VirtualBox

source: vbox/trunk/src/recompiler/fpu/softfloat.h@ 18023

最後變更 在這個檔案從18023是 1,由 vboxsync 提交於 55 年 前

import

檔案大小: 15.4 KB
 
1/*============================================================================
2
3This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4Package, Release 2b.
5
6Written by John R. Hauser. This work was made possible in part by the
7International Computer Science Institute, located at Suite 600, 1947 Center
8Street, Berkeley, California 94704. Funding was partially provided by the
9National Science Foundation under grant MIP-9311980. The original version
10of this code was written as part of a project to build a fixed-point vector
11processor in collaboration with the University of California at Berkeley,
12overseen by Profs. Nelson Morgan and John Wawrzynek. More information
13is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14arithmetic/SoftFloat.html'.
15
16THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
17been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24
25Derivative works are acceptable, even for commercial purposes, so long as
26(1) the source code for the derivative work includes prominent notice that
27the work is derivative, and (2) the source code includes prominent notice with
28these four paragraphs for those parts of this code that are retained.
29
30=============================================================================*/
31
32#ifndef SOFTFLOAT_H
33#define SOFTFLOAT_H
34
35#include <inttypes.h>
36#include "config.h"
37
38/*----------------------------------------------------------------------------
39| Each of the following `typedef's defines the most convenient type that holds
40| integers of at least as many bits as specified. For example, `uint8' should
41| be the most convenient type that can hold unsigned integers of as many as
42| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
43| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
44| to the same as `int'.
45*----------------------------------------------------------------------------*/
46typedef uint8_t flag;
47typedef uint8_t uint8;
48typedef int8_t int8;
49typedef int uint16;
50typedef int int16;
51typedef unsigned int uint32;
52typedef signed int int32;
53typedef uint64_t uint64;
54typedef int64_t int64;
55
56/*----------------------------------------------------------------------------
57| Each of the following `typedef's defines a type that holds integers
58| of _exactly_ the number of bits specified. For instance, for most
59| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
60| `unsigned short int' and `signed short int' (or `short int'), respectively.
61*----------------------------------------------------------------------------*/
62typedef uint8_t bits8;
63typedef int8_t sbits8;
64typedef uint16_t bits16;
65typedef int16_t sbits16;
66typedef uint32_t bits32;
67typedef int32_t sbits32;
68typedef uint64_t bits64;
69typedef int64_t sbits64;
70
71#define LIT64( a ) a##LL
72#define INLINE static inline
73
74/*----------------------------------------------------------------------------
75| The macro `FLOATX80' must be defined to enable the extended double-precision
76| floating-point format `floatx80'. If this macro is not defined, the
77| `floatx80' type will not be defined, and none of the functions that either
78| input or output the `floatx80' type will be defined. The same applies to
79| the `FLOAT128' macro and the quadruple-precision format `float128'.
80*----------------------------------------------------------------------------*/
81#ifdef CONFIG_SOFTFLOAT
82/* bit exact soft float support */
83#define FLOATX80
84#define FLOAT128
85#else
86/* native float support */
87#if (defined(__i386__) || defined(__x86_64__)) && (!defined(_BSD) || defined(VBOX))
88#define FLOATX80
89#endif
90#endif /* !CONFIG_SOFTFLOAT */
91#if defined(VBOX) && (!defined(FLOATX80) || defined(CONFIG_SOFTFLOAT))
92# error misconfigured
93#endif
94
95#define STATUS_PARAM , float_status *status
96#define STATUS(field) status->field
97#define STATUS_VAR , status
98
99/*----------------------------------------------------------------------------
100| Software IEC/IEEE floating-point ordering relations
101*----------------------------------------------------------------------------*/
102enum {
103 float_relation_less = -1,
104 float_relation_equal = 0,
105 float_relation_greater = 1,
106 float_relation_unordered = 2
107};
108
109#ifdef CONFIG_SOFTFLOAT
110/*----------------------------------------------------------------------------
111| Software IEC/IEEE floating-point types.
112*----------------------------------------------------------------------------*/
113typedef uint32_t float32;
114typedef uint64_t float64;
115#ifdef FLOATX80
116typedef struct {
117 uint64_t low;
118 uint16_t high;
119} floatx80;
120#endif
121#ifdef FLOAT128
122typedef struct {
123#ifdef WORDS_BIGENDIAN
124 uint64_t high, low;
125#else
126 uint64_t low, high;
127#endif
128} float128;
129#endif
130
131/*----------------------------------------------------------------------------
132| Software IEC/IEEE floating-point underflow tininess-detection mode.
133*----------------------------------------------------------------------------*/
134enum {
135 float_tininess_after_rounding = 0,
136 float_tininess_before_rounding = 1
137};
138
139/*----------------------------------------------------------------------------
140| Software IEC/IEEE floating-point rounding mode.
141*----------------------------------------------------------------------------*/
142enum {
143 float_round_nearest_even = 0,
144 float_round_down = 1,
145 float_round_up = 2,
146 float_round_to_zero = 3
147};
148
149/*----------------------------------------------------------------------------
150| Software IEC/IEEE floating-point exception flags.
151*----------------------------------------------------------------------------*/
152enum {
153 float_flag_invalid = 1,
154 float_flag_divbyzero = 4,
155 float_flag_overflow = 8,
156 float_flag_underflow = 16,
157 float_flag_inexact = 32
158};
159
160typedef struct float_status {
161 signed char float_detect_tininess;
162 signed char float_rounding_mode;
163 signed char float_exception_flags;
164#ifdef FLOATX80
165 signed char floatx80_rounding_precision;
166#endif
167} float_status;
168
169void set_float_rounding_mode(int val STATUS_PARAM);
170void set_float_exception_flags(int val STATUS_PARAM);
171INLINE int get_float_exception_flags(float_status *status)
172{
173 return STATUS(float_exception_flags);
174}
175#ifdef FLOATX80
176void set_floatx80_rounding_precision(int val STATUS_PARAM);
177#endif
178
179/*----------------------------------------------------------------------------
180| Routine to raise any or all of the software IEC/IEEE floating-point
181| exception flags.
182*----------------------------------------------------------------------------*/
183void float_raise( int8 flags STATUS_PARAM);
184
185/*----------------------------------------------------------------------------
186| Software IEC/IEEE integer-to-floating-point conversion routines.
187*----------------------------------------------------------------------------*/
188float32 int32_to_float32( int STATUS_PARAM );
189float64 int32_to_float64( int STATUS_PARAM );
190float32 uint32_to_float32( unsigned int STATUS_PARAM );
191float64 uint32_to_float64( unsigned int STATUS_PARAM );
192#ifdef FLOATX80
193floatx80 int32_to_floatx80( int STATUS_PARAM );
194#endif
195#ifdef FLOAT128
196float128 int32_to_float128( int STATUS_PARAM );
197#endif
198float32 int64_to_float32( int64_t STATUS_PARAM );
199float64 int64_to_float64( int64_t STATUS_PARAM );
200#ifdef FLOATX80
201floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
202#endif
203#ifdef FLOAT128
204float128 int64_to_float128( int64_t STATUS_PARAM );
205#endif
206
207/*----------------------------------------------------------------------------
208| Software IEC/IEEE single-precision conversion routines.
209*----------------------------------------------------------------------------*/
210int float32_to_int32( float32 STATUS_PARAM );
211int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
212unsigned int float32_to_uint32( float32 STATUS_PARAM );
213unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
214int64_t float32_to_int64( float32 STATUS_PARAM );
215int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
216float64 float32_to_float64( float32 STATUS_PARAM );
217#ifdef FLOATX80
218floatx80 float32_to_floatx80( float32 STATUS_PARAM );
219#endif
220#ifdef FLOAT128
221float128 float32_to_float128( float32 STATUS_PARAM );
222#endif
223
224/*----------------------------------------------------------------------------
225| Software IEC/IEEE single-precision operations.
226*----------------------------------------------------------------------------*/
227float32 float32_round_to_int( float32 STATUS_PARAM );
228float32 float32_add( float32, float32 STATUS_PARAM );
229float32 float32_sub( float32, float32 STATUS_PARAM );
230float32 float32_mul( float32, float32 STATUS_PARAM );
231float32 float32_div( float32, float32 STATUS_PARAM );
232float32 float32_rem( float32, float32 STATUS_PARAM );
233float32 float32_sqrt( float32 STATUS_PARAM );
234int float32_eq( float32, float32 STATUS_PARAM );
235int float32_le( float32, float32 STATUS_PARAM );
236int float32_lt( float32, float32 STATUS_PARAM );
237int float32_eq_signaling( float32, float32 STATUS_PARAM );
238int float32_le_quiet( float32, float32 STATUS_PARAM );
239int float32_lt_quiet( float32, float32 STATUS_PARAM );
240int float32_compare( float32, float32 STATUS_PARAM );
241int float32_compare_quiet( float32, float32 STATUS_PARAM );
242int float32_is_signaling_nan( float32 );
243int float64_is_nan( float64 a );
244
245INLINE float32 float32_abs(float32 a)
246{
247 return a & 0x7fffffff;
248}
249
250INLINE float32 float32_chs(float32 a)
251{
252 return a ^ 0x80000000;
253}
254
255/*----------------------------------------------------------------------------
256| Software IEC/IEEE double-precision conversion routines.
257*----------------------------------------------------------------------------*/
258int float64_to_int32( float64 STATUS_PARAM );
259int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
260unsigned int float64_to_uint32( float64 STATUS_PARAM );
261unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
262int64_t float64_to_int64( float64 STATUS_PARAM );
263int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
264float32 float64_to_float32( float64 STATUS_PARAM );
265#ifdef FLOATX80
266floatx80 float64_to_floatx80( float64 STATUS_PARAM );
267#endif
268#ifdef FLOAT128
269float128 float64_to_float128( float64 STATUS_PARAM );
270#endif
271
272/*----------------------------------------------------------------------------
273| Software IEC/IEEE double-precision operations.
274*----------------------------------------------------------------------------*/
275float64 float64_round_to_int( float64 STATUS_PARAM );
276float64 float64_trunc_to_int( float64 STATUS_PARAM );
277float64 float64_add( float64, float64 STATUS_PARAM );
278float64 float64_sub( float64, float64 STATUS_PARAM );
279float64 float64_mul( float64, float64 STATUS_PARAM );
280float64 float64_div( float64, float64 STATUS_PARAM );
281float64 float64_rem( float64, float64 STATUS_PARAM );
282float64 float64_sqrt( float64 STATUS_PARAM );
283int float64_eq( float64, float64 STATUS_PARAM );
284int float64_le( float64, float64 STATUS_PARAM );
285int float64_lt( float64, float64 STATUS_PARAM );
286int float64_eq_signaling( float64, float64 STATUS_PARAM );
287int float64_le_quiet( float64, float64 STATUS_PARAM );
288int float64_lt_quiet( float64, float64 STATUS_PARAM );
289int float64_compare( float64, float64 STATUS_PARAM );
290int float64_compare_quiet( float64, float64 STATUS_PARAM );
291int float64_is_signaling_nan( float64 );
292
293INLINE float64 float64_abs(float64 a)
294{
295 return a & 0x7fffffffffffffffLL;
296}
297
298INLINE float64 float64_chs(float64 a)
299{
300 return a ^ 0x8000000000000000LL;
301}
302
303#ifdef FLOATX80
304
305/*----------------------------------------------------------------------------
306| Software IEC/IEEE extended double-precision conversion routines.
307*----------------------------------------------------------------------------*/
308int floatx80_to_int32( floatx80 STATUS_PARAM );
309int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
310int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
311int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
312float32 floatx80_to_float32( floatx80 STATUS_PARAM );
313float64 floatx80_to_float64( floatx80 STATUS_PARAM );
314#ifdef FLOAT128
315float128 floatx80_to_float128( floatx80 STATUS_PARAM );
316#endif
317
318/*----------------------------------------------------------------------------
319| Software IEC/IEEE extended double-precision operations.
320*----------------------------------------------------------------------------*/
321floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
322floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
323floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
324floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
325floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
326floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
327floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
328int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
329int floatx80_le( floatx80, floatx80 STATUS_PARAM );
330int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
331int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
332int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
333int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
334int floatx80_is_signaling_nan( floatx80 );
335
336INLINE floatx80 floatx80_abs(floatx80 a)
337{
338 a.high &= 0x7fff;
339 return a;
340}
341
342INLINE floatx80 floatx80_chs(floatx80 a)
343{
344 a.high ^= 0x8000;
345 return a;
346}
347
348#endif
349
350#ifdef FLOAT128
351
352/*----------------------------------------------------------------------------
353| Software IEC/IEEE quadruple-precision conversion routines.
354*----------------------------------------------------------------------------*/
355int float128_to_int32( float128 STATUS_PARAM );
356int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
357int64_t float128_to_int64( float128 STATUS_PARAM );
358int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
359float32 float128_to_float32( float128 STATUS_PARAM );
360float64 float128_to_float64( float128 STATUS_PARAM );
361#ifdef FLOATX80
362floatx80 float128_to_floatx80( float128 STATUS_PARAM );
363#endif
364
365/*----------------------------------------------------------------------------
366| Software IEC/IEEE quadruple-precision operations.
367*----------------------------------------------------------------------------*/
368float128 float128_round_to_int( float128 STATUS_PARAM );
369float128 float128_add( float128, float128 STATUS_PARAM );
370float128 float128_sub( float128, float128 STATUS_PARAM );
371float128 float128_mul( float128, float128 STATUS_PARAM );
372float128 float128_div( float128, float128 STATUS_PARAM );
373float128 float128_rem( float128, float128 STATUS_PARAM );
374float128 float128_sqrt( float128 STATUS_PARAM );
375int float128_eq( float128, float128 STATUS_PARAM );
376int float128_le( float128, float128 STATUS_PARAM );
377int float128_lt( float128, float128 STATUS_PARAM );
378int float128_eq_signaling( float128, float128 STATUS_PARAM );
379int float128_le_quiet( float128, float128 STATUS_PARAM );
380int float128_lt_quiet( float128, float128 STATUS_PARAM );
381int float128_is_signaling_nan( float128 );
382
383INLINE float128 float128_abs(float128 a)
384{
385 a.high &= 0x7fffffffffffffffLL;
386 return a;
387}
388
389INLINE float128 float128_chs(float128 a)
390{
391 a.high ^= 0x8000000000000000LL;
392 return a;
393}
394
395#endif
396
397#else /* CONFIG_SOFTFLOAT */
398
399#include "softfloat-native.h"
400
401#endif /* !CONFIG_SOFTFLOAT */
402
403#endif /* !SOFTFLOAT_H */
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette