUS_VAR );
|
---|
1552 | }
|
---|
1553 | return a;
|
---|
1554 | }
|
---|
1555 | if ( aExp <= 0x7E ) {
|
---|
1556 | if ( (bits32) ( float32_val(a)<<1 ) == 0 ) return a;
|
---|
1557 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1558 | aSign = extractFloat32Sign( a );
|
---|
1559 | switch ( STATUS(float_rounding_mode) ) {
|
---|
1560 | case float_round_nearest_even:
|
---|
1561 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
---|
1562 | return packFloat32( aSign, 0x7F, 0 );
|
---|
1563 | }
|
---|
1564 | break;
|
---|
1565 | case float_round_down:
|
---|
1566 | return make_float32(aSign ? 0xBF800000 : 0);
|
---|
1567 | case float_round_up:
|
---|
1568 | return make_float32(aSign ? 0x80000000 : 0x3F800000);
|
---|
1569 | }
|
---|
1570 | return packFloat32( aSign, 0, 0 );
|
---|
1571 | }
|
---|
1572 | lastBitMask = 1;
|
---|
1573 | lastBitMask <<= 0x96 - aExp;
|
---|
1574 | roundBitsMask = lastBitMask - 1;
|
---|
1575 | z = float32_val(a);
|
---|
1576 | roundingMode = STATUS(float_rounding_mode);
|
---|
1577 | if ( roundingMode == float_round_nearest_even ) {
|
---|
1578 | z += lastBitMask>>1;
|
---|
1579 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
---|
1580 | }
|
---|
1581 | else if ( roundingMode != float_round_to_zero ) {
|
---|
1582 | if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) {
|
---|
1583 | z += roundBitsMask;
|
---|
1584 | }
|
---|
1585 | }
|
---|
1586 | z &= ~ roundBitsMask;
|
---|
1587 | if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1588 | return make_float32(z);
|
---|
1589 |
|
---|
1590 | }
|
---|
1591 |
|
---|
1592 | /*----------------------------------------------------------------------------
|
---|
1593 | | Returns the result of adding the absolute values of the single-precision
|
---|
1594 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
1595 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
1596 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
1597 | | Floating-Point Arithmetic.
|
---|
1598 | *----------------------------------------------------------------------------*/
|
---|
1599 |
|
---|
1600 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
---|
1601 | {
|
---|
1602 | int16 aExp, bExp, zExp;
|
---|
1603 | bits32 aSig, bSig, zSig;
|
---|
1604 | int16 expDiff;
|
---|
1605 |
|
---|
1606 | aSig = extractFloat32Frac( a );
|
---|
1607 | aExp = extractFloat32Exp( a );
|
---|
1608 | bSig = extractFloat32Frac( b );
|
---|
1609 | bExp = extractFloat32Exp( b );
|
---|
1610 | expDiff = aExp - bExp;
|
---|
1611 | aSig <<= 6;
|
---|
1612 | bSig <<= 6;
|
---|
1613 | if ( 0 < expDiff ) {
|
---|
1614 | if ( aExp == 0xFF ) {
|
---|
1615 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1616 | return a;
|
---|
1617 | }
|
---|
1618 | if ( bExp == 0 ) {
|
---|
1619 | --expDiff;
|
---|
1620 | }
|
---|
1621 | else {
|
---|
1622 | bSig |= 0x20000000;
|
---|
1623 | }
|
---|
1624 | shift32RightJamming( bSig, expDiff, &bSig );
|
---|
1625 | zExp = aExp;
|
---|
1626 | }
|
---|
1627 | else if ( expDiff < 0 ) {
|
---|
1628 | if ( bExp == 0xFF ) {
|
---|
1629 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1630 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1631 | }
|
---|
1632 | if ( aExp == 0 ) {
|
---|
1633 | ++expDiff;
|
---|
1634 | }
|
---|
1635 | else {
|
---|
1636 | aSig |= 0x20000000;
|
---|
1637 | }
|
---|
1638 | shift32RightJamming( aSig, - expDiff, &aSig );
|
---|
1639 | zExp = bExp;
|
---|
1640 | }
|
---|
1641 | else {
|
---|
1642 | if ( aExp == 0xFF ) {
|
---|
1643 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1644 | return a;
|
---|
1645 | }
|
---|
1646 | if ( aExp == 0 ) {
|
---|
1647 | if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 );
|
---|
1648 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
---|
1649 | }
|
---|
1650 | zSig = 0x40000000 + aSig + bSig;
|
---|
1651 | zExp = aExp;
|
---|
1652 | goto roundAndPack;
|
---|
1653 | }
|
---|
1654 | aSig |= 0x20000000;
|
---|
1655 | zSig = ( aSig + bSig )<<1;
|
---|
1656 | --zExp;
|
---|
1657 | if ( (sbits32) zSig < 0 ) {
|
---|
1658 | zSig = aSig + bSig;
|
---|
1659 | ++zExp;
|
---|
1660 | }
|
---|
1661 | roundAndPack:
|
---|
1662 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1663 |
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 | /*----------------------------------------------------------------------------
|
---|
1667 | | Returns the result of subtracting the absolute values of the single-
|
---|
1668 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
1669 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
1670 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
1671 | | Standard for Binary Floating-Point Arithmetic.
|
---|
1672 | *----------------------------------------------------------------------------*/
|
---|
1673 |
|
---|
1674 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
---|
1675 | {
|
---|
1676 | int16 aExp, bExp, zExp;
|
---|
1677 | bits32 aSig, bSig, zSig;
|
---|
1678 | int16 expDiff;
|
---|
1679 |
|
---|
1680 | aSig = extractFloat32Frac( a );
|
---|
1681 | aExp = extractFloat32Exp( a );
|
---|
1682 | bSig = extractFloat32Frac( b );
|
---|
1683 | bExp = extractFloat32Exp( b );
|
---|
1684 | expDiff = aExp - bExp;
|
---|
1685 | aSig <<= 7;
|
---|
1686 | bSig <<= 7;
|
---|
1687 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
1688 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
1689 | if ( aExp == 0xFF ) {
|
---|
1690 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1691 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1692 | return float32_default_nan;
|
---|
1693 | }
|
---|
1694 | if ( aExp == 0 ) {
|
---|
1695 | aExp = 1;
|
---|
1696 | bExp = 1;
|
---|
1697 | }
|
---|
1698 | if ( bSig < aSig ) goto aBigger;
|
---|
1699 | if ( aSig < bSig ) goto bBigger;
|
---|
1700 | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
1701 | bExpBigger:
|
---|
1702 | if ( bExp == 0xFF ) {
|
---|
1703 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1704 | return packFloat32( zSign ^ 1, 0xFF, 0 );
|
---|
1705 | }
|
---|
1706 | if ( aExp == 0 ) {
|
---|
1707 | ++expDiff;
|
---|
1708 | }
|
---|
1709 | else {
|
---|
1710 | aSig |= 0x40000000;
|
---|
1711 | }
|
---|
1712 | shift32RightJamming( aSig, - expDiff, &aSig );
|
---|
1713 | bSig |= 0x40000000;
|
---|
1714 | bBigger:
|
---|
1715 | zSig = bSig - aSig;
|
---|
1716 | zExp = bExp;
|
---|
1717 | zSign ^= 1;
|
---|
1718 | goto normalizeRoundAndPack;
|
---|
1719 | aExpBigger:
|
---|
1720 | if ( aExp == 0xFF ) {
|
---|
1721 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1722 | return a;
|
---|
1723 | }
|
---|
1724 | if ( bExp == 0 ) {
|
---|
1725 | --expDiff;
|
---|
1726 | }
|
---|
1727 | else {
|
---|
1728 | bSig |= 0x40000000;
|
---|
1729 | }
|
---|
1730 | shift32RightJamming( bSig, expDiff, &bSig );
|
---|
1731 | aSig |= 0x40000000;
|
---|
1732 | aBigger:
|
---|
1733 | zSig = aSig - bSig;
|
---|
1734 | zExp = aExp;
|
---|
1735 | normalizeRoundAndPack:
|
---|
1736 | --zExp;
|
---|
1737 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1738 |
|
---|
1739 | }
|
---|
1740 |
|
---|
1741 | /*----------------------------------------------------------------------------
|
---|
1742 | | Returns the result of adding the single-precision floating-point values `a'
|
---|
1743 | | and `b'. The operation is performed according to the IEC/IEEE Standard for
|
---|
1744 | | Binary Floating-Point Arithmetic.
|
---|
1745 | *----------------------------------------------------------------------------*/
|
---|
1746 |
|
---|
1747 | float32 float32_add( float32 a, float32 b STATUS_PARAM )
|
---|
1748 | {
|
---|
1749 | flag aSign, bSign;
|
---|
1750 |
|
---|
1751 | aSign = extractFloat32Sign( a );
|
---|
1752 | bSign = extractFloat32Sign( b );
|
---|
1753 | if ( aSign == bSign ) {
|
---|
1754 | return addFloat32Sigs( a, b, aSign STATUS_VAR);
|
---|
1755 | }
|
---|
1756 | else {
|
---|
1757 | return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | /*----------------------------------------------------------------------------
|
---|
1763 | | Returns the result of subtracting the single-precision floating-point values
|
---|
1764 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
1765 | | for Binary Floating-Point Arithmetic.
|
---|
1766 | *----------------------------------------------------------------------------*/
|
---|
1767 |
|
---|
1768 | float32 float32_sub( float32 a, float32 b STATUS_PARAM )
|
---|
1769 | {
|
---|
1770 | flag aSign, bSign;
|
---|
1771 |
|
---|
1772 | aSign = extractFloat32Sign( a );
|
---|
1773 | bSign = extractFloat32Sign( b );
|
---|
1774 | if ( aSign == bSign ) {
|
---|
1775 | return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1776 | }
|
---|
1777 | else {
|
---|
1778 | return addFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 | /*----------------------------------------------------------------------------
|
---|
1784 | | Returns the result of multiplying the single-precision floating-point values
|
---|
1785 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
1786 | | for Binary Floating-Point Arithmetic.
|
---|
1787 | *----------------------------------------------------------------------------*/
|
---|
1788 |
|
---|
1789 | float32 float32_mul( float32 a, float32 b STATUS_PARAM )
|
---|
1790 | {
|
---|
1791 | flag aSign, bSign, zSign;
|
---|
1792 | int16 aExp, bExp, zExp;
|
---|
1793 | bits32 aSig, bSig;
|
---|
1794 | bits64 zSig64;
|
---|
1795 | bits32 zSig;
|
---|
1796 |
|
---|
1797 | aSig = extractFloat32Frac( a );
|
---|
1798 | aExp = extractFloat32Exp( a );
|
---|
1799 | aSign = extractFloat32Sign( a );
|
---|
1800 | bSig = extractFloat32Frac( b );
|
---|
1801 | bExp = extractFloat32Exp( b );
|
---|
1802 | bSign = extractFloat32Sign( b );
|
---|
1803 | zSign = aSign ^ bSign;
|
---|
1804 | if ( aExp == 0xFF ) {
|
---|
1805 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
---|
1806 | return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1807 | }
|
---|
1808 | if ( ( bExp | bSig ) == 0 ) {
|
---|
1809 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1810 | return float32_default_nan;
|
---|
1811 | }
|
---|
1812 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1813 | }
|
---|
1814 | if ( bExp == 0xFF ) {
|
---|
1815 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1816 | if ( ( aExp | aSig ) == 0 ) {
|
---|
1817 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1818 | return float32_default_nan;
|
---|
1819 | }
|
---|
1820 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1821 | }
|
---|
1822 | if ( aExp == 0 ) {
|
---|
1823 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1824 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1825 | }
|
---|
1826 | if ( bExp == 0 ) {
|
---|
1827 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1828 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1829 | }
|
---|
1830 | zExp = aExp + bExp - 0x7F;
|
---|
1831 | aSig = ( aSig | 0x00800000 )<<7;
|
---|
1832 | bSig = ( bSig | 0x00800000 )<<8;
|
---|
1833 | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
|
---|
1834 | zSig = zSig64;
|
---|
1835 | if ( 0 <= (sbits32) ( zSig<<1 ) ) {
|
---|
1836 | zSig <<= 1;
|
---|
1837 | --zExp;
|
---|
1838 | }
|
---|
1839 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1840 |
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 | /*----------------------------------------------------------------------------
|
---|
1844 | | Returns the result of dividing the single-precision floating-point value `a'
|
---|
1845 | | by the corresponding value `b'. The operation is performed according to the
|
---|
1846 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1847 | *----------------------------------------------------------------------------*/
|
---|
1848 |
|
---|
1849 | float32 float32_div( float32 a, float32 b STATUS_PARAM )
|
---|
1850 | {
|
---|
1851 | flag aSign, bSign, zSign;
|
---|
1852 | int16 aExp, bExp, zExp;
|
---|
1853 | bits32 aSig, bSig, zSig;
|
---|
1854 |
|
---|
1855 | aSig = extractFloat32Frac( a );
|
---|
1856 | aExp = extractFloat32Exp( a );
|
---|
1857 | aSign = extractFloat32Sign( a );
|
---|
1858 | bSig = extractFloat32Frac( b );
|
---|
1859 | bExp = extractFloat32Exp( b );
|
---|
1860 | bSign = extractFloat32Sign( b );
|
---|
1861 | zSign = aSign ^ bSign;
|
---|
1862 | if ( aExp == 0xFF ) {
|
---|
1863 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1864 | if ( bExp == 0xFF ) {
|
---|
1865 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1866 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1867 | return float32_default_nan;
|
---|
1868 | }
|
---|
1869 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1870 | }
|
---|
1871 | if ( bExp == 0xFF ) {
|
---|
1872 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1873 | return packFloat32( zSign, 0, 0 );
|
---|
1874 | }
|
---|
1875 | if ( bExp == 0 ) {
|
---|
1876 | if ( bSig == 0 ) {
|
---|
1877 | if ( ( aExp | aSig ) == 0 ) {
|
---|
1878 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1879 | return float32_default_nan;
|
---|
1880 | }
|
---|
1881 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
1882 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1883 | }
|
---|
1884 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1885 | }
|
---|
1886 | if ( aExp == 0 ) {
|
---|
1887 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1888 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1889 | }
|
---|
1890 | zExp = aExp - bExp + 0x7D;
|
---|
1891 | aSig = ( aSig | 0x00800000 )<<7;
|
---|
1892 | bSig = ( bSig | 0x00800000 )<<8;
|
---|
1893 | if ( bSig <= ( aSig + aSig ) ) {
|
---|
1894 | aSig >>= 1;
|
---|
1895 | ++zExp;
|
---|
1896 | }
|
---|
1897 | zSig = ( ( (bits64) aSig )<<32 ) / bSig;
|
---|
1898 | if ( ( zSig & 0x3F ) == 0 ) {
|
---|
1899 | zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
|
---|
1900 | }
|
---|
1901 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1902 |
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | /*----------------------------------------------------------------------------
|
---|
1906 | | Returns the remainder of the single-precision floating-point value `a'
|
---|
1907 | | with respect to the corresponding value `b'. The operation is performed
|
---|
1908 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1909 | *----------------------------------------------------------------------------*/
|
---|
1910 |
|
---|
1911 | float32 float32_rem( float32 a, float32 b STATUS_PARAM )
|
---|
1912 | {
|
---|
1913 | flag aSign, bSign, zSign;
|
---|
1914 | int16 aExp, bExp, expDiff;
|
---|
1915 | bits32 aSig, bSig;
|
---|
1916 | bits32 q;
|
---|
1917 | bits64 aSig64, bSig64, q64;
|
---|
1918 | bits32 alternateASig;
|
---|
1919 | sbits32 sigMean;
|
---|
1920 |
|
---|
1921 | aSig = extractFloat32Frac( a );
|
---|
1922 | aExp = extractFloat32Exp( a );
|
---|
1923 | aSign = extractFloat32Sign( a );
|
---|
1924 | bSig = extractFloat32Frac( b );
|
---|
1925 | bExp = extractFloat32Exp( b );
|
---|
1926 | bSign = extractFloat32Sign( b );
|
---|
1927 | if ( aExp == 0xFF ) {
|
---|
1928 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
---|
1929 | return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1930 | }
|
---|
1931 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1932 | return float32_default_nan;
|
---|
1933 | }
|
---|
1934 | if ( bExp == 0xFF ) {
|
---|
1935 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1936 | return a;
|
---|
1937 | }
|
---|
1938 | if ( bExp == 0 ) {
|
---|
1939 | if ( bSig == 0 ) {
|
---|
1940 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1941 | return float32_default_nan;
|
---|
1942 | }
|
---|
1943 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1944 | }
|
---|
1945 | if ( aExp == 0 ) {
|
---|
1946 | if ( aSig == 0 ) return a;
|
---|
1947 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1948 | }
|
---|
1949 | expDiff = aExp - bExp;
|
---|
1950 | aSig |= 0x00800000;
|
---|
1951 | bSig |= 0x00800000;
|
---|
1952 | if ( expDiff < 32 ) {
|
---|
1953 | aSig <<= 8;
|
---|
1954 | bSig <<= 8;
|
---|
1955 | if ( expDiff < 0 ) {
|
---|
1956 | if ( expDiff < -1 ) return a;
|
---|
1957 | aSig >>= 1;
|
---|
1958 | }
|
---|
1959 | q = ( bSig <= aSig );
|
---|
1960 | if ( q ) aSig -= bSig;
|
---|
1961 | if ( 0 < expDiff ) {
|
---|
1962 | q = ( ( (bits64) aSig )<<32 ) / bSig;
|
---|
1963 | q >>= 32 - expDiff;
|
---|
1964 | bSig >>= 2;
|
---|
1965 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
1966 | }
|
---|
1967 | else {
|
---|
1968 | aSig >>= 2;
|
---|
1969 | bSig >>= 2;
|
---|
1970 | }
|
---|
1971 | }
|
---|
1972 | else {
|
---|
1973 | if ( bSig <= aSig ) aSig -= bSig;
|
---|
1974 | aSig64 = ( (bits64) aSig )<<40;
|
---|
1975 | bSig64 = ( (bits64) bSig )<<40;
|
---|
1976 | expDiff -= 64;
|
---|
1977 | while ( 0 < expDiff ) {
|
---|
1978 | q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
---|
1979 | q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
---|
1980 | aSig64 = - ( ( bSig * q64 )<<38 );
|
---|
1981 | expDiff -= 62;
|
---|
1982 | }
|
---|
1983 | expDiff += 64;
|
---|
1984 | q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
---|
1985 | q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
---|
1986 | q = q64>>( 64 - expDiff );
|
---|
1987 | bSig <<= 6;
|
---|
1988 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
1989 | }
|
---|
1990 | do {
|
---|
1991 | alternateASig = aSig;
|
---|
1992 | ++q;
|
---|
1993 | aSig -= bSig;
|
---|
1994 | } while ( 0 <= (sbits32) aSig );
|
---|
1995 | sigMean = aSig + alternateASig;
|
---|
1996 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
---|
1997 | aSig = alternateASig;
|
---|
1998 | }
|
---|
1999 | zSign = ( (sbits32) aSig < 0 );
|
---|
2000 | if ( zSign ) aSig = - aSig;
|
---|
2001 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
---|
2002 |
|
---|
2003 | }
|
---|
2004 |
|
---|
2005 | /*----------------------------------------------------------------------------
|
---|
2006 | | Returns the square root of the single-precision floating-point value `a'.
|
---|
2007 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
2008 | | Floating-Point Arithmetic.
|
---|
2009 | *----------------------------------------------------------------------------*/
|
---|
2010 |
|
---|
2011 | float32 float32_sqrt( float32 a STATUS_PARAM )
|
---|
2012 | {
|
---|
2013 | flag aSign;
|
---|
2014 | int16 aExp, zExp;
|
---|
2015 | bits32 aSig, zSig;
|
---|
2016 | bits64 rem, term;
|
---|
2017 |
|
---|
2018 | aSig = extractFloat32Frac( a );
|
---|
2019 | aExp = extractFloat32Exp( a );
|
---|
2020 | aSign = extractFloat32Sign( a );
|
---|
2021 | if ( aExp == 0xFF ) {
|
---|
2022 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
|
---|
2023 | if ( ! aSign ) return a;
|
---|
2024 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2025 | return float32_default_nan;
|
---|
2026 | }
|
---|
2027 | if ( aSign ) {
|
---|
2028 | if ( ( aExp | aSig ) == 0 ) return a;
|
---|
2029 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2030 | return float32_default_nan;
|
---|
2031 | }
|
---|
2032 | if ( aExp == 0 ) {
|
---|
2033 | if ( aSig == 0 ) return float32_zero;
|
---|
2034 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
2035 | }
|
---|
2036 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
---|
2037 | aSig = ( aSig | 0x00800000 )<<8;
|
---|
2038 | zSig = estimateSqrt32( aExp, aSig ) + 2;
|
---|
2039 | if ( ( zSig & 0x7F ) <= 5 ) {
|
---|
2040 | if ( zSig < 2 ) {
|
---|
2041 | zSig = 0x7FFFFFFF;
|
---|
2042 | goto roundAndPack;
|
---|
2043 | }
|
---|
2044 | aSig >>= aExp & 1;
|
---|
2045 | term = ( (bits64) zSig ) * zSig;
|
---|
2046 | rem = ( ( (bits64) aSig )<<32 ) - term;
|
---|
2047 | while ( (sbits64) rem < 0 ) {
|
---|
2048 | --zSig;
|
---|
2049 | rem += ( ( (bits64) zSig )<<1 ) | 1;
|
---|
2050 | }
|
---|
2051 | zSig |= ( rem != 0 );
|
---|
2052 | }
|
---|
2053 | shift32RightJamming( zSig, 1, &zSig );
|
---|
2054 | roundAndPack:
|
---|
2055 | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );
|
---|
2056 |
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 | /*----------------------------------------------------------------------------
|
---|
2060 | | Returns the binary log of the single-precision floating-point value `a'.
|
---|
2061 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
2062 | | Floating-Point Arithmetic.
|
---|
2063 | *----------------------------------------------------------------------------*/
|
---|
2064 | float32 float32_log2( float32 a STATUS_PARAM )
|
---|
2065 | {
|
---|
2066 | flag aSign, zSign;
|
---|
2067 | int16 aExp;
|
---|
2068 | bits32 aSig, zSig, i;
|
---|
2069 |
|
---|
2070 | aSig = extractFloat32Frac( a );
|
---|
2071 | aExp = extractFloat32Exp( a );
|
---|
2072 | aSign = extractFloat32Sign( a );
|
---|
2073 |
|
---|
2074 | if ( aExp == 0 ) {
|
---|
2075 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
|
---|
2076 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
2077 | }
|
---|
2078 | if ( aSign ) {
|
---|
2079 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2080 | return float32_default_nan;
|
---|
2081 | }
|
---|
2082 | if ( aExp == 0xFF ) {
|
---|
2083 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
|
---|
2084 | return a;
|
---|
2085 | }
|
---|
2086 |
|
---|
2087 | aExp -= 0x7F;
|
---|
2088 | aSig |= 0x00800000;
|
---|
2089 | zSign = aExp < 0;
|
---|
2090 | zSig = aExp << 23;
|
---|
2091 |
|
---|
2092 | for (i = 1 << 22; i > 0; i >>= 1) {
|
---|
2093 | aSig = ( (bits64)aSig * aSig ) >> 23;
|
---|
2094 | if ( aSig & 0x01000000 ) {
|
---|
2095 | aSig >>= 1;
|
---|
2096 | zSig |= i;
|
---|
2097 | }
|
---|
2098 | }
|
---|
2099 |
|
---|
2100 | if ( zSign )
|
---|
2101 | zSig = -zSig;
|
---|
2102 |
|
---|
2103 | return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
|
---|
2104 | }
|
---|
2105 |
|
---|
2106 | /*----------------------------------------------------------------------------
|
---|
2107 | | Returns 1 if the single-precision floating-point value `a' is equal to
|
---|
2108 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2109 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2110 | *----------------------------------------------------------------------------*/
|
---|
2111 |
|
---|
2112 | int float32_eq( float32 a, float32 b STATUS_PARAM )
|
---|
2113 | {
|
---|
2114 |
|
---|
2115 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2116 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2117 | ) {
|
---|
2118 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2119 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2120 | }
|
---|
2121 | return 0;
|
---|
2122 | }
|
---|
2123 | return ( float32_val(a) == float32_val(b) ) ||
|
---|
2124 | ( (bits32) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
|
---|
2125 |
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | /*----------------------------------------------------------------------------
|
---|
2129 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2130 | | or equal to the corresponding value `b', and 0 otherwise. The comparison
|
---|
2131 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2132 | | Arithmetic.
|
---|
2133 | *----------------------------------------------------------------------------*/
|
---|
2134 |
|
---|
2135 | int float32_le( float32 a, float32 b STATUS_PARAM )
|
---|
2136 | {
|
---|
2137 | flag aSign, bSign;
|
---|
2138 | bits32 av, bv;
|
---|
2139 |
|
---|
2140 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2141 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2142 | ) {
|
---|
2143 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2144 | return 0;
|
---|
2145 | }
|
---|
2146 | aSign = extractFloat32Sign( a );
|
---|
2147 | bSign = extractFloat32Sign( b );
|
---|
2148 | av = float32_val(a);
|
---|
2149 | bv = float32_val(b);
|
---|
2150 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
|
---|
2151 | return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
---|
2152 |
|
---|
2153 | }
|
---|
2154 |
|
---|
2155 | /*----------------------------------------------------------------------------
|
---|
2156 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2157 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2158 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2159 | *----------------------------------------------------------------------------*/
|
---|
2160 |
|
---|
2161 | int float32_lt( float32 a, float32 b STATUS_PARAM )
|
---|
2162 | {
|
---|
2163 | flag aSign, bSign;
|
---|
2164 | bits32 av, bv;
|
---|
2165 |
|
---|
2166 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2167 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2168 | ) {
|
---|
2169 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2170 | return 0;
|
---|
2171 | }
|
---|
2172 | aSign = extractFloat32Sign( a );
|
---|
2173 | bSign = extractFloat32Sign( b );
|
---|
2174 | av = float32_val(a);
|
---|
2175 | bv = float32_val(b);
|
---|
2176 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
|
---|
2177 | return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
---|
2178 |
|
---|
2179 | }
|
---|
2180 |
|
---|
2181 | /*----------------------------------------------------------------------------
|
---|
2182 | | Returns 1 if the single-precision floating-point value `a' is equal to
|
---|
2183 | | the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
2184 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
2185 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2186 | *----------------------------------------------------------------------------*/
|
---|
2187 |
|
---|
2188 | int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
|
---|
2189 | {
|
---|
2190 | bits32 av, bv;
|
---|
2191 |
|
---|
2192 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2193 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2194 | ) {
|
---|
2195 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2196 | return 0;
|
---|
2197 | }
|
---|
2198 | av = float32_val(a);
|
---|
2199 | bv = float32_val(b);
|
---|
2200 | return ( av == bv ) || ( (bits32) ( ( av | bv )<<1 ) == 0 );
|
---|
2201 |
|
---|
2202 | }
|
---|
2203 |
|
---|
2204 | /*----------------------------------------------------------------------------
|
---|
2205 | | Returns 1 if the single-precision floating-point value `a' is less than or
|
---|
2206 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
2207 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
2208 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2209 | *----------------------------------------------------------------------------*/
|
---|
2210 |
|
---|
2211 | int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
|
---|
2212 | {
|
---|
2213 | flag aSign, bSign;
|
---|
2214 | bits32 av, bv;
|
---|
2215 |
|
---|
2216 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2217 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2218 | ) {
|
---|
2219 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2220 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2221 | }
|
---|
2222 | return 0;
|
---|
2223 | }
|
---|
2224 | aSign = extractFloat32Sign( a );
|
---|
2225 | bSign = extractFloat32Sign( b );
|
---|
2226 | av = float32_val(a);
|
---|
2227 | bv = float32_val(b);
|
---|
2228 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
|
---|
2229 | return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
---|
2230 |
|
---|
2231 | }
|
---|
2232 |
|
---|
2233 | /*----------------------------------------------------------------------------
|
---|
2234 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2235 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
2236 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
2237 | | Standard for Binary Floating-Point Arithmetic.
|
---|
2238 | *----------------------------------------------------------------------------*/
|
---|
2239 |
|
---|
2240 | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
|
---|
2241 | {
|
---|
2242 | flag aSign, bSign;
|
---|
2243 | bits32 av, bv;
|
---|
2244 |
|
---|
2245 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2246 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2247 | ) {
|
---|
2248 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2249 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2250 | }
|
---|
2251 | return 0;
|
---|
2252 | }
|
---|
2253 | aSign = extractFloat32Sign( a );
|
---|
2254 | bSign = extractFloat32Sign( b );
|
---|
2255 | av = float32_val(a);
|
---|
2256 | bv = float32_val(b);
|
---|
2257 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
|
---|
2258 | return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
---|
2259 |
|
---|
2260 | }
|
---|
2261 |
|
---|
2262 | /*----------------------------------------------------------------------------
|
---|
2263 | | Returns the result of converting the double-precision floating-point value
|
---|
2264 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
2265 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2266 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
2267 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
2268 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
2269 | | largest integer with the same sign as `a' is returned.
|
---|
2270 | *----------------------------------------------------------------------------*/
|
---|
2271 |
|
---|
2272 | int32 float64_to_int32( float64 a STATUS_PARAM )
|
---|
2273 | {
|
---|
2274 | flag aSign;
|
---|
2275 | int16 aExp, shiftCount;
|
---|
2276 | bits64 aSig;
|
---|
2277 |
|
---|
2278 | aSig = extractFloat64Frac( a );
|
---|
2279 | aExp = extractFloat64Exp( a );
|
---|
2280 | aSign = extractFloat64Sign( a );
|
---|
2281 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
---|
2282 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2283 | shiftCount = 0x42C - aExp;
|
---|
2284 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
|
---|
2285 | return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
---|
2286 |
|
---|
2287 | }
|
---|
2288 |
|
---|
2289 | /*----------------------------------------------------------------------------
|
---|
2290 | | Returns the result of converting the double-precision floating-point value
|
---|
2291 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
2292 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2293 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
2294 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
2295 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
2296 | | returned.
|
---|
2297 | *----------------------------------------------------------------------------*/
|
---|
2298 |
|
---|
2299 | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
|
---|
2300 | {
|
---|
2301 | flag aSign;
|
---|
2302 | int16 aExp, shiftCount;
|
---|
2303 | bits64 aSig, savedASig;
|
---|
2304 | int32 z;
|
---|
2305 |
|
---|
2306 | aSig = extractFloat64Frac( a );
|
---|
2307 | aExp = extractFloat64Exp( a );
|
---|
2308 | aSign = extractFloat64Sign( a );
|
---|
2309 | if ( 0x41E < aExp ) {
|
---|
2310 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
---|
2311 | goto invalid;
|
---|
2312 | }
|
---|
2313 | else if ( aExp < 0x3FF ) {
|
---|
2314 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2315 | return 0;
|
---|
2316 | }
|
---|
2317 | aSig |= LIT64( 0x0010000000000000 );
|
---|
2318 | shiftCount = 0x433 - aExp;
|
---|
2319 | savedASig = aSig;
|
---|
2320 | aSig >>= shiftCount;
|
---|
2321 | z = aSig;
|
---|
2322 | if ( aSign ) z = - z;
|
---|
2323 | if ( ( z < 0 ) ^ aSign ) {
|
---|
2324 | invalid:
|
---|
2325 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2326 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
2327 | }
|
---|
2328 | if ( ( aSig<<shiftCount ) != savedASig ) {
|
---|
2329 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2330 | }
|
---|
2331 | return z;
|
---|
2332 |
|
---|
2333 | }
|
---|
2334 |
|
---|
2335 | /*----------------------------------------------------------------------------
|
---|
2336 | | Returns the result of converting the double-precision floating-point value
|
---|
2337 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
2338 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2339 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
2340 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
2341 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
2342 | | largest integer with the same sign as `a' is returned.
|
---|
2343 | *----------------------------------------------------------------------------*/
|
---|
2344 |
|
---|
2345 | int64 float64_to_int64( float64 a STATUS_PARAM )
|
---|
2346 | {
|
---|
2347 | flag aSign;
|
---|
2348 | int16 aExp, shiftCount;
|
---|
2349 | bits64 aSig, aSigExtra;
|
---|
2350 |
|
---|
2351 | aSig = extractFloat64Frac( a );
|
---|
2352 | aExp = extractFloat64Exp( a );
|
---|
2353 | aSign = extractFloat64Sign( a );
|
---|
2354 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2355 | shiftCount = 0x433 - aExp;
|
---|
2356 | if ( shiftCount <= 0 ) {
|
---|
2357 | if ( 0x43E < aExp ) {
|
---|
2358 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2359 | if ( ! aSign
|
---|
2360 | || ( ( aExp == 0x7FF )
|
---|
2361 | && ( aSig != LIT64( 0x0010000000000000 ) ) )
|
---|
2362 | ) {
|
---|
2363 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
2364 | }
|
---|
2365 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
2366 | }
|
---|
2367 | aSigExtra = 0;
|
---|
2368 | aSig <<= - shiftCount;
|
---|
2369 | }
|
---|
2370 | else {
|
---|
2371 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
---|
2372 | }
|
---|
2373 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
---|
2374 |
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | /*----------------------------------------------------------------------------
|
---|
2378 | | Returns the result of converting the double-precision floating-point value
|
---|
2379 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
2380 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2381 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
2382 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
2383 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
2384 | | returned.
|
---|
2385 | *----------------------------------------------------------------------------*/
|
---|
2386 |
|
---|
2387 | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
|
---|
2388 | {
|
---|
2389 | flag aSign;
|
---|
2390 | int16 aExp, shiftCount;
|
---|
2391 | bits64 aSig;
|
---|
2392 | int64 z;
|
---|
2393 |
|
---|
2394 | aSig = extractFloat64Frac( a );
|
---|
2395 | aExp = extractFloat64Exp( a );
|
---|
2396 | aSign = extractFloat64Sign( a );
|
---|
2397 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2398 | shiftCount = aExp - 0x433;
|
---|
2399 | if ( 0 <= shiftCount ) {
|
---|
2400 | if ( 0x43E <= aExp ) {
|
---|
2401 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
|
---|
2402 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2403 | if ( ! aSign
|
---|
2404 | || ( ( aExp == 0x7FF )
|
---|
2405 | && ( aSig != LIT64( 0x0010000000000000 ) ) )
|
---|
2406 | ) {
|
---|
2407 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
2408 | }
|
---|
2409 | }
|
---|
2410 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
2411 | }
|
---|
2412 | z = aSig<<shiftCount;
|
---|
2413 | }
|
---|
2414 | else {
|
---|
2415 | if ( aExp < 0x3FE ) {
|
---|
2416 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2417 | return 0;
|
---|
2418 | }
|
---|
2419 | z = aSig>>( - shiftCount );
|
---|
2420 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
|
---|
2421 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2422 | }
|
---|
2423 | }
|
---|
2424 | if ( aSign ) z = - z;
|
---|
2425 | return z;
|
---|
2426 |
|
---|
2427 | }
|
---|
2428 |
|
---|
2429 | /*----------------------------------------------------------------------------
|
---|
2430 | | Returns the result of converting the double-precision floating-point value
|
---|
2431 | | `a' to the single-precision floating-point format. The conversion is
|
---|
2432 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2433 | | Arithmetic.
|
---|
2434 | *----------------------------------------------------------------------------*/
|
---|
2435 |
|
---|
2436 | float32 float64_to_float32( float64 a STATUS_PARAM )
|
---|
2437 | {
|
---|
2438 | flag aSign;
|
---|
2439 | int16 aExp;
|
---|
2440 | bits64 aSig;
|
---|
2441 | bits32 zSig;
|
---|
2442 |
|
---|
2443 | aSig = extractFloat64Frac( a );
|
---|
2444 | aExp = extractFloat64Exp( a );
|
---|
2445 | aSign = extractFloat64Sign( a );
|
---|
2446 | if ( aExp == 0x7FF ) {
|
---|
2447 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2448 | return packFloat32( aSign, 0xFF, 0 );
|
---|
2449 | }
|
---|
2450 | shift64RightJamming( aSig, 22, &aSig );
|
---|
2451 | zSig = aSig;
|
---|
2452 | if ( aExp || zSig ) {
|
---|
2453 | zSig |= 0x40000000;
|
---|
2454 | aExp -= 0x381;
|
---|
2455 | }
|
---|
2456 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
---|
2457 |
|
---|
2458 | }
|
---|
2459 |
|
---|
2460 | #ifdef FLOATX80
|
---|
2461 |
|
---|
2462 | /*----------------------------------------------------------------------------
|
---|
2463 | | Returns the result of converting the double-precision floating-point value
|
---|
2464 | | `a' to the extended double-precision floating-point format. The conversion
|
---|
2465 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2466 | | Arithmetic.
|
---|
2467 | *----------------------------------------------------------------------------*/
|
---|
2468 |
|
---|
2469 | floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
|
---|
2470 | {
|
---|
2471 | flag aSign;
|
---|
2472 | int16 aExp;
|
---|
2473 | bits64 aSig;
|
---|
2474 |
|
---|
2475 | aSig = extractFloat64Frac( a );
|
---|
2476 | aExp = extractFloat64Exp( a );
|
---|
2477 | aSign = extractFloat64Sign( a );
|
---|
2478 | if ( aExp == 0x7FF ) {
|
---|
2479 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2480 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
2481 | }
|
---|
2482 | if ( aExp == 0 ) {
|
---|
2483 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
2484 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2485 | }
|
---|
2486 | return
|
---|
2487 | packFloatx80(
|
---|
2488 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
|
---|
2489 |
|
---|
2490 | }
|
---|
2491 |
|
---|
2492 | #endif
|
---|
2493 |
|
---|
2494 | #ifdef FLOAT128
|
---|
2495 |
|
---|
2496 | /*----------------------------------------------------------------------------
|
---|
2497 | | Returns the result of converting the double-precision floating-point value
|
---|
2498 | | `a' to the quadruple-precision floating-point format. The conversion is
|
---|
2499 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2500 | | Arithmetic.
|
---|
2501 | *----------------------------------------------------------------------------*/
|
---|
2502 |
|
---|
2503 | float128 float64_to_float128( float64 a STATUS_PARAM )
|
---|
2504 | {
|
---|
2505 | flag aSign;
|
---|
2506 | int16 aExp;
|
---|
2507 | bits64 aSig, zSig0, zSig1;
|
---|
2508 |
|
---|
2509 | aSig = extractFloat64Frac( a );
|
---|
2510 | aExp = extractFloat64Exp( a );
|
---|
2511 | aSign = extractFloat64Sign( a );
|
---|
2512 | if ( aExp == 0x7FF ) {
|
---|
2513 | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2514 | return packFloat128( aSign, 0x7FFF, 0, 0 );
|
---|
2515 | }
|
---|
2516 | if ( aExp == 0 ) {
|
---|
2517 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
---|
2518 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2519 | --aExp;
|
---|
2520 | }
|
---|
2521 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
|
---|
2522 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
|
---|
2523 |
|
---|
2524 | }
|
---|
2525 |
|
---|
2526 | #endif
|
---|
2527 |
|
---|
2528 | /*----------------------------------------------------------------------------
|
---|
2529 | | Rounds the double-precision floating-point value `a' to an integer, and
|
---|
2530 | | returns the result as a double-precision floating-point value. The
|
---|
2531 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
2532 | | Floating-Point Arithmetic.
|
---|
2533 | *----------------------------------------------------------------------------*/
|
---|
2534 |
|
---|
2535 | float64 float64_round_to_int( float64 a STATUS_PARAM )
|
---|
2536 | {
|
---|
2537 | flag aSign;
|
---|
2538 | int16 aExp;
|
---|
2539 | bits64 lastBitMask, roundBitsMask;
|
---|
2540 | int8 roundingMode;
|
---|
2541 | bits64 z;
|
---|
2542 |
|
---|
2543 | aExp = extractFloat64Exp( a );
|
---|
2544 | if ( 0x433 <= aExp ) {
|
---|
2545 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
|
---|
2546 | return propagateFloat64NaN( a, a STATUS_VAR );
|
---|
2547 | }
|
---|
2548 | return a;
|
---|
2549 | }
|
---|
2550 | if ( aExp < 0x3FF ) {
|
---|
2551 | if ( (bits64) ( float64_val(a)<<1 ) == 0 ) return a;
|
---|
2552 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2553 | aSign = extractFloat64Sign( a );
|
---|
2554 | switch ( STATUS(float_rounding_mode) ) {
|
---|
2555 | case float_round_nearest_even:
|
---|
2556 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
|
---|
2557 | return packFloat64( aSign, 0x3FF, 0 );
|
---|
2558 | }
|
---|
2559 | break;
|
---|
2560 | case float_round_down:
|
---|
2561 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
|
---|
2562 | case float_round_up:
|
---|
2563 | return make_float64(
|
---|
2564 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
|
---|
2565 | }
|
---|
2566 | return packFloat64( aSign, 0, 0 );
|
---|
2567 | }
|
---|
2568 | lastBitMask = 1;
|
---|
2569 | lastBitMask <<= 0x433 - aExp;
|
---|
2570 | roundBitsMask = lastBitMask - 1;
|
---|
2571 | z = float64_val(a);
|
---|
2572 | roundingMode = STATUS(float_rounding_mode);
|
---|
2573 | if ( roundingMode == float_round_nearest_even ) {
|
---|
2574 | z += lastBitMask>>1;
|
---|
2575 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
---|
2576 | }
|
---|
2577 | else if ( roundingMode != float_round_to_zero ) {
|
---|
2578 | if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) {
|
---|
2579 | z += roundBitsMask;
|
---|
2580 | }
|
---|
2581 | }
|
---|
2582 | z &= ~ roundBitsMask;
|
---|
2583 | if ( z != float64_val(a) )
|
---|
2584 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2585 | return make_float64(z);
|
---|
2586 |
|
---|
2587 | }
|
---|
2588 |
|
---|
2589 | float64 float64_trunc_to_int( float64 a STATUS_PARAM)
|
---|
2590 | {
|
---|
2591 | int oldmode;
|
---|
2592 | float64 res;
|
---|
2593 | oldmode = STATUS(float_rounding_mode);
|
---|
2594 | STATUS(float_rounding_mode) = float_round_to_zero;
|
---|
2595 | res = float64_round_to_int(a STATUS_VAR);
|
---|
2596 | STATUS(float_rounding_mode) = oldmode;
|
---|
2597 | return res;
|
---|
2598 | }
|
---|
2599 |
|
---|
2600 | /*----------------------------------------------------------------------------
|
---|
2601 | | Returns the result of adding the absolute values of the double-precision
|
---|
2602 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
2603 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
2604 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
2605 | | Floating-Point Arithmetic.
|
---|
2606 | *----------------------------------------------------------------------------*/
|
---|
2607 |
|
---|
2608 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
---|
2609 | {
|
---|
2610 | int16 aExp, bExp, zExp;
|
---|
2611 | bits64 aSig, bSig, zSig;
|
---|
2612 | int16 expDiff;
|
---|
2613 |
|
---|
2614 | aSig = extractFloat64Frac( a );
|
---|
2615 | aExp = extractFloat64Exp( a );
|
---|
2616 | bSig = extractFloat64Frac( b );
|
---|
2617 | bExp = extractFloat64Exp( b );
|
---|
2618 | expDiff = aExp - bExp;
|
---|
2619 | aSig <<= 9;
|
---|
2620 | bSig <<= 9;
|
---|
2621 | if ( 0 < expDiff ) {
|
---|
2622 | if ( aExp == 0x7FF ) {
|
---|
2623 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2624 | return a;
|
---|
2625 | }
|
---|
2626 | if ( bExp == 0 ) {
|
---|
2627 | --expDiff;
|
---|
2628 | }
|
---|
2629 | else {
|
---|
2630 | bSig |= LIT64( 0x2000000000000000 );
|
---|
2631 | }
|
---|
2632 | shift64RightJamming( bSig, expDiff, &bSig );
|
---|
2633 | zExp = aExp;
|
---|
2634 | }
|
---|
2635 | else if ( expDiff < 0 ) {
|
---|
2636 | if ( bExp == 0x7FF ) {
|
---|
2637 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2638 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2639 | }
|
---|
2640 | if ( aExp == 0 ) {
|
---|
2641 | ++expDiff;
|
---|
2642 | }
|
---|
2643 | else {
|
---|
2644 | aSig |= LIT64( 0x2000000000000000 );
|
---|
2645 | }
|
---|
2646 | shift64RightJamming( aSig, - expDiff, &aSig );
|
---|
2647 | zExp = bExp;
|
---|
2648 | }
|
---|
2649 | else {
|
---|
2650 | if ( aExp == 0x7FF ) {
|
---|
2651 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2652 | return a;
|
---|
2653 | }
|
---|
2654 | if ( aExp == 0 ) {
|
---|
2655 | if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 );
|
---|
2656 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
|
---|
2657 | }
|
---|
2658 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
|
---|
2659 | zExp = aExp;
|
---|
2660 | goto roundAndPack;
|
---|
2661 | }
|
---|
2662 | aSig |= LIT64( 0x2000000000000000 );
|
---|
2663 | zSig = ( aSig + bSig )<<1;
|
---|
2664 | --zExp;
|
---|
2665 | if ( (sbits64) zSig < 0 ) {
|
---|
2666 | zSig = aSig + bSig;
|
---|
2667 | ++zExp;
|
---|
2668 | }
|
---|
2669 | roundAndPack:
|
---|
2670 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2671 |
|
---|
2672 | }
|
---|
2673 |
|
---|
2674 | /*----------------------------------------------------------------------------
|
---|
2675 | | Returns the result of subtracting the absolute values of the double-
|
---|
2676 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
2677 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
2678 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
2679 | | Standard for Binary Floating-Point Arithmetic.
|
---|
2680 | *----------------------------------------------------------------------------*/
|
---|
2681 |
|
---|
2682 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
---|
2683 | {
|
---|
2684 | int16 aExp, bExp, zExp;
|
---|
2685 | bits64 aSig, bSig, zSig;
|
---|
2686 | int16 expDiff;
|
---|
2687 |
|
---|
2688 | aSig = extractFloat64Frac( a );
|
---|
2689 | aExp = extractFloat64Exp( a );
|
---|
2690 | bSig = extractFloat64Frac( b );
|
---|
2691 | bExp = extractFloat64Exp( b );
|
---|
2692 | expDiff = aExp - bExp;
|
---|
2693 | aSig <<= 10;
|
---|
2694 | bSig <<= 10;
|
---|
2695 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
2696 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
2697 | if ( aExp == 0x7FF ) {
|
---|
2698 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2699 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2700 | return float64_default_nan;
|
---|
2701 | }
|
---|
2702 | if ( aExp == 0 ) {
|
---|
2703 | aExp = 1;
|
---|
2704 | bExp = 1;
|
---|
2705 | }
|
---|
2706 | if ( bSig < aSig ) goto aBigger;
|
---|
2707 | if ( aSig < bSig ) goto bBigger;
|
---|
2708 | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
2709 | bExpBigger:
|
---|
2710 | if ( bExp == 0x7FF ) {
|
---|
2711 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2712 | return packFloat64( zSign ^ 1, 0x7FF, 0 );
|
---|
2713 | }
|
---|
2714 | if ( aExp == 0 ) {
|
---|
2715 | ++expDiff;
|
---|
2716 | }
|
---|
2717 | else {
|
---|
2718 | aSig |= LIT64( 0x4000000000000000 );
|
---|
2719 | }
|
---|
2720 | shift64RightJamming( aSig, - expDiff, &aSig );
|
---|
2721 | bSig |= LIT64( 0x4000000000000000 );
|
---|
2722 | bBigger:
|
---|
2723 | zSig = bSig - aSig;
|
---|
2724 | zExp = bExp;
|
---|
2725 | zSign ^= 1;
|
---|
2726 | goto normalizeRoundAndPack;
|
---|
2727 | aExpBigger:
|
---|
2728 | if ( aExp == 0x7FF ) {
|
---|
2729 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2730 | return a;
|
---|
2731 | }
|
---|
2732 | if ( bExp == 0 ) {
|
---|
2733 | --expDiff;
|
---|
2734 | }
|
---|
2735 | else {
|
---|
2736 | bSig |= LIT64( 0x4000000000000000 );
|
---|
2737 | }
|
---|
2738 | shift64RightJamming( bSig, expDiff, &bSig );
|
---|
2739 | aSig |= LIT64( 0x4000000000000000 );
|
---|
2740 | aBigger:
|
---|
2741 | zSig = aSig - bSig;
|
---|
2742 | zExp = aExp;
|
---|
2743 | normalizeRoundAndPack:
|
---|
2744 | --zExp;
|
---|
2745 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2746 |
|
---|
2747 | }
|
---|
2748 |
|
---|
2749 | /*----------------------------------------------------------------------------
|
---|
2750 | | Returns the result of adding the double-precision floating-point values `a'
|
---|
2751 | | and `b'. The operation is performed according to the IEC/IEEE Standard for
|
---|
2752 | | Binary Floating-Point Arithmetic.
|
---|
2753 | *----------------------------------------------------------------------------*/
|
---|
2754 |
|
---|
2755 | float64 float64_add( float64 a, float64 b STATUS_PARAM )
|
---|
2756 | {
|
---|
2757 | flag aSign, bSign;
|
---|
2758 |
|
---|
2759 | aSign = extractFloat64Sign( a );
|
---|
2760 | bSign = extractFloat64Sign( b );
|
---|
2761 | if ( aSign == bSign ) {
|
---|
2762 | return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2763 | }
|
---|
2764 | else {
|
---|
2765 | return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2766 | }
|
---|
2767 |
|
---|
2768 | }
|
---|
2769 |
|
---|
2770 | /*----------------------------------------------------------------------------
|
---|
2771 | | Returns the result of subtracting the double-precision floating-point values
|
---|
2772 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
2773 | | for Binary Floating-Point Arithmetic.
|
---|
2774 | *----------------------------------------------------------------------------*/
|
---|
2775 |
|
---|
2776 | float64 float64_sub( float64 a, float64 b STATUS_PARAM )
|
---|
2777 | {
|
---|
2778 | flag aSign, bSign;
|
---|
2779 |
|
---|
2780 | aSign = extractFloat64Sign( a );
|
---|
2781 | bSign = extractFloat64Sign( b );
|
---|
2782 | if ( aSign == bSign ) {
|
---|
2783 | return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2784 | }
|
---|
2785 | else {
|
---|
2786 | return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2787 | }
|
---|
2788 |
|
---|
2789 | }
|
---|
2790 |
|
---|
2791 | /*----------------------------------------------------------------------------
|
---|
2792 | | Returns the result of multiplying the double-precision floating-point values
|
---|
2793 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
2794 | | for Binary Floating-Point Arithmetic.
|
---|
2795 | *----------------------------------------------------------------------------*/
|
---|
2796 |
|
---|
2797 | float64 float64_mul( float64 a, float64 b STATUS_PARAM )
|
---|
2798 | {
|
---|
2799 | flag aSign, bSign, zSign;
|
---|
2800 | int16 aExp, bExp, zExp;
|
---|
2801 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
2802 |
|
---|
2803 | aSig = extractFloat64Frac( a );
|
---|
2804 | aExp = extractFloat64Exp( a );
|
---|
2805 | aSign = extractFloat64Sign( a );
|
---|
2806 | bSig = extractFloat64Frac( b );
|
---|
2807 | bExp = extractFloat64Exp( b );
|
---|
2808 | bSign = extractFloat64Sign( b );
|
---|
2809 | zSign = aSign ^ bSign;
|
---|
2810 | if ( aExp == 0x7FF ) {
|
---|
2811 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
---|
2812 | return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2813 | }
|
---|
2814 | if ( ( bExp | bSig ) == 0 ) {
|
---|
2815 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2816 | return float64_default_nan;
|
---|
2817 | }
|
---|
2818 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2819 | }
|
---|
2820 | if ( bExp == 0x7FF ) {
|
---|
2821 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2822 | if ( ( aExp | aSig ) == 0 ) {
|
---|
2823 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2824 | return float64_default_nan;
|
---|
2825 | }
|
---|
2826 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2827 | }
|
---|
2828 | if ( aExp == 0 ) {
|
---|
2829 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2830 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2831 | }
|
---|
2832 | if ( bExp == 0 ) {
|
---|
2833 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2834 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2835 | }
|
---|
2836 | zExp = aExp + bExp - 0x3FF;
|
---|
2837 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
---|
2838 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2839 | mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
---|
2840 | zSig0 |= ( zSig1 != 0 );
|
---|
2841 | if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
|
---|
2842 | zSig0 <<= 1;
|
---|
2843 | --zExp;
|
---|
2844 | }
|
---|
2845 | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );
|
---|
2846 |
|
---|
2847 | }
|
---|
2848 |
|
---|
2849 | /*----------------------------------------------------------------------------
|
---|
2850 | | Returns the result of dividing the double-precision floating-point value `a'
|
---|
2851 | | by the corresponding value `b'. The operation is performed according to
|
---|
2852 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2853 | *----------------------------------------------------------------------------*/
|
---|
2854 |
|
---|
2855 | float64 float64_div( float64 a, float64 b STATUS_PARAM )
|
---|
2856 | {
|
---|
2857 | flag aSign, bSign, zSign;
|
---|
2858 | int16 aExp, bExp, zExp;
|
---|
2859 | bits64 aSig, bSig, zSig;
|
---|
2860 | bits64 rem0, rem1;
|
---|
2861 | bits64 term0, term1;
|
---|
2862 |
|
---|
2863 | aSig = extractFloat64Frac( a );
|
---|
2864 | aExp = extractFloat64Exp( a );
|
---|
2865 | aSign = extractFloat64Sign( a );
|
---|
2866 | bSig = extractFloat64Frac( b );
|
---|
2867 | bExp = extractFloat64Exp( b );
|
---|
2868 | bSign = extractFloat64Sign( b );
|
---|
2869 | zSign = aSign ^ bSign;
|
---|
2870 | if ( aExp == 0x7FF ) {
|
---|
2871 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2872 | if ( bExp == 0x7FF ) {
|
---|
2873 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2874 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2875 | return float64_default_nan;
|
---|
2876 | }
|
---|
2877 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2878 | }
|
---|
2879 | if ( bExp == 0x7FF ) {
|
---|
2880 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2881 | return packFloat64( zSign, 0, 0 );
|
---|
2882 | }
|
---|
2883 | if ( bExp == 0 ) {
|
---|
2884 | if ( bSig == 0 ) {
|
---|
2885 | if ( ( aExp | aSig ) == 0 ) {
|
---|
2886 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2887 | return float64_default_nan;
|
---|
2888 | }
|
---|
2889 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
2890 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2891 | }
|
---|
2892 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2893 | }
|
---|
2894 | if ( aExp == 0 ) {
|
---|
2895 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2896 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2897 | }
|
---|
2898 | zExp = aExp - bExp + 0x3FD;
|
---|
2899 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
---|
2900 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2901 | if ( bSig <= ( aSig + aSig ) ) {
|
---|
2902 | aSig >>= 1;
|
---|
2903 | ++zExp;
|
---|
2904 | }
|
---|
2905 | zSig = estimateDiv128To64( aSig, 0, bSig );
|
---|
2906 | if ( ( zSig & 0x1FF ) <= 2 ) {
|
---|
2907 | mul64To128( bSig, zSig, &term0, &term1 );
|
---|
2908 | sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
---|
2909 | while ( (sbits64) rem0 < 0 ) {
|
---|
2910 | --zSig;
|
---|
2911 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
---|
2912 | }
|
---|
2913 | zSig |= ( rem1 != 0 );
|
---|
2914 | }
|
---|
2915 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2916 |
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 | /*----------------------------------------------------------------------------
|
---|
2920 | | Returns the remainder of the double-precision floating-point value `a'
|
---|
2921 | | with respect to the corresponding value `b'. The operation is performed
|
---|
2922 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2923 | *----------------------------------------------------------------------------*/
|
---|
2924 |
|
---|
2925 | float64 float64_rem( float64 a, float64 b STATUS_PARAM )
|
---|
2926 | {
|
---|
2927 | flag aSign, bSign, zSign;
|
---|
2928 | int16 aExp, bExp, expDiff;
|
---|
2929 | bits64 aSig, bSig;
|
---|
2930 | bits64 q, alternateASig;
|
---|
2931 | sbits64 sigMean;
|
---|
2932 |
|
---|
2933 | aSig = extractFloat64Frac( a );
|
---|
2934 | aExp = extractFloat64Exp( a );
|
---|
2935 | aSign = extractFloat64Sign( a );
|
---|
2936 | bSig = extractFloat64Frac( b );
|
---|
2937 | bExp = extractFloat64Exp( b );
|
---|
2938 | bSign = extractFloat64Sign( b );
|
---|
2939 | if ( aExp == 0x7FF ) {
|
---|
2940 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
---|
2941 | return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2942 | }
|
---|
2943 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2944 | return float64_default_nan;
|
---|
2945 | }
|
---|
2946 | if ( bExp == 0x7FF ) {
|
---|
2947 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2948 | return a;
|
---|
2949 | }
|
---|
2950 | if ( bExp == 0 ) {
|
---|
2951 | if ( bSig == 0 ) {
|
---|
2952 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2953 | return float64_default_nan;
|
---|
2954 | }
|
---|
2955 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2956 | }
|
---|
2957 | if ( aExp == 0 ) {
|
---|
2958 | if ( aSig == 0 ) return a;
|
---|
2959 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2960 | }
|
---|
2961 | expDiff = aExp - bExp;
|
---|
2962 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2963 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2964 | if ( expDiff < 0 ) {
|
---|
2965 | if ( expDiff < -1 ) return a;
|
---|
2966 | aSig >>= 1;
|
---|
2967 | }
|
---|
2968 | q = ( bSig <= aSig );
|
---|
2969 | if ( q ) aSig -= bSig;
|
---|
2970 | expDiff -= 64;
|
---|
2971 | while ( 0 < expDiff ) {
|
---|
2972 | q = estimateDiv128To64( aSig, 0, bSig );
|
---|
2973 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
2974 | aSig = - ( ( bSig>>2 ) * q );
|
---|
2975 | expDiff -= 62;
|
---|
2976 | }
|
---|
2977 | expDiff += 64;
|
---|
2978 | if ( 0 < expDiff ) {
|
---|
2979 | q = estimateDiv128To64( aSig, 0, bSig );
|
---|
2980 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
2981 | q >>= 64 - expDiff;
|
---|
2982 | bSig >>= 2;
|
---|
2983 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
2984 | }
|
---|
2985 | else {
|
---|
2986 | aSig >>= 2;
|
---|
2987 | bSig >>= 2;
|
---|
2988 | }
|
---|
2989 | do {
|
---|
2990 | alternateASig = aSig;
|
---|
2991 | ++q;
|
---|
2992 | aSig -= bSig;
|
---|
2993 | } while ( 0 <= (sbits64) aSig );
|
---|
2994 | sigMean = aSig + alternateASig;
|
---|
2995 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
---|
2996 | aSig = alternateASig;
|
---|
2997 | }
|
---|
2998 | zSign = ( (sbits64) aSig < 0 );
|
---|
2999 | if ( zSign ) aSig = - aSig;
|
---|
3000 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
---|
3001 |
|
---|
3002 | }
|
---|
3003 |
|
---|
3004 | /*----------------------------------------------------------------------------
|
---|
3005 | | Returns the square root of the double-precision floating-point value `a'.
|
---|
3006 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
3007 | | Floating-Point Arithmetic.
|
---|
3008 | *----------------------------------------------------------------------------*/
|
---|
3009 |
|
---|
3010 | float64 float64_sqrt( float64 a STATUS_PARAM )
|
---|
3011 | {
|
---|
3012 | flag aSign;
|
---|
3013 | int16 aExp, zExp;
|
---|
3014 | bits64 aSig, zSig, doubleZSig;
|
---|
3015 | bits64 rem0, rem1, term0, term1;
|
---|
3016 |
|
---|
3017 | aSig = extractFloat64Frac( a );
|
---|
3018 | aExp = extractFloat64Exp( a );
|
---|
3019 | aSign = extractFloat64Sign( a );
|
---|
3020 | if ( aExp == 0x7FF ) {
|
---|
3021 | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
|
---|
3022 | if ( ! aSign ) return a;
|
---|
3023 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3024 | return float64_default_nan;
|
---|
3025 | }
|
---|
3026 | if ( aSign ) {
|
---|
3027 | if ( ( aExp | aSig ) == 0 ) return a;
|
---|
3028 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3029 | return float64_default_nan;
|
---|
3030 | }
|
---|
3031 | if ( aExp == 0 ) {
|
---|
3032 | if ( aSig == 0 ) return float64_zero;
|
---|
3033 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
3034 | }
|
---|
3035 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
|
---|
3036 | aSig |= LIT64( 0x0010000000000000 );
|
---|
3037 | zSig = estimateSqrt32( aExp, aSig>>21 );
|
---|
3038 | aSig <<= 9 - ( aExp & 1 );
|
---|
3039 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
|
---|
3040 | if ( ( zSig & 0x1FF ) <= 5 ) {
|
---|
3041 | doubleZSig = zSig<<1;
|
---|
3042 | mul64To128( zSig, zSig, &term0, &term1 );
|
---|
3043 | sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
---|
3044 | while ( (sbits64) rem0 < 0 ) {
|
---|
3045 | --zSig;
|
---|
3046 | doubleZSig -= 2;
|
---|
3047 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
|
---|
3048 | }
|
---|
3049 | zSig |= ( ( rem0 | rem1 ) != 0 );
|
---|
3050 | }
|
---|
3051 | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );
|
---|
3052 |
|
---|
3053 | }
|
---|
3054 |
|
---|
3055 | /*----------------------------------------------------------------------------
|
---|
3056 | | Returns the binary log of the double-precision floating-point value `a'.
|
---|
3057 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
3058 | | Floating-Point Arithmetic.
|
---|
3059 | *----------------------------------------------------------------------------*/
|
---|
3060 | float64 float64_log2( float64 a STATUS_PARAM )
|
---|
3061 | {
|
---|
3062 | flag aSign, zSign;
|
---|
3063 | int16 aExp;
|
---|
3064 | bits64 aSig, aSig0, aSig1, zSig, i;
|
---|
3065 |
|
---|
3066 | aSig = extractFloat64Frac( a );
|
---|
3067 | aExp = extractFloat64Exp( a );
|
---|
3068 | aSign = extractFloat64Sign( a );
|
---|
3069 |
|
---|
3070 | if ( aExp == 0 ) {
|
---|
3071 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
|
---|
3072 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
3073 | }
|
---|
3074 | if ( aSign ) {
|
---|
3075 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3076 | return float64_default_nan;
|
---|
3077 | }
|
---|
3078 | if ( aExp == 0x7FF ) {
|
---|
3079 | if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
|
---|
3080 | return a;
|
---|
3081 | }
|
---|
3082 |
|
---|
3083 | aExp -= 0x3FF;
|
---|
3084 | aSig |= LIT64( 0x0010000000000000 );
|
---|
3085 | zSign = aExp < 0;
|
---|
3086 | zSig = (bits64)aExp << 52;
|
---|
3087 | for (i = 1LL << 51; i > 0; i >>= 1) {
|
---|
3088 | mul64To128( aSig, aSig, &aSig0, &aSig1 );
|
---|
3089 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
|
---|
3090 | if ( aSig & LIT64( 0x0020000000000000 ) ) {
|
---|
3091 | aSig >>= 1;
|
---|
3092 | zSig |= i;
|
---|
3093 | }
|
---|
3094 | }
|
---|
3095 |
|
---|
3096 | if ( zSign )
|
---|
3097 | zSig = -zSig;
|
---|
3098 | return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
|
---|
3099 | }
|
---|
3100 |
|
---|
3101 | /*----------------------------------------------------------------------------
|
---|
3102 | | Returns 1 if the double-precision floating-point value `a' is equal to the
|
---|
3103 | | corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
3104 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3105 | *----------------------------------------------------------------------------*/
|
---|
3106 |
|
---|
3107 | int float64_eq( float64 a, float64 b STATUS_PARAM )
|
---|
3108 | {
|
---|
3109 | bits64 av, bv;
|
---|
3110 |
|
---|
3111 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3112 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3113 | ) {
|
---|
3114 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
3115 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3116 | }
|
---|
3117 | return 0;
|
---|
3118 | }
|
---|
3119 | av = float64_val(a);
|
---|
3120 | bv = float64_val(b);
|
---|
3121 | return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
|
---|
3122 |
|
---|
3123 | }
|
---|
3124 |
|
---|
3125 | /*----------------------------------------------------------------------------
|
---|
3126 | | Returns 1 if the double-precision floating-point value `a' is less than or
|
---|
3127 | | equal to the corresponding value `b', and 0 otherwise. The comparison is
|
---|
3128 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
3129 | | Arithmetic.
|
---|
3130 | *----------------------------------------------------------------------------*/
|
---|
3131 |
|
---|
3132 | int float64_le( float64 a, float64 b STATUS_PARAM )
|
---|
3133 | {
|
---|
3134 | flag aSign, bSign;
|
---|
3135 | bits64 av, bv;
|
---|
3136 |
|
---|
3137 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3138 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3139 | ) {
|
---|
3140 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3141 | return 0;
|
---|
3142 | }
|
---|
3143 | aSign = extractFloat64Sign( a );
|
---|
3144 | bSign = extractFloat64Sign( b );
|
---|
3145 | av = float64_val(a);
|
---|
3146 | bv = float64_val(b);
|
---|
3147 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
|
---|
3148 | return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
---|
3149 |
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 | /*----------------------------------------------------------------------------
|
---|
3153 | | Returns 1 if the double-precision floating-point value `a' is less than
|
---|
3154 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
3155 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3156 | *----------------------------------------------------------------------------*/
|
---|
3157 |
|
---|
3158 | int float64_lt( float64 a, float64 b STATUS_PARAM )
|
---|
3159 | {
|
---|
3160 | flag aSign, bSign;
|
---|
3161 | bits64 av, bv;
|
---|
3162 |
|
---|
3163 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3164 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3165 | ) {
|
---|
3166 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3167 | return 0;
|
---|
3168 | }
|
---|
3169 | aSign = extractFloat64Sign( a );
|
---|
3170 | bSign = extractFloat64Sign( b );
|
---|
3171 | av = float64_val(a);
|
---|
3172 | bv = float64_val(b);
|
---|
3173 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
|
---|
3174 | return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
---|
3175 |
|
---|
3176 | }
|
---|
3177 |
|
---|
3178 | /*----------------------------------------------------------------------------
|
---|
3179 | | Returns 1 if the double-precision floating-point value `a' is equal to the
|
---|
3180 | | corresponding value `b', and 0 otherwise. The invalid exception is raised
|
---|
3181 | | if either operand is a NaN. Otherwise, the comparison is performed
|
---|
3182 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3183 | *----------------------------------------------------------------------------*/
|
---|
3184 |
|
---|
3185 | int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
|
---|
3186 | {
|
---|
3187 | bits64 av, bv;
|
---|
3188 |
|
---|
3189 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3190 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3191 | ) {
|
---|
3192 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3193 | return 0;
|
---|
3194 | }
|
---|
3195 | av = float64_val(a);
|
---|
3196 | bv = float64_val(b);
|
---|
3197 | return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
|
---|
3198 |
|
---|
3199 | }
|
---|
3200 |
|
---|
3201 | /*----------------------------------------------------------------------------
|
---|
3202 | | Returns 1 if the double-precision floating-point value `a' is less than or
|
---|
3203 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
3204 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
3205 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3206 | *----------------------------------------------------------------------------*/
|
---|
3207 |
|
---|
3208 | int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
|
---|
3209 | {
|
---|
3210 | flag aSign, bSign;
|
---|
3211 | bits64 av, bv;
|
---|
3212 |
|
---|
3213 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3214 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3215 | ) {
|
---|
3216 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
3217 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3218 | }
|
---|
3219 | return 0;
|
---|
3220 | }
|
---|
3221 | aSign = extractFloat64Sign( a );
|
---|
3222 | bSign = extractFloat64Sign( b );
|
---|
3223 | av = float64_val(a);
|
---|
3224 | bv = float64_val(b);
|
---|
3225 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
|
---|
3226 | return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
---|
3227 |
|
---|
3228 | }
|
---|
3229 |
|
---|
3230 | /*----------------------------------------------------------------------------
|
---|
3231 | | Returns 1 if the double-precision floating-point value `a' is less than
|
---|
3232 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
3233 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
3234 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3235 | *----------------------------------------------------------------------------*/
|
---|
3236 |
|
---|
3237 | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
|
---|
3238 | {
|
---|
3239 | flag aSign, bSign;
|
---|
3240 | bits64 av, bv;
|
---|
3241 |
|
---|
3242 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3243 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3244 | ) {
|
---|
3245 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
3246 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3247 | }
|
---|
3248 | return 0;
|
---|
3249 | }
|
---|
3250 | aSign = extractFloat64Sign( a );
|
---|
3251 | bSign = extractFloat64Sign( b );
|
---|
3252 | av = float64_val(a);
|
---|
3253 | bv = float64_val(b);
|
---|
3254 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
|
---|
3255 | return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
---|
3256 |
|
---|
3257 | }
|
---|
3258 |
|
---|
3259 | #ifdef FLOATX80
|
---|
3260 |
|
---|
3261 | /*----------------------------------------------------------------------------
|
---|
3262 | | Returns the result of converting the extended double-precision floating-
|
---|
3263 | | point value `a' to the 32-bit two's complement integer format. The
|
---|
3264 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3265 | | Floating-Point Arithmetic---which means in particular that the conversion
|
---|
3266 | | is rounded according to the current rounding mode. If `a' is a NaN, the
|
---|
3267 | | largest positive integer is returned. Otherwise, if the conversion
|
---|
3268 | | overflows, the largest integer with the same sign as `a' is returned.
|
---|
3269 | *----------------------------------------------------------------------------*/
|
---|
3270 |
|
---|
3271 | int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
|
---|
3272 | {
|
---|
3273 | flag aSign;
|
---|
3274 | int32 aExp, shiftCount;
|
---|
3275 | bits64 aSig;
|
---|
3276 |
|
---|
3277 | aSig = extractFloatx80Frac( a );
|
---|
3278 | aExp = extractFloatx80Exp( a );
|
---|
3279 | aSign = extractFloatx80Sign( a );
|
---|
3280 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
|
---|
3281 | shiftCount = 0x4037 - aExp;
|
---|
3282 | if ( shiftCount <= 0 ) shiftCount = 1;
|
---|
3283 | shift64RightJamming( aSig, shiftCount, &aSig );
|
---|
3284 | return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
---|
3285 |
|
---|
3286 | }
|
---|
3287 |
|
---|
3288 | /*----------------------------------------------------------------------------
|
---|
3289 | | Returns the result of converting the extended double-precision floating-
|
---|
3290 | | point value `a' to the 32-bit two's complement integer format. The
|
---|
3291 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3292 | | Floating-Point Arithmetic, except that the conversion is always rounded
|
---|
3293 | | toward zero. If `a' is a NaN, the largest positive integer is returned.
|
---|
3294 | | Otherwise, if the conversion overflows, the largest integer with the same
|
---|
3295 | | sign as `a' is returned.
|
---|
3296 | *----------------------------------------------------------------------------*/
|
---|
3297 |
|
---|
3298 | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
|
---|
3299 | {
|
---|
3300 | flag aSign;
|
---|
3301 | int32 aExp, shiftCount;
|
---|
3302 | bits64 aSig, savedASig;
|
---|
3303 | int32 z;
|
---|
3304 |
|
---|
3305 | aSig = extractFloatx80Frac( a );
|
---|
3306 | aExp = extractFloatx80Exp( a );
|
---|
3307 | aSign = extractFloatx80Sign( a );
|
---|
3308 | if ( 0x401E < aExp ) {
|
---|
3309 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
|
---|
3310 | goto invalid;
|
---|
3311 | }
|
---|
3312 | else if ( aExp < 0x3FFF ) {
|
---|
3313 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3314 | return 0;
|
---|
3315 | }
|
---|
3316 | shiftCount = 0x403E - aExp;
|
---|
3317 | savedASig = aSig;
|
---|
3318 | aSig >>= shiftCount;
|
---|
3319 | z = aSig;
|
---|
3320 | if ( aSign ) z = - z;
|
---|
3321 | if ( ( z < 0 ) ^ aSign ) {
|
---|
3322 | invalid:
|
---|
3323 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3324 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
3325 | }
|
---|
3326 | if ( ( aSig<<shiftCount ) != savedASig ) {
|
---|
3327 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3328 | }
|
---|
3329 | return z;
|
---|
3330 |
|
---|
3331 | }
|
---|
3332 |
|
---|
3333 | /*----------------------------------------------------------------------------
|
---|
3334 | | Returns the result of converting the extended double-precision floating-
|
---|
3335 | | point value `a' to the 64-bit two's complement integer format. The
|
---|
3336 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3337 | | Floating-Point Arithmetic---which means in particular that the conversion
|
---|
3338 | | is rounded according to the current rounding mode. If `a' is a NaN,
|
---|
3339 | | the largest positive integer is returned. Otherwise, if the conversion
|
---|
3340 | | overflows, the largest integer with the same sign as `a' is returned.
|
---|
3341 | *----------------------------------------------------------------------------*/
|
---|
3342 |
|
---|
3343 | int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
|
---|
3344 | {
|
---|
3345 | flag aSign;
|
---|
3346 | int32 aExp, shiftCount;
|
---|
3347 | bits64 aSig, aSigExtra;
|
---|
3348 |
|
---|
3349 | aSig = extractFloatx80Frac( a );
|
---|
3350 | aExp = extractFloatx80Exp( a );
|
---|
3351 | aSign = extractFloatx80Sign( a );
|
---|
3352 | shiftCount = 0x403E - aExp;
|
---|
3353 | if ( shiftCount <= 0 ) {
|
---|
3354 | if ( shiftCount ) {
|
---|
3355 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3356 | if ( ! aSign
|
---|
3357 | || ( ( aExp == 0x7FFF )
|
---|
3358 | && ( aSig != LIT64( 0x8000000000000000 ) ) )
|
---|
3359 | ) {
|
---|
3360 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3361 | }
|
---|
3362 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
3363 | }
|
---|
3364 | aSigExtra = 0;
|
---|
3365 | }
|
---|
3366 | else {
|
---|
3367 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
---|
3368 | }
|
---|
3369 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
---|
3370 |
|
---|
3371 | }
|
---|
3372 |
|
---|
3373 | /*----------------------------------------------------------------------------
|
---|
3374 | | Returns the result of converting the extended double-precision floating-
|
---|
3375 | | point value `a' to the 64-bit two's complement integer format. The
|
---|
3376 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3377 | | Floating-Point Arithmetic, except that the conversion is always rounded
|
---|
3378 | | toward zero. If `a' is a NaN, the largest positive integer is returned.
|
---|
3379 | | Otherwise, if the conversion overflows, the largest integer with the same
|
---|
3380 | | sign as `a' is returned.
|
---|
3381 | *----------------------------------------------------------------------------*/
|
---|
3382 |
|
---|
3383 | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
|
---|
3384 | {
|
---|
3385 | flag aSign;
|
---|
3386 | int32 aExp, shiftCount;
|
---|
3387 | bits64 aSig;
|
---|
3388 | int64 z;
|
---|
3389 |
|
---|
3390 | aSig = extractFloatx80Frac( a );
|
---|
3391 | aExp = extractFloatx80Exp( a );
|
---|
3392 | aSign = extractFloatx80Sign( a );
|
---|
3393 | shiftCount = aExp - 0x403E;
|
---|
3394 | if ( 0 <= shiftCount ) {
|
---|
3395 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3396 | if ( ( a.high != 0xC03E ) || aSig ) {
|
---|
3397 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3398 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
|
---|
3399 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3400 | }
|
---|
3401 | }
|
---|
3402 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
3403 | }
|
---|
3404 | else if ( aExp < 0x3FFF ) {
|
---|
3405 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3406 | return 0;
|
---|
3407 | }
|
---|
3408 | z = aSig>>( - shiftCount );
|
---|
3409 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
|
---|
3410 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3411 | }
|
---|
3412 | if ( aSign ) z = - z;
|
---|
3413 | return z;
|
---|
3414 |
|
---|
3415 | }
|
---|
3416 |
|
---|
3417 | /*----------------------------------------------------------------------------
|
---|
3418 | | Returns the result of converting the extended double-precision floating-
|
---|
3419 | | point value `a' to the single-precision floating-point format. The
|
---|
3420 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3421 | | Floating-Point Arithmetic.
|
---|
3422 | *----------------------------------------------------------------------------*/
|
---|
3423 |
|
---|
3424 | float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
|
---|
3425 | {
|
---|
3426 | flag aSign;
|
---|
3427 | int32 aExp;
|
---|
3428 | bits64 aSig;
|
---|
3429 |
|
---|
3430 | aSig = extractFloatx80Frac( a );
|
---|
3431 | aExp = extractFloatx80Exp( a );
|
---|
3432 | aSign = extractFloatx80Sign( a );
|
---|
3433 | if ( aExp == 0x7FFF ) {
|
---|
3434 | if ( (bits64) ( aSig<<1 ) ) {
|
---|
3435 | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3436 | }
|
---|
3437 | return packFloat32( aSign, 0xFF, 0 );
|
---|
3438 | }
|
---|
3439 | shift64RightJamming( aSig, 33, &aSig );
|
---|
3440 | if ( aExp || aSig ) aExp -= 0x3F81;
|
---|
3441 | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
|
---|
3442 |
|
---|
3443 | }
|
---|
3444 |
|
---|
3445 | /*----------------------------------------------------------------------------
|
---|
3446 | | Returns the result of converting the extended double-precision floating-
|
---|
3447 | | point value `a' to the double-precision floating-point format. The
|
---|
3448 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3449 | | Floating-Point Arithmetic.
|
---|
3450 | *----------------------------------------------------------------------------*/
|
---|
3451 |
|
---|
3452 | float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
|
---|
3453 | {
|
---|
3454 | flag aSign;
|
---|
3455 | int32 aExp;
|
---|
3456 | bits64 aSig, zSig;
|
---|
3457 |
|
---|
3458 | aSig = extractFloatx80Frac( a );
|
---|
3459 | aExp = extractFloatx80Exp( a );
|
---|
3460 | aSign = extractFloatx80Sign( a );
|
---|
3461 | if ( aExp == 0x7FFF ) {
|
---|
3462 | if ( (bits64) ( aSig<<1 ) ) {
|
---|
3463 | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3464 | }
|
---|
3465 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
3466 | }
|
---|
3467 | shift64RightJamming( aSig, 1, &zSig );
|
---|
3468 | if ( aExp || aSig ) aExp -= 0x3C01;
|
---|
3469 | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );
|
---|
3470 |
|
---|
3471 | }
|
---|
3472 |
|
---|
3473 | #ifdef FLOAT128
|
---|
3474 |
|
---|
3475 | /*----------------------------------------------------------------------------
|
---|
3476 | | Returns the result of converting the extended double-precision floating-
|
---|
3477 | | point value `a' to the quadruple-precision floating-point format. The
|
---|
3478 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3479 | | Floating-Point Arithmetic.
|
---|
3480 | *----------------------------------------------------------------------------*/
|
---|
3481 |
|
---|
3482 | float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
|
---|
3483 | {
|
---|
3484 | flag aSign;
|
---|
3485 | int16 aExp;
|
---|
3486 | bits64 aSig, zSig0, zSig1;
|
---|
3487 |
|
---|
3488 | aSig = extractFloatx80Frac( a );
|
---|
3489 | aExp = extractFloatx80Exp( a );
|
---|
3490 | aSign = extractFloatx80Sign( a );
|
---|
3491 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
|
---|
3492 | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3493 | }
|
---|
3494 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
|
---|
3495 | return packFloat128( aSign, aExp, zSig0, zSig1 );
|
---|
3496 |
|
---|
3497 | }
|
---|
3498 |
|
---|
3499 | #endif
|
---|
3500 |
|
---|
3501 | /*----------------------------------------------------------------------------
|
---|
3502 | | Rounds the extended double-precision floating-point value `a' to an integer,
|
---|
3503 | | and returns the result as an extended quadruple-precision floating-point
|
---|
3504 | | value. The operation is performed according to the IEC/IEEE Standard for
|
---|
3505 | | Binary Floating-Point Arithmetic.
|
---|
3506 | *----------------------------------------------------------------------------*/
|
---|
3507 |
|
---|
3508 | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
|
---|
3509 | {
|
---|
3510 | flag aSign;
|
---|
3511 | int32 aExp;
|
---|
3512 | bits64 lastBitMask, roundBitsMask;
|
---|
3513 | int8 roundingMode;
|
---|
3514 | floatx80 z;
|
---|
3515 |
|
---|
3516 | aExp = extractFloatx80Exp( a );
|
---|
3517 | if ( 0x403E <= aExp ) {
|
---|
3518 | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
|
---|
3519 | return propagateFloatx80NaN( a, a STATUS_VAR );
|
---|
3520 | }
|
---|
3521 | return a;
|
---|
3522 | }
|
---|
3523 | if ( aExp < 0x3FFF ) {
|
---|
3524 | if ( ( aExp == 0 )
|
---|
3525 | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
|
---|
3526 | return a;
|
---|
3527 | }
|
---|
3528 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3529 | aSign = extractFloatx80Sign( a );
|
---|
3530 | switch ( STATUS(float_rounding_mode) ) {
|
---|
3531 | case float_round_nearest_even:
|
---|
3532 | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
|
---|
3533 | ) {
|
---|
3534 | return
|
---|
3535 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
---|
3536 | }
|
---|
3537 | break;
|
---|
3538 | case float_round_down:
|
---|
3539 | return
|
---|
3540 | aSign ?
|
---|
3541 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
|
---|
3542 | : packFloatx80( 0, 0, 0 );
|
---|
3543 | case float_round_up:
|
---|
3544 | return
|
---|
3545 | aSign ? packFloatx80( 1, 0, 0 )
|
---|
3546 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
---|
3547 | }
|
---|
3548 | return packFloatx80( aSign, 0, 0 );
|
---|
3549 | }
|
---|
3550 | lastBitMask = 1;
|
---|
3551 | lastBitMask <<= 0x403E - aExp;
|
---|
3552 | roundBitsMask = lastBitMask - 1;
|
---|
3553 | z = a;
|
---|
3554 | roundingMode = STATUS(float_rounding_mode);
|
---|
3555 | if ( roundingMode == float_round_nearest_even ) {
|
---|
3556 | z.low += lastBitMask>>1;
|
---|
3557 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
---|
3558 | }
|
---|
3559 | else if ( roundingMode != float_round_to_zero ) {
|
---|
3560 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
---|
3561 | z.low += roundBitsMask;
|
---|
3562 | }
|
---|
3563 | }
|
---|
3564 | z.low &= ~ roundBitsMask;
|
---|
3565 | if ( z.low == 0 ) {
|
---|
3566 | ++z.high;
|
---|
3567 | z.low = LIT64( 0x8000000000000000 );
|
---|
3568 | }
|
---|
3569 | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3570 | return z;
|
---|
3571 |
|
---|
3572 | }
|
---|
3573 |
|
---|
3574 | /*----------------------------------------------------------------------------
|
---|
3575 | | Returns the result of adding the absolute values of the extended double-
|
---|
3576 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
---|
3577 | | negated before being returned. `zSign' is ignored if the result is a NaN.
|
---|
3578 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
3579 | | Floating-Point Arithmetic.
|
---|
3580 | *----------------------------------------------------------------------------*/
|
---|
3581 |
|
---|
3582 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
|
---|
3583 | {
|
---|
3584 | int32 aExp, bExp, zExp;
|
---|
3585 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3586 | int32 expDiff;
|
---|
3587 |
|
---|
3588 | aSig = extractFloatx80Frac( a );
|
---|
3589 | aExp = extractFloatx80Exp( a );
|
---|
3590 | bSig = extractFloatx80Frac( b );
|
---|
3591 | bExp = extractFloatx80Exp( b );
|
---|
3592 | expDiff = aExp - bExp;
|
---|
3593 | if ( 0 < expDiff ) {
|
---|
3594 | if ( aExp == 0x7FFF ) {
|
---|
3595 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3596 | return a;
|
---|
3597 | }
|
---|
3598 | if ( bExp == 0 ) --expDiff;
|
---|
3599 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
---|
3600 | zExp = aExp;
|
---|
3601 | }
|
---|
3602 | else if ( expDiff < 0 ) {
|
---|
3603 | if ( bExp == 0x7FFF ) {
|
---|
3604 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3605 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3606 | }
|
---|
3607 | if ( aExp == 0 ) ++expDiff;
|
---|
3608 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
---|
3609 | zExp = bExp;
|
---|
3610 | }
|
---|
3611 | else {
|
---|
3612 | if ( aExp == 0x7FFF ) {
|
---|
3613 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
|
---|
3614 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3615 | }
|
---|
3616 | return a;
|
---|
3617 | }
|
---|
3618 | zSig1 = 0;
|
---|
3619 | zSig0 = aSig + bSig;
|
---|
3620 | if ( aExp == 0 ) {
|
---|
3621 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
|
---|
3622 | goto roundAndPack;
|
---|
3623 | }
|
---|
3624 | zExp = aExp;
|
---|
3625 | goto shiftRight1;
|
---|
3626 | }
|
---|
3627 | zSig0 = aSig + bSig;
|
---|
3628 | if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
|
---|
3629 | shiftRight1:
|
---|
3630 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
---|
3631 | zSig0 |= LIT64( 0x8000000000000000 );
|
---|
3632 | ++zExp;
|
---|
3633 | roundAndPack:
|
---|
3634 | return
|
---|
3635 | roundAndPackFloatx80(
|
---|
3636 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3637 |
|
---|
3638 | }
|
---|
3639 |
|
---|
3640 | /*----------------------------------------------------------------------------
|
---|
3641 | | Returns the result of subtracting the absolute values of the extended
|
---|
3642 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
3643 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
3644 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
3645 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3646 | *----------------------------------------------------------------------------*/
|
---|
3647 |
|
---|
3648 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
|
---|
3649 | {
|
---|
3650 | int32 aExp, bExp, zExp;
|
---|
3651 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3652 | int32 expDiff;
|
---|
3653 | floatx80 z;
|
---|
3654 |
|
---|
3655 | aSig = extractFloatx80Frac( a );
|
---|
3656 | aExp = extractFloatx80Exp( a );
|
---|
3657 | bSig = extractFloatx80Frac( b );
|
---|
3658 | bExp = extractFloatx80Exp( b );
|
---|
3659 | expDiff = aExp - bExp;
|
---|
3660 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
3661 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
3662 | if ( aExp == 0x7FFF ) {
|
---|
3663 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
|
---|
3664 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3665 | }
|
---|
3666 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3667 | z.low = floatx80_default_nan_low;
|
---|
3668 | z.high = floatx80_default_nan_high;
|
---|
3669 | return z;
|
---|
3670 | }
|
---|
3671 | if ( aExp == 0 ) {
|
---|
3672 | aExp = 1;
|
---|
3673 | bExp = 1;
|
---|
3674 | }
|
---|
3675 | zSig1 = 0;
|
---|
3676 | if ( bSig < aSig ) goto aBigger;
|
---|
3677 | if ( aSig < bSig ) goto bBigger;
|
---|
3678 | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
3679 | bExpBigger:
|
---|
3680 | if ( bExp == 0x7FFF ) {
|
---|
3681 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3682 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3683 | }
|
---|
3684 | if ( aExp == 0 ) ++expDiff;
|
---|
3685 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
---|
3686 | bBigger:
|
---|
3687 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
|
---|
3688 | zExp = bExp;
|
---|
3689 | zSign ^= 1;
|
---|
3690 | goto normalizeRoundAndPack;
|
---|
3691 | aExpBigger:
|
---|
3692 | if ( aExp == 0x7FFF ) {
|
---|
3693 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3694 | return a;
|
---|
3695 | }
|
---|
3696 | if ( bExp == 0 ) --expDiff;
|
---|
3697 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
---|
3698 | aBigger:
|
---|
3699 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
|
---|
3700 | zExp = aExp;
|
---|
3701 | normalizeRoundAndPack:
|
---|
3702 | return
|
---|
3703 | normalizeRoundAndPackFloatx80(
|
---|
3704 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3705 |
|
---|
3706 | }
|
---|
3707 |
|
---|
3708 | /*----------------------------------------------------------------------------
|
---|
3709 | | Returns the result of adding the extended double-precision floating-point
|
---|
3710 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
3711 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3712 | *----------------------------------------------------------------------------*/
|
---|
3713 |
|
---|
3714 | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3715 | {
|
---|
3716 | flag aSign, bSign;
|
---|
3717 |
|
---|
3718 | aSign = extractFloatx80Sign( a );
|
---|
3719 | bSign = extractFloatx80Sign( b );
|
---|
3720 | if ( aSign == bSign ) {
|
---|
3721 | return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3722 | }
|
---|
3723 | else {
|
---|
3724 | return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3725 | }
|
---|
3726 |
|
---|
3727 | }
|
---|
3728 |
|
---|
3729 | /*----------------------------------------------------------------------------
|
---|
3730 | | Returns the result of subtracting the extended double-precision floating-
|
---|
3731 | | point values `a' and `b'. The operation is performed according to the
|
---|
3732 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3733 | *----------------------------------------------------------------------------*/
|
---|
3734 |
|
---|
3735 | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3736 | {
|
---|
3737 | flag aSign, bSign;
|
---|
3738 |
|
---|
3739 | aSign = extractFloatx80Sign( a );
|
---|
3740 | bSign = extractFloatx80Sign( b );
|
---|
3741 | if ( aSign == bSign ) {
|
---|
3742 | return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3743 | }
|
---|
3744 | else {
|
---|
3745 | return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3746 | }
|
---|
3747 |
|
---|
3748 | }
|
---|
3749 |
|
---|
3750 | /*----------------------------------------------------------------------------
|
---|
3751 | | Returns the result of multiplying the extended double-precision floating-
|
---|
3752 | | point values `a' and `b'. The operation is performed according to the
|
---|
3753 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3754 | *----------------------------------------------------------------------------*/
|
---|
3755 |
|
---|
3756 | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3757 | {
|
---|
3758 | flag aSign, bSign, zSign;
|
---|
3759 | int32 aExp, bExp, zExp;
|
---|
3760 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3761 | floatx80 z;
|
---|
3762 |
|
---|
3763 | aSig = extractFloatx80Frac( a );
|
---|
3764 | aExp = extractFloatx80Exp( a );
|
---|
3765 | aSign = extractFloatx80Sign( a );
|
---|
3766 | bSig = extractFloatx80Frac( b );
|
---|
3767 | bExp = extractFloatx80Exp( b );
|
---|
3768 | bSign = extractFloatx80Sign( b );
|
---|
3769 | zSign = aSign ^ bSign;
|
---|
3770 | if ( aExp == 0x7FFF ) {
|
---|
3771 | if ( (bits64) ( aSig<<1 )
|
---|
3772 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
|
---|
3773 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3774 | }
|
---|
3775 | if ( ( bExp | bSig ) == 0 ) goto invalid;
|
---|
3776 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3777 | }
|
---|
3778 | if ( bExp == 0x7FFF ) {
|
---|
3779 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3780 | if ( ( aExp | aSig ) == 0 ) {
|
---|
3781 | invalid:
|
---|
3782 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3783 | z.low = floatx80_default_nan_low;
|
---|
3784 | z.high = floatx80_default_nan_high;
|
---|
3785 | return z;
|
---|
3786 | }
|
---|
3787 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3788 | }
|
---|
3789 | if ( aExp == 0 ) {
|
---|
3790 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3791 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
---|
3792 | }
|
---|
3793 | if ( bExp == 0 ) {
|
---|
3794 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3795 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3796 | }
|
---|
3797 | zExp = aExp + bExp - 0x3FFE;
|
---|
3798 | mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
---|
3799 | if ( 0 < (sbits64) zSig0 ) {
|
---|
3800 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
---|
3801 | --zExp;
|
---|
3802 | }
|
---|
3803 | return
|
---|
3804 | roundAndPackFloatx80(
|
---|
3805 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3806 |
|
---|
3807 | }
|
---|
3808 |
|
---|
3809 | /*----------------------------------------------------------------------------
|
---|
3810 | | Returns the result of dividing the extended double-precision floating-point
|
---|
3811 | | value `a' by the corresponding value `b'. The operation is performed
|
---|
3812 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3813 | *----------------------------------------------------------------------------*/
|
---|
3814 |
|
---|
3815 | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3816 | {
|
---|
3817 | flag aSign, bSign, zSign;
|
---|
3818 | int32 aExp, bExp, zExp;
|
---|
3819 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3820 | bits64 rem0, rem1, rem2, term0, term1, term2;
|
---|
3821 | floatx80 z;
|
---|
3822 |
|
---|
3823 | aSig = extractFloatx80Frac( a );
|
---|
3824 | aExp = extractFloatx80Exp( a );
|
---|
3825 | aSign = extractFloatx80Sign( a );
|
---|
3826 | bSig = extractFloatx80Frac( b );
|
---|
3827 | bExp = extractFloatx80Exp( b );
|
---|
3828 | bSign = extractFloatx80Sign( b );
|
---|
3829 | zSign = aSign ^ bSign;
|
---|
3830 | if ( aExp == 0x7FFF ) {
|
---|
3831 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3832 | if ( bExp == 0x7FFF ) {
|
---|
3833 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3834 | goto invalid;
|
---|
3835 | }
|
---|
3836 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3837 | }
|
---|
3838 | if ( bExp == 0x7FFF ) {
|
---|
3839 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3840 | return packFloatx80( zSign, 0, 0 );
|
---|
3841 | }
|
---|
3842 | if ( bExp == 0 ) {
|
---|
3843 | if ( bSig == 0 ) {
|
---|
3844 | if ( ( aExp | aSig ) == 0 ) {
|
---|
3845 | invalid:
|
---|
3846 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3847 | z.low = floatx80_default_nan_low;
|
---|
3848 | z.high = floatx80_default_nan_high;
|
---|
3849 | return z;
|
---|
3850 | }
|
---|
3851 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
3852 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3853 | }
|
---|
3854 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3855 | }
|
---|
3856 | if ( aExp == 0 ) {
|
---|
3857 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3858 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
---|
3859 | }
|
---|
3860 | zExp = aExp - bExp + 0x3FFE;
|
---|
3861 | rem1 = 0;
|
---|
3862 | if ( bSig <= aSig ) {
|
---|
3863 | shift128Right( aSig, 0, 1, &aSig, &rem1 );
|
---|
3864 | ++zExp;
|
---|
3865 | }
|
---|
3866 | zSig0 = estimateDiv128To64( aSig, rem1, bSig );
|
---|
3867 | mul64To128( bSig, zSig0, &term0, &term1 );
|
---|
3868 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
|
---|
3869 | while ( (sbits64) rem0 < 0 ) {
|
---|
3870 | --zSig0;
|
---|
3871 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
---|
3872 | }
|
---|
3873 | zSig1 = estimateDiv128To64( rem1, 0, bSig );
|
---|
3874 | if ( (bits64) ( zSig1<<1 ) <= 8 ) {
|
---|
3875 | mul64To128( bSig, zSig1, &term1, &term2 );
|
---|
3876 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
3877 | while ( (sbits64) rem1 < 0 ) {
|
---|
3878 | --zSig1;
|
---|
3879 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
|
---|
3880 | }
|
---|
3881 | zSig1 |= ( ( rem1 | rem2 ) != 0 );
|
---|
3882 | }
|
---|
3883 | return
|
---|
3884 | roundAndPackFloatx80(
|
---|
3885 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3886 |
|
---|
3887 | }
|
---|
3888 |
|
---|
3889 | /*----------------------------------------------------------------------------
|
---|
3890 | | Returns the remainder of the extended double-precision floating-point value
|
---|
3891 | | `a' with respect to the corresponding value `b'. The operation is performed
|
---|
3892 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3893 | *----------------------------------------------------------------------------*/
|
---|
3894 |
|
---|
3895 | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3896 | {
|
---|
3897 | flag aSign, bSign, zSign;
|
---|
3898 | int32 aExp, bExp, expDiff;
|
---|
3899 | bits64 aSig0, aSig1, bSig;
|
---|
3900 | bits64 q, term0, term1, alternateASig0, alternateASig1;
|
---|
3901 | floatx80 z;
|
---|
3902 |
|
---|
3903 | aSig0 = extractFloatx80Frac( a );
|
---|
3904 | aExp = extractFloatx80Exp( a );
|
---|
3905 | aSign = extractFloatx80Sign( a );
|
---|
3906 | bSig = extractFloatx80Frac( b );
|
---|
3907 | bExp = extractFloatx80Exp( b );
|
---|
3908 | bSign = extractFloatx80Sign( b );
|
---|
3909 | if ( aExp == 0x7FFF ) {
|
---|
3910 | if ( (bits64) ( aSig0<<1 )
|
---|
3911 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
|
---|
3912 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3913 | }
|
---|
3914 | goto invalid;
|
---|
3915 | }
|
---|
3916 | if ( bExp == 0x7FFF ) {
|
---|
3917 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3918 | return a;
|
---|
3919 | }
|
---|
3920 | if ( bExp == 0 ) {
|
---|
3921 | if ( bSig == 0 ) {
|
---|
3922 | invalid:
|
---|
3923 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3924 | z.low = floatx80_default_nan_low;
|
---|
3925 | z.high = floatx80_default_nan_high;
|
---|
3926 | return z;
|
---|
3927 | }
|
---|
3928 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3929 | }
|
---|
3930 | if ( aExp == 0 ) {
|
---|
3931 | if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
|
---|
3932 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
---|
3933 | }
|
---|
3934 | bSig |= LIT64( 0x8000000000000000 );
|
---|
3935 | zSign = aSign;
|
---|
3936 | expDiff = aExp - bExp;
|
---|
3937 | aSig1 = 0;
|
---|
3938 | if ( expDiff < 0 ) {
|
---|
3939 | if ( expDiff < -1 ) return a;
|
---|
3940 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
|
---|
3941 | expDiff = 0;
|
---|
3942 | }
|
---|
3943 | q = ( bSig <= aSig0 );
|
---|
3944 | if ( q ) aSig0 -= bSig;
|
---|
3945 | expDiff -= 64;
|
---|
3946 | while ( 0 < expDiff ) {
|
---|
3947 | q = estimateDiv128To64( aSig0, aSig1, bSig );
|
---|
3948 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
3949 | mul64To128( bSig, q, &term0, &term1 );
|
---|
3950 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3951 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
|
---|
3952 | expDiff -= 62;
|
---|
3953 | }
|
---|
3954 | expDiff += 64;
|
---|
3955 | if ( 0 < expDiff ) {
|
---|
3956 | q = estimateDiv128To64( aSig0, aSig1, bSig );
|
---|
3957 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
3958 | q >>= 64 - expDiff;
|
---|
3959 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
|
---|
3960 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3961 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
|
---|
3962 | while ( le128( term0, term1, aSig0, aSig1 ) ) {
|
---|
3963 | ++q;
|
---|
3964 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3965 | }
|
---|
3966 | }
|
---|
3967 | else {
|
---|
3968 | term1 = 0;
|
---|
3969 | term0 = bSig;
|
---|
3970 | }
|
---|
3971 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
|
---|
3972 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
---|
3973 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
---|
3974 | && ( q & 1 ) )
|
---|
3975 | ) {
|
---|
3976 | aSig0 = alternateASig0;
|
---|
3977 | aSig1 = alternateASig1;
|
---|
3978 | zSign = ! zSign;
|
---|
3979 | }
|
---|
3980 | return
|
---|
3981 | normalizeRoundAndPackFloatx80(
|
---|
3982 | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );
|
---|
3983 |
|
---|
3984 | }
|
---|
3985 |
|
---|
3986 | /*----------------------------------------------------------------------------
|
---|
3987 | | Returns the square root of the extended double-precision floating-point
|
---|
3988 | | value `a'. The operation is performed according to the IEC/IEEE Standard
|
---|
3989 | | for Binary Floating-Point Arithmetic.
|
---|
3990 | *----------------------------------------------------------------------------*/
|
---|
3991 |
|
---|
3992 | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
|
---|
3993 | {
|
---|
3994 | flag aSign;
|
---|
3995 | int32 aExp, zExp;
|
---|
3996 | bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
---|
3997 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
3998 | floatx80 z;
|
---|
3999 |
|
---|
4000 | aSig0 = extractFloatx80Frac( a );
|
---|
4001 | aExp = extractFloatx80Exp( a );
|
---|
4002 | aSign = extractFloatx80Sign( a );
|
---|
4003 | if ( aExp == 0x7FFF ) {
|
---|
4004 | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
|
---|
4005 | if ( ! aSign ) return a;
|
---|
4006 | goto invalid;
|
---|
4007 | }
|
---|
4008 | if ( aSign ) {
|
---|
4009 | if ( ( aExp | aSig0 ) == 0 ) return a;
|
---|
4010 | invalid:
|
---|
4011 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4012 | z.low = floatx80_default_nan_low;
|
---|
4013 | z.high = floatx80_default_nan_high;
|
---|
4014 | return z;
|
---|
4015 | }
|
---|
4016 | if ( aExp == 0 ) {
|
---|
4017 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
4018 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
---|
4019 | }
|
---|
4020 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
|
---|
4021 | zSig0 = estimateSqrt32( aExp, aSig0>>32 );
|
---|
4022 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
|
---|
4023 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
---|
4024 | doubleZSig0 = zSig0<<1;
|
---|
4025 | mul64To128( zSig0, zSig0, &term0, &term1 );
|
---|
4026 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
---|
4027 | while ( (sbits64) rem0 < 0 ) {
|
---|
4028 | --zSig0;
|
---|
4029 | doubleZSig0 -= 2;
|
---|
4030 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
---|
4031 | }
|
---|
4032 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
---|
4033 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
|
---|
4034 | if ( zSig1 == 0 ) zSig1 = 1;
|
---|
4035 | mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
---|
4036 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
4037 | mul64To128( zSig1, zSig1, &term2, &term3 );
|
---|
4038 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4039 | while ( (sbits64) rem1 < 0 ) {
|
---|
4040 | --zSig1;
|
---|
4041 | shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
---|
4042 | term3 |= 1;
|
---|
4043 | term2 |= doubleZSig0;
|
---|
4044 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4045 | }
|
---|
4046 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
4047 | }
|
---|
4048 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
|
---|
4049 | zSig0 |= doubleZSig0;
|
---|
4050 | return
|
---|
4051 | roundAndPackFloatx80(
|
---|
4052 | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
4053 |
|
---|
4054 | }
|
---|
4055 |
|
---|
4056 | /*----------------------------------------------------------------------------
|
---|
4057 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
4058 | | equal to the corresponding value `b', and 0 otherwise. The comparison is
|
---|
4059 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4060 | | Arithmetic.
|
---|
4061 | *----------------------------------------------------------------------------*/
|
---|
4062 |
|
---|
4063 | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4064 | {
|
---|
4065 |
|
---|
4066 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4067 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4068 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4069 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4070 | ) {
|
---|
4071 | if ( floatx80_is_signaling_nan( a )
|
---|
4072 | || floatx80_is_signaling_nan( b ) ) {
|
---|
4073 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4074 | }
|
---|
4075 | return 0;
|
---|
4076 | }
|
---|
4077 | return
|
---|
4078 | ( a.low == b.low )
|
---|
4079 | && ( ( a.high == b.high )
|
---|
4080 | || ( ( a.low == 0 )
|
---|
4081 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
4082 | );
|
---|
4083 |
|
---|
4084 | }
|
---|
4085 |
|
---|
4086 | /*----------------------------------------------------------------------------
|
---|
4087 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
4088 | | less than or equal to the corresponding value `b', and 0 otherwise. The
|
---|
4089 | | comparison is performed according to the IEC/IEEE Standard for Binary
|
---|
4090 | | Floating-Point Arithmetic.
|
---|
4091 | *----------------------------------------------------------------------------*/
|
---|
4092 |
|
---|
4093 | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4094 | {
|
---|
4095 | flag aSign, bSign;
|
---|
4096 |
|
---|
4097 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4098 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4099 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4100 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4101 | ) {
|
---|
4102 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4103 | return 0;
|
---|
4104 | }
|
---|
4105 | aSign = extractFloatx80Sign( a );
|
---|
4106 | bSign = extractFloatx80Sign( b );
|
---|
4107 | if ( aSign != bSign ) {
|
---|
4108 | return
|
---|
4109 | aSign
|
---|
4110 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4111 | == 0 );
|
---|
4112 | }
|
---|
4113 | return
|
---|
4114 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
4115 | : le128( a.high, a.low, b.high, b.low );
|
---|
4116 |
|
---|
4117 | }
|
---|
4118 |
|
---|
4119 | /*----------------------------------------------------------------------------
|
---|
4120 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
4121 | | less than the corresponding value `b', and 0 otherwise. The comparison
|
---|
4122 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4123 | | Arithmetic.
|
---|
4124 | *----------------------------------------------------------------------------*/
|
---|
4125 |
|
---|
4126 | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4127 | {
|
---|
4128 | flag aSign, bSign;
|
---|
4129 |
|
---|
4130 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4131 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4132 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4133 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4134 | ) {
|
---|
4135 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4136 | return 0;
|
---|
4137 | }
|
---|
4138 | aSign = extractFloatx80Sign( a );
|
---|
4139 | bSign = extractFloatx80Sign( b );
|
---|
4140 | if ( aSign != bSign ) {
|
---|
4141 | return
|
---|
4142 | aSign
|
---|
4143 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4144 | != 0 );
|
---|
4145 | }
|
---|
4146 | return
|
---|
4147 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
4148 | : lt128( a.high, a.low, b.high, b.low );
|
---|
4149 |
|
---|
4150 | }
|
---|
4151 |
|
---|
4152 | /*----------------------------------------------------------------------------
|
---|
4153 | | Returns 1 if the extended double-precision floating-point value `a' is equal
|
---|
4154 | | to the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
4155 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
4156 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4157 | *----------------------------------------------------------------------------*/
|
---|
4158 |
|
---|
4159 | int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4160 | {
|
---|
4161 |
|
---|
4162 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4163 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4164 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4165 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4166 | ) {
|
---|
4167 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4168 | return 0;
|
---|
4169 | }
|
---|
4170 | return
|
---|
4171 | ( a.low == b.low )
|
---|
4172 | && ( ( a.high == b.high )
|
---|
4173 | || ( ( a.low == 0 )
|
---|
4174 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
4175 | );
|
---|
4176 |
|
---|
4177 | }
|
---|
4178 |
|
---|
4179 | /*----------------------------------------------------------------------------
|
---|
4180 | | Returns 1 if the extended double-precision floating-point value `a' is less
|
---|
4181 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
|
---|
4182 | | do not cause an exception. Otherwise, the comparison is performed according
|
---|
4183 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4184 | *----------------------------------------------------------------------------*/
|
---|
4185 |
|
---|
4186 | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4187 | {
|
---|
4188 | flag aSign, bSign;
|
---|
4189 |
|
---|
4190 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4191 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4192 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4193 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4194 | ) {
|
---|
4195 | if ( floatx80_is_signaling_nan( a )
|
---|
4196 | || floatx80_is_signaling_nan( b ) ) {
|
---|
4197 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4198 | }
|
---|
4199 | return 0;
|
---|
4200 | }
|
---|
4201 | aSign = extractFloatx80Sign( a );
|
---|
4202 | bSign = extractFloatx80Sign( b );
|
---|
4203 | if ( aSign != bSign ) {
|
---|
4204 | return
|
---|
4205 | aSign
|
---|
4206 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4207 | == 0 );
|
---|
4208 | }
|
---|
4209 | return
|
---|
4210 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
4211 | : le128( a.high, a.low, b.high, b.low );
|
---|
4212 |
|
---|
4213 | }
|
---|
4214 |
|
---|
4215 | /*----------------------------------------------------------------------------
|
---|
4216 | | Returns 1 if the extended double-precision floating-point value `a' is less
|
---|
4217 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
|
---|
4218 | | an exception. Otherwise, the comparison is performed according to the
|
---|
4219 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4220 | *----------------------------------------------------------------------------*/
|
---|
4221 |
|
---|
4222 | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4223 | {
|
---|
4224 | flag aSign, bSign;
|
---|
4225 |
|
---|
4226 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4227 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4228 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4229 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4230 | ) {
|
---|
4231 | if ( floatx80_is_signaling_nan( a )
|
---|
4232 | || floatx80_is_signaling_nan( b ) ) {
|
---|
4233 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4234 | }
|
---|
4235 | return 0;
|
---|
4236 | }
|
---|
4237 | aSign = extractFloatx80Sign( a );
|
---|
4238 | bSign = extractFloatx80Sign( b );
|
---|
4239 | if ( aSign != bSign ) {
|
---|
4240 | return
|
---|
4241 | aSign
|
---|
4242 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4243 | != 0 );
|
---|
4244 | }
|
---|
4245 | return
|
---|
4246 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
4247 | : lt128( a.high, a.low, b.high, b.low );
|
---|
4248 |
|
---|
4249 | }
|
---|
4250 |
|
---|
4251 | #endif
|
---|
4252 |
|
---|
4253 | #ifdef FLOAT128
|
---|
4254 |
|
---|
4255 | /*----------------------------------------------------------------------------
|
---|
4256 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4257 | | value `a' to the 32-bit two's complement integer format. The conversion
|
---|
4258 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4259 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
4260 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
4261 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
4262 | | largest integer with the same sign as `a' is returned.
|
---|
4263 | *----------------------------------------------------------------------------*/
|
---|
4264 |
|
---|
4265 | int32 float128_to_int32( float128 a STATUS_PARAM )
|
---|
4266 | {
|
---|
4267 | flag aSign;
|
---|
4268 | int32 aExp, shiftCount;
|
---|
4269 | bits64 aSig0, aSig1;
|
---|
4270 |
|
---|
4271 | aSig1 = extractFloat128Frac1( a );
|
---|
4272 | aSig0 = extractFloat128Frac0( a );
|
---|
4273 | aExp = extractFloat128Exp( a );
|
---|
4274 | aSign = extractFloat128Sign( a );
|
---|
4275 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
---|
4276 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4277 | aSig0 |= ( aSig1 != 0 );
|
---|
4278 | shiftCount = 0x4028 - aExp;
|
---|
4279 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
|
---|
4280 | return roundAndPackInt32( aSign, aSig0 STATUS_VAR );
|
---|
4281 |
|
---|
4282 | }
|
---|
4283 |
|
---|
4284 | /*----------------------------------------------------------------------------
|
---|
4285 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4286 | | value `a' to the 32-bit two's complement integer format. The conversion
|
---|
4287 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4288 | | Arithmetic, except that the conversion is always rounded toward zero. If
|
---|
4289 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
---|
4290 | | conversion overflows, the largest integer with the same sign as `a' is
|
---|
4291 | | returned.
|
---|
4292 | *----------------------------------------------------------------------------*/
|
---|
4293 |
|
---|
4294 | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
|
---|
4295 | {
|
---|
4296 | flag aSign;
|
---|
4297 | int32 aExp, shiftCount;
|
---|
4298 | bits64 aSig0, aSig1, savedASig;
|
---|
4299 | int32 z;
|
---|
4300 |
|
---|
4301 | aSig1 = extractFloat128Frac1( a );
|
---|
4302 | aSig0 = extractFloat128Frac0( a );
|
---|
4303 | aExp = extractFloat128Exp( a );
|
---|
4304 | aSign = extractFloat128Sign( a );
|
---|
4305 | aSig0 |= ( aSig1 != 0 );
|
---|
4306 | if ( 0x401E < aExp ) {
|
---|
4307 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
|
---|
4308 | goto invalid;
|
---|
4309 | }
|
---|
4310 | else if ( aExp < 0x3FFF ) {
|
---|
4311 | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4312 | return 0;
|
---|
4313 | }
|
---|
4314 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4315 | shiftCount = 0x402F - aExp;
|
---|
4316 | savedASig = aSig0;
|
---|
4317 | aSig0 >>= shiftCount;
|
---|
4318 | z = aSig0;
|
---|
4319 | if ( aSign ) z = - z;
|
---|
4320 | if ( ( z < 0 ) ^ aSign ) {
|
---|
4321 | invalid:
|
---|
4322 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4323 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
4324 | }
|
---|
4325 | if ( ( aSig0<<shiftCount ) != savedASig ) {
|
---|
4326 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4327 | }
|
---|
4328 | return z;
|
---|
4329 |
|
---|
4330 | }
|
---|
4331 |
|
---|
4332 | /*----------------------------------------------------------------------------
|
---|
4333 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4334 | | value `a' to the 64-bit two's complement integer format. The conversion
|
---|
4335 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4336 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
4337 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
4338 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
4339 | | largest integer with the same sign as `a' is returned.
|
---|
4340 | *----------------------------------------------------------------------------*/
|
---|
4341 |
|
---|
4342 | int64 float128_to_int64( float128 a STATUS_PARAM )
|
---|
4343 | {
|
---|
4344 | flag aSign;
|
---|
4345 | int32 aExp, shiftCount;
|
---|
4346 | bits64 aSig0, aSig1;
|
---|
4347 |
|
---|
4348 | aSig1 = extractFloat128Frac1( a );
|
---|
4349 | aSig0 = extractFloat128Frac0( a );
|
---|
4350 | aExp = extractFloat128Exp( a );
|
---|
4351 | aSign = extractFloat128Sign( a );
|
---|
4352 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4353 | shiftCount = 0x402F - aExp;
|
---|
4354 | if ( shiftCount <= 0 ) {
|
---|
4355 | if ( 0x403E < aExp ) {
|
---|
4356 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4357 | if ( ! aSign
|
---|
4358 | || ( ( aExp == 0x7FFF )
|
---|
4359 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
|
---|
4360 | )
|
---|
4361 | ) {
|
---|
4362 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
4363 | }
|
---|
4364 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
4365 | }
|
---|
4366 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
|
---|
4367 | }
|
---|
4368 | else {
|
---|
4369 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
|
---|
4370 | }
|
---|
4371 | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );
|
---|
4372 |
|
---|
4373 | }
|
---|
4374 |
|
---|
4375 | /*----------------------------------------------------------------------------
|
---|
4376 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4377 | | value `a' to the 64-bit two's complement integer format. The conversion
|
---|
4378 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4379 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
4380 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
4381 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
4382 | | returned.
|
---|
4383 | *----------------------------------------------------------------------------*/
|
---|
4384 |
|
---|
4385 | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
|
---|
4386 | {
|
---|
4387 | flag aSign;
|
---|
4388 | int32 aExp, shiftCount;
|
---|
4389 | bits64 aSig0, aSig1;
|
---|
4390 | int64 z;
|
---|
4391 |
|
---|
4392 | aSig1 = extractFloat128Frac1( a );
|
---|
4393 | aSig0 = extractFloat128Frac0( a );
|
---|
4394 | aExp = extractFloat128Exp( a );
|
---|
4395 | aSign = extractFloat128Sign( a );
|
---|
4396 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4397 | shiftCount = aExp - 0x402F;
|
---|
4398 | if ( 0 < shiftCount ) {
|
---|
4399 | if ( 0x403E <= aExp ) {
|
---|
4400 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
|
---|
4401 | if ( ( a.high == LIT64( 0xC03E000000000000 ) )
|
---|
4402 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
|
---|
4403 | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4404 | }
|
---|
4405 | else {
|
---|
4406 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4407 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
|
---|
4408 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
4409 | }
|
---|
4410 | }
|
---|
4411 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
4412 | }
|
---|
4413 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
|
---|
4414 | if ( (bits64) ( aSig1<<shiftCount ) ) {
|
---|
4415 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4416 | }
|
---|
4417 | }
|
---|
4418 | else {
|
---|
4419 | if ( aExp < 0x3FFF ) {
|
---|
4420 | if ( aExp | aSig0 | aSig1 ) {
|
---|
4421 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4422 | }
|
---|
4423 | return 0;
|
---|
4424 | }
|
---|
4425 | z = aSig0>>( - shiftCount );
|
---|
4426 | if ( aSig1
|
---|
4427 | || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
|
---|
4428 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4429 | }
|
---|
4430 | }
|
---|
4431 | if ( aSign ) z = - z;
|
---|
4432 | return z;
|
---|
4433 |
|
---|
4434 | }
|
---|
4435 |
|
---|
4436 | /*----------------------------------------------------------------------------
|
---|
4437 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4438 | | value `a' to the single-precision floating-point format. The conversion
|
---|
4439 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4440 | | Arithmetic.
|
---|
4441 | *----------------------------------------------------------------------------*/
|
---|
4442 |
|
---|
4443 | float32 float128_to_float32( float128 a STATUS_PARAM )
|
---|
4444 | {
|
---|
4445 | flag aSign;
|
---|
4446 | int32 aExp;
|
---|
4447 | bits64 aSig0, aSig1;
|
---|
4448 | bits32 zSig;
|
---|
4449 |
|
---|
4450 | aSig1 = extractFloat128Frac1( a );
|
---|
4451 | aSig0 = extractFloat128Frac0( a );
|
---|
4452 | aExp = extractFloat128Exp( a );
|
---|
4453 | aSign = extractFloat128Sign( a );
|
---|
4454 | if ( aExp == 0x7FFF ) {
|
---|
4455 | if ( aSig0 | aSig1 ) {
|
---|
4456 | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4457 | }
|
---|
4458 | return packFloat32( aSign, 0xFF, 0 );
|
---|
4459 | }
|
---|
4460 | aSig0 |= ( aSig1 != 0 );
|
---|
4461 | shift64RightJamming( aSig0, 18, &aSig0 );
|
---|
4462 | zSig = aSig0;
|
---|
4463 | if ( aExp || zSig ) {
|
---|
4464 | zSig |= 0x40000000;
|
---|
4465 | aExp -= 0x3F81;
|
---|
4466 | }
|
---|
4467 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
---|
4468 |
|
---|
4469 | }
|
---|
4470 |
|
---|
4471 | /*----------------------------------------------------------------------------
|
---|
4472 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4473 | | value `a' to the double-precision floating-point format. The conversion
|
---|
4474 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4475 | | Arithmetic.
|
---|
4476 | *----------------------------------------------------------------------------*/
|
---|
4477 |
|
---|
4478 | float64 float128_to_float64( float128 a STATUS_PARAM )
|
---|
4479 | {
|
---|
4480 | flag aSign;
|
---|
4481 | int32 aExp;
|
---|
4482 | bits64 aSig0, aSig1;
|
---|
4483 |
|
---|
4484 | aSig1 = extractFloat128Frac1( a );
|
---|
4485 | aSig0 = extractFloat128Frac0( a );
|
---|
4486 | aExp = extractFloat128Exp( a );
|
---|
4487 | aSign = extractFloat128Sign( a );
|
---|
4488 | if ( aExp == 0x7FFF ) {
|
---|
4489 | if ( aSig0 | aSig1 ) {
|
---|
4490 | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4491 | }
|
---|
4492 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
4493 | }
|
---|
4494 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
---|
4495 | aSig0 |= ( aSig1 != 0 );
|
---|
4496 | if ( aExp || aSig0 ) {
|
---|
4497 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4498 | aExp -= 0x3C01;
|
---|
4499 | }
|
---|
4500 | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );
|
---|
4501 |
|
---|
4502 | }
|
---|
4503 |
|
---|
4504 | #ifdef FLOATX80
|
---|
4505 |
|
---|
4506 | /*----------------------------------------------------------------------------
|
---|
4507 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4508 | | value `a' to the extended double-precision floating-point format. The
|
---|
4509 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
4510 | | Floating-Point Arithmetic.
|
---|
4511 | *----------------------------------------------------------------------------*/
|
---|
4512 |
|
---|
4513 | floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
|
---|
4514 | {
|
---|
4515 | flag aSign;
|
---|
4516 | int32 aExp;
|
---|
4517 | bits64 aSig0, aSig1;
|
---|
4518 |
|
---|
4519 | aSig1 = extractFloat128Frac1( a );
|
---|
4520 | aSig0 = extractFloat128Frac0( a );
|
---|
4521 | aExp = extractFloat128Exp( a );
|
---|
4522 | aSign = extractFloat128Sign( a );
|
---|
4523 | if ( aExp == 0x7FFF ) {
|
---|
4524 | if ( aSig0 | aSig1 ) {
|
---|
4525 | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4526 | }
|
---|
4527 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
4528 | }
|
---|
4529 | if ( aExp == 0 ) {
|
---|
4530 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
4531 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4532 | }
|
---|
4533 | else {
|
---|
4534 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4535 | }
|
---|
4536 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
|
---|
4537 | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );
|
---|
4538 |
|
---|
4539 | }
|
---|
4540 |
|
---|
4541 | #endif
|
---|
4542 |
|
---|
4543 | /*----------------------------------------------------------------------------
|
---|
4544 | | Rounds the quadruple-precision floating-point value `a' to an integer, and
|
---|
4545 | | returns the result as a quadruple-precision floating-point value. The
|
---|
4546 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
4547 | | Floating-Point Arithmetic.
|
---|
4548 | *----------------------------------------------------------------------------*/
|
---|
4549 |
|
---|
4550 | float128 float128_round_to_int( float128 a STATUS_PARAM )
|
---|
4551 | {
|
---|
4552 | flag aSign;
|
---|
4553 | int32 aExp;
|
---|
4554 | bits64 lastBitMask, roundBitsMask;
|
---|
4555 | int8 roundingMode;
|
---|
4556 | float128 z;
|
---|
4557 |
|
---|
4558 | aExp = extractFloat128Exp( a );
|
---|
4559 | if ( 0x402F <= aExp ) {
|
---|
4560 | if ( 0x406F <= aExp ) {
|
---|
4561 | if ( ( aExp == 0x7FFF )
|
---|
4562 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
|
---|
4563 | ) {
|
---|
4564 | return propagateFloat128NaN( a, a STATUS_VAR );
|
---|
4565 | }
|
---|
4566 | return a;
|
---|
4567 | }
|
---|
4568 | lastBitMask = 1;
|
---|
4569 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
|
---|
4570 | roundBitsMask = lastBitMask - 1;
|
---|
4571 | z = a;
|
---|
4572 | roundingMode = STATUS(float_rounding_mode);
|
---|
4573 | if ( roundingMode == float_round_nearest_even ) {
|
---|
4574 | if ( lastBitMask ) {
|
---|
4575 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
|
---|
4576 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
---|
4577 | }
|
---|
4578 | else {
|
---|
4579 | if ( (sbits64) z.low < 0 ) {
|
---|
4580 | ++z.high;
|
---|
4581 | if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
|
---|
4582 | }
|
---|
4583 | }
|
---|
4584 | }
|
---|
4585 | else if ( roundingMode != float_round_to_zero ) {
|
---|
4586 | if ( extractFloat128Sign( z )
|
---|
4587 | ^ ( roundingMode == float_round_up ) ) {
|
---|
4588 | add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
|
---|
4589 | }
|
---|
4590 | }
|
---|
4591 | z.low &= ~ roundBitsMask;
|
---|
4592 | }
|
---|
4593 | else {
|
---|
4594 | if ( aExp < 0x3FFF ) {
|
---|
4595 | if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
|
---|
4596 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4597 | aSign = extractFloat128Sign( a );
|
---|
4598 | switch ( STATUS(float_rounding_mode) ) {
|
---|
4599 | case float_round_nearest_even:
|
---|
4600 | if ( ( aExp == 0x3FFE )
|
---|
4601 | && ( extractFloat128Frac0( a )
|
---|
4602 | | extractFloat128Frac1( a ) )
|
---|
4603 | ) {
|
---|
4604 | return packFloat128( aSign, 0x3FFF, 0, 0 );
|
---|
4605 | }
|
---|
4606 | break;
|
---|
4607 | case float_round_down:
|
---|
4608 | return
|
---|
4609 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
|
---|
4610 | : packFloat128( 0, 0, 0, 0 );
|
---|
4611 | case float_round_up:
|
---|
4612 | return
|
---|
4613 | aSign ? packFloat128( 1, 0, 0, 0 )
|
---|
4614 | : packFloat128( 0, 0x3FFF, 0, 0 );
|
---|
4615 | }
|
---|
4616 | return packFloat128( aSign, 0, 0, 0 );
|
---|
4617 | }
|
---|
4618 | lastBitMask = 1;
|
---|
4619 | lastBitMask <<= 0x402F - aExp;
|
---|
4620 | roundBitsMask = lastBitMask - 1;
|
---|
4621 | z.low = 0;
|
---|
4622 | z.high = a.high;
|
---|
4623 | roundingMode = STATUS(float_rounding_mode);
|
---|
4624 | if ( roundingMode == float_round_nearest_even ) {
|
---|
4625 | z.high += lastBitMask>>1;
|
---|
4626 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
|
---|
4627 | z.high &= ~ lastBitMask;
|
---|
4628 | }
|
---|
4629 | }
|
---|
4630 | else if ( roundingMode != float_round_to_zero ) {
|
---|
4631 | if ( extractFloat128Sign( z )
|
---|
4632 | ^ ( roundingMode == float_round_up ) ) {
|
---|
4633 | z.high |= ( a.low != 0 );
|
---|
4634 | z.high += roundBitsMask;
|
---|
4635 | }
|
---|
4636 | }
|
---|
4637 | z.high &= ~ roundBitsMask;
|
---|
4638 | }
|
---|
4639 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
|
---|
4640 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4641 | }
|
---|
4642 | return z;
|
---|
4643 |
|
---|
4644 | }
|
---|
4645 |
|
---|
4646 | /*----------------------------------------------------------------------------
|
---|
4647 | | Returns the result of adding the absolute values of the quadruple-precision
|
---|
4648 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
4649 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
4650 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
4651 | | Floating-Point Arithmetic.
|
---|
4652 | *----------------------------------------------------------------------------*/
|
---|
4653 |
|
---|
4654 | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
---|
4655 | {
|
---|
4656 | int32 aExp, bExp, zExp;
|
---|
4657 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
---|
4658 | int32 expDiff;
|
---|
4659 |
|
---|
4660 | aSig1 = extractFloat128Frac1( a );
|
---|
4661 | aSig0 = extractFloat128Frac0( a );
|
---|
4662 | aExp = extractFloat128Exp( a );
|
---|
4663 | bSig1 = extractFloat128Frac1( b );
|
---|
4664 | bSig0 = extractFloat128Frac0( b );
|
---|
4665 | bExp = extractFloat128Exp( b );
|
---|
4666 | expDiff = aExp - bExp;
|
---|
4667 | if ( 0 < expDiff ) {
|
---|
4668 | if ( aExp == 0x7FFF ) {
|
---|
4669 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4670 | return a;
|
---|
4671 | }
|
---|
4672 | if ( bExp == 0 ) {
|
---|
4673 | --expDiff;
|
---|
4674 | }
|
---|
4675 | else {
|
---|
4676 | bSig0 |= LIT64( 0x0001000000000000 );
|
---|
4677 | }
|
---|
4678 | shift128ExtraRightJamming(
|
---|
4679 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
|
---|
4680 | zExp = aExp;
|
---|
4681 | }
|
---|
4682 | else if ( expDiff < 0 ) {
|
---|
4683 | if ( bExp == 0x7FFF ) {
|
---|
4684 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4685 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4686 | }
|
---|
4687 | if ( aExp == 0 ) {
|
---|
4688 | ++expDiff;
|
---|
4689 | }
|
---|
4690 | else {
|
---|
4691 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4692 | }
|
---|
4693 | shift128ExtraRightJamming(
|
---|
4694 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
|
---|
4695 | zExp = bExp;
|
---|
4696 | }
|
---|
4697 | else {
|
---|
4698 | if ( aExp == 0x7FFF ) {
|
---|
4699 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
---|
4700 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4701 | }
|
---|
4702 | return a;
|
---|
4703 | }
|
---|
4704 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4705 | if ( aExp == 0 ) {
|
---|
4706 | if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4707 | return packFloat128( zSign, 0, zSig0, zSig1 );
|
---|
4708 | }
|
---|
4709 | zSig2 = 0;
|
---|
4710 | zSig0 |= LIT64( 0x0002000000000000 );
|
---|
4711 | zExp = aExp;
|
---|
4712 | goto shiftRight1;
|
---|
4713 | }
|
---|
4714 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4715 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4716 | --zExp;
|
---|
4717 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
|
---|
4718 | ++zExp;
|
---|
4719 | shiftRight1:
|
---|
4720 | shift128ExtraRightJamming(
|
---|
4721 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
---|
4722 | roundAndPack:
|
---|
4723 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4724 |
|
---|
4725 | }
|
---|
4726 |
|
---|
4727 | /*----------------------------------------------------------------------------
|
---|
4728 | | Returns the result of subtracting the absolute values of the quadruple-
|
---|
4729 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
4730 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
4731 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
4732 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4733 | *----------------------------------------------------------------------------*/
|
---|
4734 |
|
---|
4735 | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
---|
4736 | {
|
---|
4737 | int32 aExp, bExp, zExp;
|
---|
4738 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
---|
4739 | int32 expDiff;
|
---|
4740 | float128 z;
|
---|
4741 |
|
---|
4742 | aSig1 = extractFloat128Frac1( a );
|
---|
4743 | aSig0 = extractFloat128Frac0( a );
|
---|
4744 | aExp = extractFloat128Exp( a );
|
---|
4745 | bSig1 = extractFloat128Frac1( b );
|
---|
4746 | bSig0 = extractFloat128Frac0( b );
|
---|
4747 | bExp = extractFloat128Exp( b );
|
---|
4748 | expDiff = aExp - bExp;
|
---|
4749 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
---|
4750 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
|
---|
4751 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
4752 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
4753 | if ( aExp == 0x7FFF ) {
|
---|
4754 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
---|
4755 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4756 | }
|
---|
4757 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4758 | z.low = float128_default_nan_low;
|
---|
4759 | z.high = float128_default_nan_high;
|
---|
4760 | return z;
|
---|
4761 | }
|
---|
4762 | if ( aExp == 0 ) {
|
---|
4763 | aExp = 1;
|
---|
4764 | bExp = 1;
|
---|
4765 | }
|
---|
4766 | if ( bSig0 < aSig0 ) goto aBigger;
|
---|
4767 | if ( aSig0 < bSig0 ) goto bBigger;
|
---|
4768 | if ( bSig1 < aSig1 ) goto aBigger;
|
---|
4769 | if ( aSig1 < bSig1 ) goto bBigger;
|
---|
4770 | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
|
---|
4771 | bExpBigger:
|
---|
4772 | if ( bExp == 0x7FFF ) {
|
---|
4773 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4774 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
|
---|
4775 | }
|
---|
4776 | if ( aExp == 0 ) {
|
---|
4777 | ++expDiff;
|
---|
4778 | }
|
---|
4779 | else {
|
---|
4780 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4781 | }
|
---|
4782 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
---|
4783 | bSig0 |= LIT64( 0x4000000000000000 );
|
---|
4784 | bBigger:
|
---|
4785 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
---|
4786 | zExp = bExp;
|
---|
4787 | zSign ^= 1;
|
---|
4788 | goto normalizeRoundAndPack;
|
---|
4789 | aExpBigger:
|
---|
4790 | if ( aExp == 0x7FFF ) {
|
---|
4791 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4792 | return a;
|
---|
4793 | }
|
---|
4794 | if ( bExp == 0 ) {
|
---|
4795 | --expDiff;
|
---|
4796 | }
|
---|
4797 | else {
|
---|
4798 | bSig0 |= LIT64( 0x4000000000000000 );
|
---|
4799 | }
|
---|
4800 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
|
---|
4801 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4802 | aBigger:
|
---|
4803 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4804 | zExp = aExp;
|
---|
4805 | normalizeRoundAndPack:
|
---|
4806 | --zExp;
|
---|
4807 | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );
|
---|
4808 |
|
---|
4809 | }
|
---|
4810 |
|
---|
4811 | /*----------------------------------------------------------------------------
|
---|
4812 | | Returns the result of adding the quadruple-precision floating-point values
|
---|
4813 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
4814 | | for Binary Floating-Point Arithmetic.
|
---|
4815 | *----------------------------------------------------------------------------*/
|
---|
4816 |
|
---|
4817 | float128 float128_add( float128 a, float128 b STATUS_PARAM )
|
---|
4818 | {
|
---|
4819 | flag aSign, bSign;
|
---|
4820 |
|
---|
4821 | aSign = extractFloat128Sign( a );
|
---|
4822 | bSign = extractFloat128Sign( b );
|
---|
4823 | if ( aSign == bSign ) {
|
---|
4824 | return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4825 | }
|
---|
4826 | else {
|
---|
4827 | return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4828 | }
|
---|
4829 |
|
---|
4830 | }
|
---|
4831 |
|
---|
4832 | /*----------------------------------------------------------------------------
|
---|
4833 | | Returns the result of subtracting the quadruple-precision floating-point
|
---|
4834 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
4835 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4836 | *----------------------------------------------------------------------------*/
|
---|
4837 |
|
---|
4838 | float128 float128_sub( float128 a, float128 b STATUS_PARAM )
|
---|
4839 | {
|
---|
4840 | flag aSign, bSign;
|
---|
4841 |
|
---|
4842 | aSign = extractFloat128Sign( a );
|
---|
4843 | bSign = extractFloat128Sign( b );
|
---|
4844 | if ( aSign == bSign ) {
|
---|
4845 | return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4846 | }
|
---|
4847 | else {
|
---|
4848 | return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4849 | }
|
---|
4850 |
|
---|
4851 | }
|
---|
4852 |
|
---|
4853 | /*----------------------------------------------------------------------------
|
---|
4854 | | Returns the result of multiplying the quadruple-precision floating-point
|
---|
4855 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
4856 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4857 | *----------------------------------------------------------------------------*/
|
---|
4858 |
|
---|
4859 | float128 float128_mul( float128 a, float128 b STATUS_PARAM )
|
---|
4860 | {
|
---|
4861 | flag aSign, bSign, zSign;
|
---|
4862 | int32 aExp, bExp, zExp;
|
---|
4863 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
---|
4864 | float128 z;
|
---|
4865 |
|
---|
4866 | aSig1 = extractFloat128Frac1( a );
|
---|
4867 | aSig0 = extractFloat128Frac0( a );
|
---|
4868 | aExp = extractFloat128Exp( a );
|
---|
4869 | aSign = extractFloat128Sign( a );
|
---|
4870 | bSig1 = extractFloat128Frac1( b );
|
---|
4871 | bSig0 = extractFloat128Frac0( b );
|
---|
4872 | bExp = extractFloat128Exp( b );
|
---|
4873 | bSign = extractFloat128Sign( b );
|
---|
4874 | zSign = aSign ^ bSign;
|
---|
4875 | if ( aExp == 0x7FFF ) {
|
---|
4876 | if ( ( aSig0 | aSig1 )
|
---|
4877 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
---|
4878 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4879 | }
|
---|
4880 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
|
---|
4881 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4882 | }
|
---|
4883 | if ( bExp == 0x7FFF ) {
|
---|
4884 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4885 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
---|
4886 | invalid:
|
---|
4887 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4888 | z.low = float128_default_nan_low;
|
---|
4889 | z.high = float128_default_nan_high;
|
---|
4890 | return z;
|
---|
4891 | }
|
---|
4892 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4893 | }
|
---|
4894 | if ( aExp == 0 ) {
|
---|
4895 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4896 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4897 | }
|
---|
4898 | if ( bExp == 0 ) {
|
---|
4899 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4900 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
4901 | }
|
---|
4902 | zExp = aExp + bExp - 0x4000;
|
---|
4903 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4904 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
|
---|
4905 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
|
---|
4906 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
---|
4907 | zSig2 |= ( zSig3 != 0 );
|
---|
4908 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
|
---|
4909 | shift128ExtraRightJamming(
|
---|
4910 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
---|
4911 | ++zExp;
|
---|
4912 | }
|
---|
4913 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4914 |
|
---|
4915 | }
|
---|
4916 |
|
---|
4917 | /*----------------------------------------------------------------------------
|
---|
4918 | | Returns the result of dividing the quadruple-precision floating-point value
|
---|
4919 | | `a' by the corresponding value `b'. The operation is performed according to
|
---|
4920 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4921 | *----------------------------------------------------------------------------*/
|
---|
4922 |
|
---|
4923 | float128 float128_div( float128 a, float128 b STATUS_PARAM )
|
---|
4924 | {
|
---|
4925 | flag aSign, bSign, zSign;
|
---|
4926 | int32 aExp, bExp, zExp;
|
---|
4927 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
---|
4928 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
4929 | float128 z;
|
---|
4930 |
|
---|
4931 | aSig1 = extractFloat128Frac1( a );
|
---|
4932 | aSig0 = extractFloat128Frac0( a );
|
---|
4933 | aExp = extractFloat128Exp( a );
|
---|
4934 | aSign = extractFloat128Sign( a );
|
---|
4935 | bSig1 = extractFloat128Frac1( b );
|
---|
4936 | bSig0 = extractFloat128Frac0( b );
|
---|
4937 | bExp = extractFloat128Exp( b );
|
---|
4938 | bSign = extractFloat128Sign( b );
|
---|
4939 | zSign = aSign ^ bSign;
|
---|
4940 | if ( aExp == 0x7FFF ) {
|
---|
4941 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4942 | if ( bExp == 0x7FFF ) {
|
---|
4943 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4944 | goto invalid;
|
---|
4945 | }
|
---|
4946 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4947 | }
|
---|
4948 | if ( bExp == 0x7FFF ) {
|
---|
4949 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4950 | return packFloat128( zSign, 0, 0, 0 );
|
---|
4951 | }
|
---|
4952 | if ( bExp == 0 ) {
|
---|
4953 | if ( ( bSig0 | bSig1 ) == 0 ) {
|
---|
4954 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
---|
4955 | invalid:
|
---|
4956 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4957 | z.low = float128_default_nan_low;
|
---|
4958 | z.high = float128_default_nan_high;
|
---|
4959 | return z;
|
---|
4960 | }
|
---|
4961 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
4962 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4963 | }
|
---|
4964 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
4965 | }
|
---|
4966 | if ( aExp == 0 ) {
|
---|
4967 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4968 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4969 | }
|
---|
4970 | zExp = aExp - bExp + 0x3FFD;
|
---|
4971 | shortShift128Left(
|
---|
4972 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
|
---|
4973 | shortShift128Left(
|
---|
4974 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
---|
4975 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
|
---|
4976 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
|
---|
4977 | ++zExp;
|
---|
4978 | }
|
---|
4979 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
4980 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
|
---|
4981 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
|
---|
4982 | while ( (sbits64) rem0 < 0 ) {
|
---|
4983 | --zSig0;
|
---|
4984 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
|
---|
4985 | }
|
---|
4986 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
|
---|
4987 | if ( ( zSig1 & 0x3FFF ) <= 4 ) {
|
---|
4988 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
|
---|
4989 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4990 | while ( (sbits64) rem1 < 0 ) {
|
---|
4991 | --zSig1;
|
---|
4992 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
|
---|
4993 | }
|
---|
4994 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
4995 | }
|
---|
4996 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
|
---|
4997 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4998 |
|
---|
4999 | }
|
---|
5000 |
|
---|
5001 | /*----------------------------------------------------------------------------
|
---|
5002 | | Returns the remainder of the quadruple-precision floating-point value `a'
|
---|
5003 | | with respect to the corresponding value `b'. The operation is performed
|
---|
5004 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5005 | *----------------------------------------------------------------------------*/
|
---|
5006 |
|
---|
5007 | float128 float128_rem( float128 a, float128 b STATUS_PARAM )
|
---|
5008 | {
|
---|
5009 | flag aSign, bSign, zSign;
|
---|
5010 | int32 aExp, bExp, expDiff;
|
---|
5011 | bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
|
---|
5012 | bits64 allZero, alternateASig0, alternateASig1, sigMean1;
|
---|
5013 | sbits64 sigMean0;
|
---|
5014 | float128 z;
|
---|
5015 |
|
---|
5016 | aSig1 = extractFloat128Frac1( a );
|
---|
5017 | aSig0 = extractFloat128Frac0( a );
|
---|
5018 | aExp = extractFloat128Exp( a );
|
---|
5019 | aSign = extractFloat128Sign( a );
|
---|
5020 | bSig1 = extractFloat128Frac1( b );
|
---|
5021 | bSig0 = extractFloat128Frac0( b );
|
---|
5022 | bExp = extractFloat128Exp( b );
|
---|
5023 | bSign = extractFloat128Sign( b );
|
---|
5024 | if ( aExp == 0x7FFF ) {
|
---|
5025 | if ( ( aSig0 | aSig1 )
|
---|
5026 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
---|
5027 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
5028 | }
|
---|
5029 | goto invalid;
|
---|
5030 | }
|
---|
5031 | if ( bExp == 0x7FFF ) {
|
---|
5032 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
5033 | return a;
|
---|
5034 | }
|
---|
5035 | if ( bExp == 0 ) {
|
---|
5036 | if ( ( bSig0 | bSig1 ) == 0 ) {
|
---|
5037 | invalid:
|
---|
5038 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5039 | z.low = float128_default_nan_low;
|
---|
5040 | z.high = float128_default_nan_high;
|
---|
5041 | return z;
|
---|
5042 | }
|
---|
5043 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
5044 | }
|
---|
5045 | if ( aExp == 0 ) {
|
---|
5046 | if ( ( aSig0 | aSig1 ) == 0 ) return a;
|
---|
5047 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
5048 | }
|
---|
5049 | expDiff = aExp - bExp;
|
---|
5050 | if ( expDiff < -1 ) return a;
|
---|
5051 | shortShift128Left(
|
---|
5052 | aSig0 | LIT64( 0x0001000000000000 ),
|
---|
5053 | aSig1,
|
---|
5054 | 15 - ( expDiff < 0 ),
|
---|
5055 | &aSig0,
|
---|
5056 | &aSig1
|
---|
5057 | );
|
---|
5058 | shortShift128Left(
|
---|
5059 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
---|
5060 | q = le128( bSig0, bSig1, aSig0, aSig1 );
|
---|
5061 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
---|
5062 | expDiff -= 64;
|
---|
5063 | while ( 0 < expDiff ) {
|
---|
5064 | q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
5065 | q = ( 4 < q ) ? q - 4 : 0;
|
---|
5066 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
---|
5067 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
|
---|
5068 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
|
---|
5069 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
|
---|
5070 | expDiff -= 61;
|
---|
5071 | }
|
---|
5072 | if ( -64 < expDiff ) {
|
---|
5073 | q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
5074 | q = ( 4 < q ) ? q - 4 : 0;
|
---|
5075 | q >>= - expDiff;
|
---|
5076 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
---|
5077 | expDiff += 52;
|
---|
5078 | if ( expDiff < 0 ) {
|
---|
5079 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
---|
5080 | }
|
---|
5081 | else {
|
---|
5082 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
|
---|
5083 | }
|
---|
5084 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
---|
5085 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
|
---|
5086 | }
|
---|
5087 | else {
|
---|
5088 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
|
---|
5089 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
---|
5090 | }
|
---|
5091 | do {
|
---|
5092 | alternateASig0 = aSig0;
|
---|
5093 | alternateASig1 = aSig1;
|
---|
5094 | ++q;
|
---|
5095 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
---|
5096 | } while ( 0 <= (sbits64) aSig0 );
|
---|
5097 | add128(
|
---|
5098 | aSig0, aSig1, alternateASig0, alternateASig1, (bits64 *)&sigMean0, &sigMean1 );
|
---|
5099 | if ( ( sigMean0 < 0 )
|
---|
5100 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
|
---|
5101 | aSig0 = alternateASig0;
|
---|
5102 | aSig1 = alternateASig1;
|
---|
5103 | }
|
---|
5104 | zSign = ( (sbits64) aSig0 < 0 );
|
---|
5105 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
|
---|
5106 | return
|
---|
5107 | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );
|
---|
5108 |
|
---|
5109 | }
|
---|
5110 |
|
---|
5111 | /*----------------------------------------------------------------------------
|
---|
5112 | | Returns the square root of the quadruple-precision floating-point value `a'.
|
---|
5113 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
5114 | | Floating-Point Arithmetic.
|
---|
5115 | *----------------------------------------------------------------------------*/
|
---|
5116 |
|
---|
5117 | float128 float128_sqrt( float128 a STATUS_PARAM )
|
---|
5118 | {
|
---|
5119 | flag aSign;
|
---|
5120 | int32 aExp, zExp;
|
---|
5121 | bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
|
---|
5122 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
5123 | float128 z;
|
---|
5124 |
|
---|
5125 | aSig1 = extractFloat128Frac1( a );
|
---|
5126 | aSig0 = extractFloat128Frac0( a );
|
---|
5127 | aExp = extractFloat128Exp( a );
|
---|
5128 | aSign = extractFloat128Sign( a );
|
---|
5129 | if ( aExp == 0x7FFF ) {
|
---|
5130 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
|
---|
5131 | if ( ! aSign ) return a;
|
---|
5132 | goto invalid;
|
---|
5133 | }
|
---|
5134 | if ( aSign ) {
|
---|
5135 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
|
---|
5136 | invalid:
|
---|
5137 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5138 | z.low = float128_default_nan_low;
|
---|
5139 | z.high = float128_default_nan_high;
|
---|
5140 | return z;
|
---|
5141 | }
|
---|
5142 | if ( aExp == 0 ) {
|
---|
5143 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
5144 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
5145 | }
|
---|
5146 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
|
---|
5147 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
5148 | zSig0 = estimateSqrt32( aExp, aSig0>>17 );
|
---|
5149 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
|
---|
5150 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
---|
5151 | doubleZSig0 = zSig0<<1;
|
---|
5152 | mul64To128( zSig0, zSig0, &term0, &term1 );
|
---|
5153 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
---|
5154 | while ( (sbits64) rem0 < 0 ) {
|
---|
5155 | --zSig0;
|
---|
5156 | doubleZSig0 -= 2;
|
---|
5157 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
---|
5158 | }
|
---|
5159 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
---|
5160 | if ( ( zSig1 & 0x1FFF ) <= 5 ) {
|
---|
5161 | if ( zSig1 == 0 ) zSig1 = 1;
|
---|
5162 | mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
---|
5163 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
5164 | mul64To128( zSig1, zSig1, &term2, &term3 );
|
---|
5165 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
5166 | while ( (sbits64) rem1 < 0 ) {
|
---|
5167 | --zSig1;
|
---|
5168 | shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
---|
5169 | term3 |= 1;
|
---|
5170 | term2 |= doubleZSig0;
|
---|
5171 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
5172 | }
|
---|
5173 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
5174 | }
|
---|
5175 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
|
---|
5176 | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
5177 |
|
---|
5178 | }
|
---|
5179 |
|
---|
5180 | /*----------------------------------------------------------------------------
|
---|
5181 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
---|
5182 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
5183 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5184 | *----------------------------------------------------------------------------*/
|
---|
5185 |
|
---|
5186 | int float128_eq( float128 a, float128 b STATUS_PARAM )
|
---|
5187 | {
|
---|
5188 |
|
---|
5189 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5190 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5191 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5192 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5193 | ) {
|
---|
5194 | if ( float128_is_signaling_nan( a )
|
---|
5195 | || float128_is_signaling_nan( b ) ) {
|
---|
5196 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5197 | }
|
---|
5198 | return 0;
|
---|
5199 | }
|
---|
5200 | return
|
---|
5201 | ( a.low == b.low )
|
---|
5202 | && ( ( a.high == b.high )
|
---|
5203 | || ( ( a.low == 0 )
|
---|
5204 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
5205 | );
|
---|
5206 |
|
---|
5207 | }
|
---|
5208 |
|
---|
5209 | /*----------------------------------------------------------------------------
|
---|
5210 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5211 | | or equal to the corresponding value `b', and 0 otherwise. The comparison
|
---|
5212 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
5213 | | Arithmetic.
|
---|
5214 | *----------------------------------------------------------------------------*/
|
---|
5215 |
|
---|
5216 | int float128_le( float128 a, float128 b STATUS_PARAM )
|
---|
5217 | {
|
---|
5218 | flag aSign, bSign;
|
---|
5219 |
|
---|
5220 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5221 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5222 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5223 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5224 | ) {
|
---|
5225 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5226 | return 0;
|
---|
5227 | }
|
---|
5228 | aSign = extractFloat128Sign( a );
|
---|
5229 | bSign = extractFloat128Sign( b );
|
---|
5230 | if ( aSign != bSign ) {
|
---|
5231 | return
|
---|
5232 | aSign
|
---|
5233 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5234 | == 0 );
|
---|
5235 | }
|
---|
5236 | return
|
---|
5237 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
5238 | : le128( a.high, a.low, b.high, b.low );
|
---|
5239 |
|
---|
5240 | }
|
---|
5241 |
|
---|
5242 | /*----------------------------------------------------------------------------
|
---|
5243 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5244 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
5245 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5246 | *----------------------------------------------------------------------------*/
|
---|
5247 |
|
---|
5248 | int float128_lt( float128 a, float128 b STATUS_PARAM )
|
---|
5249 | {
|
---|
5250 | flag aSign, bSign;
|
---|
5251 |
|
---|
5252 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5253 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5254 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5255 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5256 | ) {
|
---|
5257 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5258 | return 0;
|
---|
5259 | }
|
---|
5260 | aSign = extractFloat128Sign( a );
|
---|
5261 | bSign = extractFloat128Sign( b );
|
---|
5262 | if ( aSign != bSign ) {
|
---|
5263 | return
|
---|
5264 | aSign
|
---|
5265 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5266 | != 0 );
|
---|
5267 | }
|
---|
5268 | return
|
---|
5269 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
5270 | : lt128( a.high, a.low, b.high, b.low );
|
---|
5271 |
|
---|
5272 | }
|
---|
5273 |
|
---|
5274 | /*----------------------------------------------------------------------------
|
---|
5275 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
---|
5276 | | the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
5277 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
5278 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5279 | *----------------------------------------------------------------------------*/
|
---|
5280 |
|
---|
5281 | int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
|
---|
5282 | {
|
---|
5283 |
|
---|
5284 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5285 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5286 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5287 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5288 | ) {
|
---|
5289 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5290 | return 0;
|
---|
5291 | }
|
---|
5292 | return
|
---|
5293 | ( a.low == b.low )
|
---|
5294 | && ( ( a.high == b.high )
|
---|
5295 | || ( ( a.low == 0 )
|
---|
5296 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
5297 | );
|
---|
5298 |
|
---|
5299 | }
|
---|
5300 |
|
---|
5301 | /*----------------------------------------------------------------------------
|
---|
5302 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5303 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
5304 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
5305 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5306 | *----------------------------------------------------------------------------*/
|
---|
5307 |
|
---|
5308 | int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
|
---|
5309 | {
|
---|
5310 | flag aSign, bSign;
|
---|
5311 |
|
---|
5312 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5313 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5314 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5315 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5316 | ) {
|
---|
5317 | if ( float128_is_signaling_nan( a )
|
---|
5318 | || float128_is_signaling_nan( b ) ) {
|
---|
5319 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5320 | }
|
---|
5321 | return 0;
|
---|
5322 | }
|
---|
5323 | aSign = extractFloat128Sign( a );
|
---|
5324 | bSign = extractFloat128Sign( b );
|
---|
5325 | if ( aSign != bSign ) {
|
---|
5326 | return
|
---|
5327 | aSign
|
---|
5328 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5329 | == 0 );
|
---|
5330 | }
|
---|
5331 | return
|
---|
5332 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
5333 | : le128( a.high, a.low, b.high, b.low );
|
---|
5334 |
|
---|
5335 | }
|
---|
5336 |
|
---|
5337 | /*----------------------------------------------------------------------------
|
---|
5338 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5339 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
5340 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
5341 | | Standard for Binary Floating-Point Arithmetic.
|
---|
5342 | *----------------------------------------------------------------------------*/
|
---|
5343 |
|
---|
5344 | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
|
---|
5345 | {
|
---|
5346 | flag aSign, bSign;
|
---|
5347 |
|
---|
5348 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5349 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5350 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5351 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5352 | ) {
|
---|
5353 | if ( float128_is_signaling_nan( a )
|
---|
5354 | || float128_is_signaling_nan( b ) ) {
|
---|
5355 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5356 | }
|
---|
5357 | return 0;
|
---|
5358 | }
|
---|
5359 | aSign = extractFloat128Sign( a );
|
---|
5360 | bSign = extractFloat128Sign( b );
|
---|
5361 | if ( aSign != bSign ) {
|
---|
5362 | return
|
---|
5363 | aSign
|
---|
5364 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5365 | != 0 );
|
---|
5366 | }
|
---|
5367 | return
|
---|
5368 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
5369 | : lt128( a.high, a.low, b.high, b.low );
|
---|
5370 |
|
---|
5371 | }
|
---|
5372 |
|
---|
5373 | #endif
|
---|
5374 |
|
---|
5375 | /* misc functions */
|
---|
5376 | float32 uint32_to_float32( unsigned int a STATUS_PARAM )
|
---|
5377 | {
|
---|
5378 | return int64_to_float32(a STATUS_VAR);
|
---|
5379 | }
|
---|
5380 |
|
---|
5381 | float64 uint32_to_float64( unsigned int a STATUS_PARAM )
|
---|
5382 | {
|
---|
5383 | return int64_to_float64(a STATUS_VAR);
|
---|
5384 | }
|
---|
5385 |
|
---|
5386 | unsigned int float32_to_uint32( float32 a STATUS_PARAM )
|
---|
5387 | {
|
---|
5388 | int64_t v;
|
---|
5389 | unsigned int res;
|
---|
5390 |
|
---|
5391 | v = float32_to_int64(a STATUS_VAR);
|
---|
5392 | if (v < 0) {
|
---|
5393 | res = 0;
|
---|
5394 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5395 | } else if (v > 0xffffffff) {
|
---|
5396 | res = 0xffffffff;
|
---|
5397 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5398 | } else {
|
---|
5399 | res = v;
|
---|
5400 | }
|
---|
5401 | return res;
|
---|
5402 | }
|
---|
5403 |
|
---|
5404 | unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
|
---|
5405 | {
|
---|
5406 | int64_t v;
|
---|
5407 | unsigned int res;
|
---|
5408 |
|
---|
5409 | v = float32_to_int64_round_to_zero(a STATUS_VAR);
|
---|
5410 | if (v < 0) {
|
---|
5411 | res = 0;
|
---|
5412 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5413 | } else if (v > 0xffffffff) {
|
---|
5414 | res = 0xffffffff;
|
---|
5415 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5416 | } else {
|
---|
5417 | res = v;
|
---|
5418 | }
|
---|
5419 | return res;
|
---|
5420 | }
|
---|
5421 |
|
---|
5422 | unsigned int float64_to_uint32( float64 a STATUS_PARAM )
|
---|
5423 | {
|
---|
5424 | int64_t v;
|
---|
5425 | unsigned int res;
|
---|
5426 |
|
---|
5427 | v = float64_to_int64(a STATUS_VAR);
|
---|
5428 | if (v < 0) {
|
---|
5429 | res = 0;
|
---|
5430 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5431 | } else if (v > 0xffffffff) {
|
---|
5432 | res = 0xffffffff;
|
---|
5433 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5434 | } else {
|
---|
5435 | res = v;
|
---|
5436 | }
|
---|
5437 | return res;
|
---|
5438 | }
|
---|
5439 |
|
---|
5440 | unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
|
---|
5441 | {
|
---|
5442 | int64_t v;
|
---|
5443 | unsigned int res;
|
---|
5444 |
|
---|
5445 | v = float64_to_int64_round_to_zero(a STATUS_VAR);
|
---|
5446 | if (v < 0) {
|
---|
5447 | res = 0;
|
---|
5448 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5449 | } else if (v > 0xffffffff) {
|
---|
5450 | res = 0xffffffff;
|
---|
5451 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5452 | } else {
|
---|
5453 | res = v;
|
---|
5454 | }
|
---|
5455 | return res;
|
---|
5456 | }
|
---|
5457 |
|
---|
5458 | /* FIXME: This looks broken. */
|
---|
5459 | uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
|
---|
5460 | {
|
---|
5461 | int64_t v;
|
---|
5462 |
|
---|
5463 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
|
---|
5464 | v += float64_val(a);
|
---|
5465 | v = float64_to_int64(make_float64(v) STATUS_VAR);
|
---|
5466 |
|
---|
5467 | return v - INT64_MIN;
|
---|
5468 | }
|
---|
5469 |
|
---|
5470 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
|
---|
5471 | {
|
---|
5472 | int64_t v;
|
---|
5473 |
|
---|
5474 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
|
---|
5475 | v += float64_val(a);
|
---|
5476 | v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR);
|
---|
5477 |
|
---|
5478 | return v - INT64_MIN;
|
---|
5479 | }
|
---|
5480 |
|
---|
5481 | #define COMPARE(s, nan_exp) \
|
---|
5482 | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
|
---|
5483 | int is_quiet STATUS_PARAM ) \
|
---|
5484 | { \
|
---|
5485 | flag aSign, bSign; \
|
---|
5486 | bits ## s av, bv; \
|
---|
5487 | \
|
---|
5488 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
|
---|
5489 | extractFloat ## s ## Frac( a ) ) || \
|
---|
5490 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
|
---|
5491 | extractFloat ## s ## Frac( b ) )) { \
|
---|
5492 | if (!is_quiet || \
|
---|
5493 | float ## s ## _is_signaling_nan( a ) || \
|
---|
5494 | float ## s ## _is_signaling_nan( b ) ) { \
|
---|
5495 | float_raise( float_flag_invalid STATUS_VAR); \
|
---|
5496 | } \
|
---|
5497 | return float_relation_unordered; \
|
---|
5498 | } \
|
---|
5499 | aSign = extractFloat ## s ## Sign( a ); \
|
---|
5500 | bSign = extractFloat ## s ## Sign( b ); \
|
---|
5501 | av = float ## s ## _val(a); \
|
---|
5502 | bv = float ## s ## _val(b); \
|
---|
5503 | if ( aSign != bSign ) { \
|
---|
5504 | if ( (bits ## s) ( ( av | bv )<<1 ) == 0 ) { \
|
---|
5505 | /* zero case */ \
|
---|
5506 | return float_relation_equal; \
|
---|
5507 | } else { \
|
---|
5508 | return 1 - (2 * aSign); \
|
---|
5509 | } \
|
---|
5510 | } else { \
|
---|
5511 | if (av == bv) { \
|
---|
5512 | return float_relation_equal; \
|
---|
5513 | } else { \
|
---|
5514 | return 1 - 2 * (aSign ^ ( av < bv )); \
|
---|
5515 | } \
|
---|
5516 | } \
|
---|
5517 | } \
|
---|
5518 | \
|
---|
5519 | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \
|
---|
5520 | { \
|
---|
5521 | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \
|
---|
5522 | } \
|
---|
5523 | \
|
---|
5524 | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
|
---|
5525 | { \
|
---|
5526 | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \
|
---|
5527 | }
|
---|
5528 |
|
---|
5529 | COMPARE(32, 0xff)
|
---|
5530 | COMPARE(64, 0x7ff)
|
---|
5531 |
|
---|
5532 | INLINE int float128_compare_internal( float128 a, float128 b,
|
---|
5533 | int is_quiet STATUS_PARAM )
|
---|
5534 | {
|
---|
5535 | flag aSign, bSign;
|
---|
5536 |
|
---|
5537 | if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
|
---|
5538 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
|
---|
5539 | ( ( extractFloat128Exp( b ) == 0x7fff ) &&
|
---|
5540 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
|
---|
5541 | if (!is_quiet ||
|
---|
5542 | float128_is_signaling_nan( a ) ||
|
---|
5543 | float128_is_signaling_nan( b ) ) {
|
---|
5544 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5545 | }
|
---|
5546 | return float_relation_unordered;
|
---|
5547 | }
|
---|
5548 | aSign = extractFloat128Sign( a );
|
---|
5549 | bSign = extractFloat128Sign( b );
|
---|
5550 | if ( aSign != bSign ) {
|
---|
5551 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
|
---|
5552 | /* zero case */
|
---|
5553 | return float_relation_equal;
|
---|
5554 | } else {
|
---|
5555 | return 1 - (2 * aSign);
|
---|
5556 | }
|
---|
5557 | } else {
|
---|
5558 | if (a.low == b.low && a.high == b.high) {
|
---|
5559 | return float_relation_equal;
|
---|
5560 | } else {
|
---|
5561 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
|
---|
5562 | }
|
---|
5563 | }
|
---|
5564 | }
|
---|
5565 |
|
---|
5566 | int float128_compare( float128 a, float128 b STATUS_PARAM )
|
---|
5567 | {
|
---|
5568 | return float128_compare_internal(a, b, 0 STATUS_VAR);
|
---|
5569 | }
|
---|
5570 |
|
---|
5571 | int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
|
---|
5572 | {
|
---|
5573 | return float128_compare_internal(a, b, 1 STATUS_VAR);
|
---|
5574 | }
|
---|
5575 |
|
---|
5576 | /* Multiply A by 2 raised to the power N. */
|
---|
5577 | float32 float32_scalbn( float32 a, int n STATUS_PARAM )
|
---|
5578 | {
|
---|
5579 | flag aSign;
|
---|
5580 | int16 aExp;
|
---|
5581 | bits32 aSig;
|
---|
5582 |
|
---|
5583 | aSig = extractFloat32Frac( a );
|
---|
5584 | aExp = extractFloat32Exp( a );
|
---|
5585 | aSign = extractFloat32Sign( a );
|
---|
5586 |
|
---|
5587 | if ( aExp == 0xFF ) {
|
---|
5588 | return a;
|
---|
5589 | }
|
---|
5590 | if ( aExp != 0 )
|
---|
5591 | aSig |= 0x00800000;
|
---|
5592 | else if ( aSig == 0 )
|
---|
5593 | return a;
|
---|
5594 |
|
---|
5595 | aExp += n - 1;
|
---|
5596 | aSig <<= 7;
|
---|
5597 | return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
|
---|
5598 | }
|
---|
5599 |
|
---|
5600 | float64 float64_scalbn( float64 a, int n STATUS_PARAM )
|
---|
5601 | {
|
---|
5602 | flag aSign;
|
---|
5603 | int16 aExp;
|
---|
5604 | bits64 aSig;
|
---|
5605 |
|
---|
5606 | aSig = extractFloat64Frac( a );
|
---|
5607 | aExp = extractFloat64Exp( a );
|
---|
5608 | aSign = extractFloat64Sign( a );
|
---|
5609 |
|
---|
5610 | if ( aExp == 0x7FF ) {
|
---|
5611 | return a;
|
---|
5612 | }
|
---|
5613 | if ( aExp != 0 )
|
---|
5614 | aSig |= LIT64( 0x0010000000000000 );
|
---|
5615 | else if ( aSig == 0 )
|
---|
5616 | return a;
|
---|
5617 |
|
---|
5618 | aExp += n - 1;
|
---|
5619 | aSig <<= 10;
|
---|
5620 | return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
|
---|
5621 | }
|
---|
5622 |
|
---|
5623 | #ifdef FLOATX80
|
---|
5624 | floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
|
---|
5625 | {
|
---|
5626 | flag aSign;
|
---|
5627 | int16 aExp;
|
---|
5628 | bits64 aSig;
|
---|
5629 |
|
---|
5630 | aSig = extractFloatx80Frac( a );
|
---|
5631 | aExp = extractFloatx80Exp( a );
|
---|
5632 | aSign = extractFloatx80Sign( a );
|
---|
5633 |
|
---|
5634 | if ( aExp == 0x7FF ) {
|
---|
5635 | return a;
|
---|
5636 | }
|
---|
5637 | if (aExp == 0 && aSig == 0)
|
---|
5638 | return a;
|
---|
5639 |
|
---|
5640 | aExp += n;
|
---|
5641 | return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
|
---|
5642 | aSign, aExp, aSig, 0 STATUS_VAR );
|
---|
5643 | }
|
---|
5644 | #endif
|
---|
5645 |
|
---|
5646 | #ifdef FLOAT128
|
---|
5647 | float128 float128_scalbn( float128 a, int n STATUS_PARAM )
|
---|
5648 | {
|
---|
5649 | flag aSign;
|
---|
5650 | int32 aExp;
|
---|
5651 | bits64 aSig0, aSig1;
|
---|
5652 |
|
---|
5653 | aSig1 = extractFloat128Frac1( a );
|
---|
5654 | aSig0 = extractFloat128Frac0( a );
|
---|
5655 | aExp = extractFloat128Exp( a );
|
---|
5656 | aSign = extractFloat128Sign( a );
|
---|
5657 | if ( aExp == 0x7FFF ) {
|
---|
5658 | return a;
|
---|
5659 | }
|
---|
5660 | if ( aExp != 0 )
|
---|
5661 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
5662 | else if ( aSig0 == 0 && aSig1 == 0 )
|
---|
5663 | return a;
|
---|
5664 |
|
---|
5665 | aExp += n - 1;
|
---|
5666 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
|
---|
5667 | STATUS_VAR );
|
---|
5668 |
|
---|
5669 | }
|
---|
5670 | #endif
|
---|