VirtualBox

source: vbox/trunk/src/recompiler_new/cpu-all.h@ 13363

最後變更 在這個檔案從13363是 13230,由 vboxsync 提交於 16 年 前

further new recompiler work

  • 屬性 svn:eol-style 設為 native
檔案大小: 32.7 KB
 
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/*
22 * Sun LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
23 * other than GPL or LGPL is available it will apply instead, Sun elects to use only
24 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
25 * a choice of LGPL license versions is made available with the language indicating
26 * that LGPLv2 or any later version may be used, or where a choice of which version
27 * of the LGPL is applied is otherwise unspecified.
28 */
29#ifndef CPU_ALL_H
30#define CPU_ALL_H
31
32#ifdef VBOX
33# ifndef LOG_GROUP
34# include <VBox/log.h>
35# define LOG_GROUP LOG_GROUP_REM
36# endif
37# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
38#endif
39
40#if defined(__arm__) || defined(__sparc__)
41#define WORDS_ALIGNED
42#endif
43
44/* some important defines:
45 *
46 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
47 * memory accesses.
48 *
49 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
50 * otherwise little endian.
51 *
52 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
53 *
54 * TARGET_WORDS_BIGENDIAN : same for target cpu
55 */
56
57#include "bswap.h"
58
59#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
60#define BSWAP_NEEDED
61#endif
62
63#ifdef BSWAP_NEEDED
64
65static inline uint16_t tswap16(uint16_t s)
66{
67 return bswap16(s);
68}
69
70static inline uint32_t tswap32(uint32_t s)
71{
72 return bswap32(s);
73}
74
75static inline uint64_t tswap64(uint64_t s)
76{
77 return bswap64(s);
78}
79
80static inline void tswap16s(uint16_t *s)
81{
82 *s = bswap16(*s);
83}
84
85static inline void tswap32s(uint32_t *s)
86{
87 *s = bswap32(*s);
88}
89
90static inline void tswap64s(uint64_t *s)
91{
92 *s = bswap64(*s);
93}
94
95#else
96
97static inline uint16_t tswap16(uint16_t s)
98{
99 return s;
100}
101
102static inline uint32_t tswap32(uint32_t s)
103{
104 return s;
105}
106
107static inline uint64_t tswap64(uint64_t s)
108{
109 return s;
110}
111
112static inline void tswap16s(uint16_t *s)
113{
114}
115
116static inline void tswap32s(uint32_t *s)
117{
118}
119
120static inline void tswap64s(uint64_t *s)
121{
122}
123
124#endif
125
126#if TARGET_LONG_SIZE == 4
127#define tswapl(s) tswap32(s)
128#define tswapls(s) tswap32s((uint32_t *)(s))
129#define bswaptls(s) bswap32s(s)
130#else
131#define tswapl(s) tswap64(s)
132#define tswapls(s) tswap64s((uint64_t *)(s))
133#define bswaptls(s) bswap64s(s)
134#endif
135
136typedef union {
137 float32 f;
138 uint32_t l;
139} CPU_FloatU;
140
141/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
142 endian ! */
143typedef union {
144 float64 d;
145#if defined(WORDS_BIGENDIAN) \
146 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147 struct {
148 uint32_t upper;
149 uint32_t lower;
150 } l;
151#else
152 struct {
153 uint32_t lower;
154 uint32_t upper;
155 } l;
156#endif
157 uint64_t ll;
158} CPU_DoubleU;
159
160#ifdef TARGET_SPARC
161typedef union {
162 float128 q;
163#if defined(WORDS_BIGENDIAN) \
164 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
165 struct {
166 uint32_t upmost;
167 uint32_t upper;
168 uint32_t lower;
169 uint32_t lowest;
170 } l;
171 struct {
172 uint64_t upper;
173 uint64_t lower;
174 } ll;
175#else
176 struct {
177 uint32_t lowest;
178 uint32_t lower;
179 uint32_t upper;
180 uint32_t upmost;
181 } l;
182 struct {
183 uint64_t lower;
184 uint64_t upper;
185 } ll;
186#endif
187} CPU_QuadU;
188#endif
189
190/* CPU memory access without any memory or io remapping */
191
192/*
193 * the generic syntax for the memory accesses is:
194 *
195 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
196 *
197 * store: st{type}{size}{endian}_{access_type}(ptr, val)
198 *
199 * type is:
200 * (empty): integer access
201 * f : float access
202 *
203 * sign is:
204 * (empty): for floats or 32 bit size
205 * u : unsigned
206 * s : signed
207 *
208 * size is:
209 * b: 8 bits
210 * w: 16 bits
211 * l: 32 bits
212 * q: 64 bits
213 *
214 * endian is:
215 * (empty): target cpu endianness or 8 bit access
216 * r : reversed target cpu endianness (not implemented yet)
217 * be : big endian (not implemented yet)
218 * le : little endian (not implemented yet)
219 *
220 * access_type is:
221 * raw : host memory access
222 * user : user mode access using soft MMU
223 * kernel : kernel mode access using soft MMU
224 */
225#ifdef VBOX
226
227void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb);
228uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys);
229int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys);
230uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys);
231int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys);
232uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys);
233int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys);
234uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys);
235int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys);
236void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb);
237void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val);
238void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val);
239void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val);
240void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val);
241
242#ifndef VBOX_WITH_NEW_PHYS_CODE
243void remR3GrowDynRange(unsigned long physaddr);
244#endif
245#if 0 /*defined(RT_ARCH_AMD64) && defined(VBOX_STRICT)*/
246# define VBOX_CHECK_ADDR(ptr) do { if ((uintptr_t)(ptr) >= _4G) __asm__("int3"); } while (0)
247#else
248# define VBOX_CHECK_ADDR(ptr) do { } while (0)
249#endif
250
251static inline int ldub_p(void *ptr)
252{
253 VBOX_CHECK_ADDR(ptr);
254 return remR3PhysReadU8((uintptr_t)ptr);
255}
256
257static inline int ldsb_p(void *ptr)
258{
259 VBOX_CHECK_ADDR(ptr);
260 return remR3PhysReadS8((uintptr_t)ptr);
261}
262
263static inline void stb_p(void *ptr, int v)
264{
265 VBOX_CHECK_ADDR(ptr);
266 remR3PhysWriteU8((uintptr_t)ptr, v);
267}
268
269static inline int lduw_le_p(void *ptr)
270{
271 VBOX_CHECK_ADDR(ptr);
272 return remR3PhysReadU16((uintptr_t)ptr);
273}
274
275static inline int ldsw_le_p(void *ptr)
276{
277 VBOX_CHECK_ADDR(ptr);
278 return remR3PhysReadS16((uintptr_t)ptr);
279}
280
281static inline void stw_le_p(void *ptr, int v)
282{
283 VBOX_CHECK_ADDR(ptr);
284 remR3PhysWriteU16((uintptr_t)ptr, v);
285}
286
287static inline int ldl_le_p(void *ptr)
288{
289 VBOX_CHECK_ADDR(ptr);
290 return remR3PhysReadU32((uintptr_t)ptr);
291}
292
293static inline void stl_le_p(void *ptr, int v)
294{
295 VBOX_CHECK_ADDR(ptr);
296 remR3PhysWriteU32((uintptr_t)ptr, v);
297}
298
299static inline void stq_le_p(void *ptr, uint64_t v)
300{
301 VBOX_CHECK_ADDR(ptr);
302 remR3PhysWriteU64((uintptr_t)ptr, v);
303}
304
305static inline uint64_t ldq_le_p(void *ptr)
306{
307 VBOX_CHECK_ADDR(ptr);
308 return remR3PhysReadU64((uintptr_t)ptr);
309}
310
311#undef VBOX_CHECK_ADDR
312
313/* float access */
314
315static inline float32 ldfl_le_p(void *ptr)
316{
317 union {
318 float32 f;
319 uint32_t i;
320 } u;
321 u.i = ldl_le_p(ptr);
322 return u.f;
323}
324
325static inline void stfl_le_p(void *ptr, float32 v)
326{
327 union {
328 float32 f;
329 uint32_t i;
330 } u;
331 u.f = v;
332 stl_le_p(ptr, u.i);
333}
334
335static inline float64 ldfq_le_p(void *ptr)
336{
337 CPU_DoubleU u;
338 u.l.lower = ldl_le_p(ptr);
339 u.l.upper = ldl_le_p(ptr + 4);
340 return u.d;
341}
342
343static inline void stfq_le_p(void *ptr, float64 v)
344{
345 CPU_DoubleU u;
346 u.d = v;
347 stl_le_p(ptr, u.l.lower);
348 stl_le_p(ptr + 4, u.l.upper);
349}
350
351#else /* !VBOX */
352
353static inline int ldub_p(void *ptr)
354{
355 return *(uint8_t *)ptr;
356}
357
358static inline int ldsb_p(void *ptr)
359{
360 return *(int8_t *)ptr;
361}
362
363static inline void stb_p(void *ptr, int v)
364{
365 *(uint8_t *)ptr = v;
366}
367
368/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
369 kernel handles unaligned load/stores may give better results, but
370 it is a system wide setting : bad */
371#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
372
373/* conservative code for little endian unaligned accesses */
374static inline int lduw_le_p(void *ptr)
375{
376#ifdef __powerpc__
377 int val;
378 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
379 return val;
380#else
381 uint8_t *p = ptr;
382 return p[0] | (p[1] << 8);
383#endif
384}
385
386static inline int ldsw_le_p(void *ptr)
387{
388#ifdef __powerpc__
389 int val;
390 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
391 return (int16_t)val;
392#else
393 uint8_t *p = ptr;
394 return (int16_t)(p[0] | (p[1] << 8));
395#endif
396}
397
398static inline int ldl_le_p(void *ptr)
399{
400#ifdef __powerpc__
401 int val;
402 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
403 return val;
404#else
405 uint8_t *p = ptr;
406 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
407#endif
408}
409
410static inline uint64_t ldq_le_p(void *ptr)
411{
412 uint8_t *p = ptr;
413 uint32_t v1, v2;
414 v1 = ldl_le_p(p);
415 v2 = ldl_le_p(p + 4);
416 return v1 | ((uint64_t)v2 << 32);
417}
418
419static inline void stw_le_p(void *ptr, int v)
420{
421#ifdef __powerpc__
422 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
423#else
424 uint8_t *p = ptr;
425 p[0] = v;
426 p[1] = v >> 8;
427#endif
428}
429
430static inline void stl_le_p(void *ptr, int v)
431{
432#ifdef __powerpc__
433 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
434#else
435 uint8_t *p = ptr;
436 p[0] = v;
437 p[1] = v >> 8;
438 p[2] = v >> 16;
439 p[3] = v >> 24;
440#endif
441}
442
443static inline void stq_le_p(void *ptr, uint64_t v)
444{
445 uint8_t *p = ptr;
446 stl_le_p(p, (uint32_t)v);
447 stl_le_p(p + 4, v >> 32);
448}
449
450/* float access */
451
452static inline float32 ldfl_le_p(void *ptr)
453{
454 union {
455 float32 f;
456 uint32_t i;
457 } u;
458 u.i = ldl_le_p(ptr);
459 return u.f;
460}
461
462static inline void stfl_le_p(void *ptr, float32 v)
463{
464 union {
465 float32 f;
466 uint32_t i;
467 } u;
468 u.f = v;
469 stl_le_p(ptr, u.i);
470}
471
472static inline float64 ldfq_le_p(void *ptr)
473{
474 CPU_DoubleU u;
475 u.l.lower = ldl_le_p(ptr);
476 u.l.upper = ldl_le_p(ptr + 4);
477 return u.d;
478}
479
480static inline void stfq_le_p(void *ptr, float64 v)
481{
482 CPU_DoubleU u;
483 u.d = v;
484 stl_le_p(ptr, u.l.lower);
485 stl_le_p(ptr + 4, u.l.upper);
486}
487
488#else
489
490static inline int lduw_le_p(void *ptr)
491{
492 return *(uint16_t *)ptr;
493}
494
495static inline int ldsw_le_p(void *ptr)
496{
497 return *(int16_t *)ptr;
498}
499
500static inline int ldl_le_p(void *ptr)
501{
502 return *(uint32_t *)ptr;
503}
504
505static inline uint64_t ldq_le_p(void *ptr)
506{
507 return *(uint64_t *)ptr;
508}
509
510static inline void stw_le_p(void *ptr, int v)
511{
512 *(uint16_t *)ptr = v;
513}
514
515static inline void stl_le_p(void *ptr, int v)
516{
517 *(uint32_t *)ptr = v;
518}
519
520static inline void stq_le_p(void *ptr, uint64_t v)
521{
522 *(uint64_t *)ptr = v;
523}
524
525/* float access */
526
527static inline float32 ldfl_le_p(void *ptr)
528{
529 return *(float32 *)ptr;
530}
531
532static inline float64 ldfq_le_p(void *ptr)
533{
534 return *(float64 *)ptr;
535}
536
537static inline void stfl_le_p(void *ptr, float32 v)
538{
539 *(float32 *)ptr = v;
540}
541
542static inline void stfq_le_p(void *ptr, float64 v)
543{
544 *(float64 *)ptr = v;
545}
546#endif
547#endif /* !VBOX */
548
549#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
550
551static inline int lduw_be_p(void *ptr)
552{
553#if defined(__i386__)
554 int val;
555 asm volatile ("movzwl %1, %0\n"
556 "xchgb %b0, %h0\n"
557 : "=q" (val)
558 : "m" (*(uint16_t *)ptr));
559 return val;
560#else
561 uint8_t *b = (uint8_t *) ptr;
562 return ((b[0] << 8) | b[1]);
563#endif
564}
565
566static inline int ldsw_be_p(void *ptr)
567{
568#if defined(__i386__)
569 int val;
570 asm volatile ("movzwl %1, %0\n"
571 "xchgb %b0, %h0\n"
572 : "=q" (val)
573 : "m" (*(uint16_t *)ptr));
574 return (int16_t)val;
575#else
576 uint8_t *b = (uint8_t *) ptr;
577 return (int16_t)((b[0] << 8) | b[1]);
578#endif
579}
580
581static inline int ldl_be_p(void *ptr)
582{
583#if defined(__i386__) || defined(__x86_64__)
584 int val;
585 asm volatile ("movl %1, %0\n"
586 "bswap %0\n"
587 : "=r" (val)
588 : "m" (*(uint32_t *)ptr));
589 return val;
590#else
591 uint8_t *b = (uint8_t *) ptr;
592 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
593#endif
594}
595
596static inline uint64_t ldq_be_p(void *ptr)
597{
598 uint32_t a,b;
599 a = ldl_be_p(ptr);
600 b = ldl_be_p(ptr+4);
601 return (((uint64_t)a<<32)|b);
602}
603
604static inline void stw_be_p(void *ptr, int v)
605{
606#if defined(__i386__)
607 asm volatile ("xchgb %b0, %h0\n"
608 "movw %w0, %1\n"
609 : "=q" (v)
610 : "m" (*(uint16_t *)ptr), "0" (v));
611#else
612 uint8_t *d = (uint8_t *) ptr;
613 d[0] = v >> 8;
614 d[1] = v;
615#endif
616}
617
618static inline void stl_be_p(void *ptr, int v)
619{
620#if defined(__i386__) || defined(__x86_64__)
621 asm volatile ("bswap %0\n"
622 "movl %0, %1\n"
623 : "=r" (v)
624 : "m" (*(uint32_t *)ptr), "0" (v));
625#else
626 uint8_t *d = (uint8_t *) ptr;
627 d[0] = v >> 24;
628 d[1] = v >> 16;
629 d[2] = v >> 8;
630 d[3] = v;
631#endif
632}
633
634static inline void stq_be_p(void *ptr, uint64_t v)
635{
636 stl_be_p(ptr, v >> 32);
637 stl_be_p(ptr + 4, v);
638}
639
640/* float access */
641
642static inline float32 ldfl_be_p(void *ptr)
643{
644 union {
645 float32 f;
646 uint32_t i;
647 } u;
648 u.i = ldl_be_p(ptr);
649 return u.f;
650}
651
652static inline void stfl_be_p(void *ptr, float32 v)
653{
654 union {
655 float32 f;
656 uint32_t i;
657 } u;
658 u.f = v;
659 stl_be_p(ptr, u.i);
660}
661
662static inline float64 ldfq_be_p(void *ptr)
663{
664 CPU_DoubleU u;
665 u.l.upper = ldl_be_p(ptr);
666 u.l.lower = ldl_be_p(ptr + 4);
667 return u.d;
668}
669
670static inline void stfq_be_p(void *ptr, float64 v)
671{
672 CPU_DoubleU u;
673 u.d = v;
674 stl_be_p(ptr, u.l.upper);
675 stl_be_p(ptr + 4, u.l.lower);
676}
677
678#else
679
680static inline int lduw_be_p(void *ptr)
681{
682 return *(uint16_t *)ptr;
683}
684
685static inline int ldsw_be_p(void *ptr)
686{
687 return *(int16_t *)ptr;
688}
689
690static inline int ldl_be_p(void *ptr)
691{
692 return *(uint32_t *)ptr;
693}
694
695static inline uint64_t ldq_be_p(void *ptr)
696{
697 return *(uint64_t *)ptr;
698}
699
700static inline void stw_be_p(void *ptr, int v)
701{
702 *(uint16_t *)ptr = v;
703}
704
705static inline void stl_be_p(void *ptr, int v)
706{
707 *(uint32_t *)ptr = v;
708}
709
710static inline void stq_be_p(void *ptr, uint64_t v)
711{
712 *(uint64_t *)ptr = v;
713}
714
715/* float access */
716
717static inline float32 ldfl_be_p(void *ptr)
718{
719 return *(float32 *)ptr;
720}
721
722static inline float64 ldfq_be_p(void *ptr)
723{
724 return *(float64 *)ptr;
725}
726
727static inline void stfl_be_p(void *ptr, float32 v)
728{
729 *(float32 *)ptr = v;
730}
731
732static inline void stfq_be_p(void *ptr, float64 v)
733{
734 *(float64 *)ptr = v;
735}
736
737#endif
738
739/* target CPU memory access functions */
740#if defined(TARGET_WORDS_BIGENDIAN)
741#define lduw_p(p) lduw_be_p(p)
742#define ldsw_p(p) ldsw_be_p(p)
743#define ldl_p(p) ldl_be_p(p)
744#define ldq_p(p) ldq_be_p(p)
745#define ldfl_p(p) ldfl_be_p(p)
746#define ldfq_p(p) ldfq_be_p(p)
747#define stw_p(p, v) stw_be_p(p, v)
748#define stl_p(p, v) stl_be_p(p, v)
749#define stq_p(p, v) stq_be_p(p, v)
750#define stfl_p(p, v) stfl_be_p(p, v)
751#define stfq_p(p, v) stfq_be_p(p, v)
752#else
753#define lduw_p(p) lduw_le_p(p)
754#define ldsw_p(p) ldsw_le_p(p)
755#define ldl_p(p) ldl_le_p(p)
756#define ldq_p(p) ldq_le_p(p)
757#define ldfl_p(p) ldfl_le_p(p)
758#define ldfq_p(p) ldfq_le_p(p)
759#define stw_p(p, v) stw_le_p(p, v)
760#define stl_p(p, v) stl_le_p(p, v)
761#define stq_p(p, v) stq_le_p(p, v)
762#define stfl_p(p, v) stfl_le_p(p, v)
763#define stfq_p(p, v) stfq_le_p(p, v)
764#endif
765
766/* MMU memory access macros */
767
768#if defined(CONFIG_USER_ONLY)
769/* On some host systems the guest address space is reserved on the host.
770 * This allows the guest address space to be offset to a convenient location.
771 */
772//#define GUEST_BASE 0x20000000
773#define GUEST_BASE 0
774
775/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
776#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
777#define h2g(x) ((target_ulong)(x - GUEST_BASE))
778
779#define saddr(x) g2h(x)
780#define laddr(x) g2h(x)
781
782#else /* !CONFIG_USER_ONLY */
783/* NOTE: we use double casts if pointers and target_ulong have
784 different sizes */
785#define saddr(x) (uint8_t *)(long)(x)
786#define laddr(x) (uint8_t *)(long)(x)
787#endif
788
789#define ldub_raw(p) ldub_p(laddr((p)))
790#define ldsb_raw(p) ldsb_p(laddr((p)))
791#define lduw_raw(p) lduw_p(laddr((p)))
792#define ldsw_raw(p) ldsw_p(laddr((p)))
793#define ldl_raw(p) ldl_p(laddr((p)))
794#define ldq_raw(p) ldq_p(laddr((p)))
795#define ldfl_raw(p) ldfl_p(laddr((p)))
796#define ldfq_raw(p) ldfq_p(laddr((p)))
797#define stb_raw(p, v) stb_p(saddr((p)), v)
798#define stw_raw(p, v) stw_p(saddr((p)), v)
799#define stl_raw(p, v) stl_p(saddr((p)), v)
800#define stq_raw(p, v) stq_p(saddr((p)), v)
801#define stfl_raw(p, v) stfl_p(saddr((p)), v)
802#define stfq_raw(p, v) stfq_p(saddr((p)), v)
803
804
805#if defined(CONFIG_USER_ONLY)
806
807/* if user mode, no other memory access functions */
808#define ldub(p) ldub_raw(p)
809#define ldsb(p) ldsb_raw(p)
810#define lduw(p) lduw_raw(p)
811#define ldsw(p) ldsw_raw(p)
812#define ldl(p) ldl_raw(p)
813#define ldq(p) ldq_raw(p)
814#define ldfl(p) ldfl_raw(p)
815#define ldfq(p) ldfq_raw(p)
816#define stb(p, v) stb_raw(p, v)
817#define stw(p, v) stw_raw(p, v)
818#define stl(p, v) stl_raw(p, v)
819#define stq(p, v) stq_raw(p, v)
820#define stfl(p, v) stfl_raw(p, v)
821#define stfq(p, v) stfq_raw(p, v)
822
823#define ldub_code(p) ldub_raw(p)
824#define ldsb_code(p) ldsb_raw(p)
825#define lduw_code(p) lduw_raw(p)
826#define ldsw_code(p) ldsw_raw(p)
827#define ldl_code(p) ldl_raw(p)
828
829#define ldub_kernel(p) ldub_raw(p)
830#define ldsb_kernel(p) ldsb_raw(p)
831#define lduw_kernel(p) lduw_raw(p)
832#define ldsw_kernel(p) ldsw_raw(p)
833#define ldl_kernel(p) ldl_raw(p)
834#define ldfl_kernel(p) ldfl_raw(p)
835#define ldfq_kernel(p) ldfq_raw(p)
836#define stb_kernel(p, v) stb_raw(p, v)
837#define stw_kernel(p, v) stw_raw(p, v)
838#define stl_kernel(p, v) stl_raw(p, v)
839#define stq_kernel(p, v) stq_raw(p, v)
840#define stfl_kernel(p, v) stfl_raw(p, v)
841#define stfq_kernel(p, vt) stfq_raw(p, v)
842
843#endif /* defined(CONFIG_USER_ONLY) */
844
845/* page related stuff */
846
847#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
848#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
849#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
850
851/* ??? These should be the larger of unsigned long and target_ulong. */
852extern unsigned long qemu_real_host_page_size;
853extern unsigned long qemu_host_page_bits;
854extern unsigned long qemu_host_page_size;
855extern unsigned long qemu_host_page_mask;
856
857#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
858
859/* same as PROT_xxx */
860#define PAGE_READ 0x0001
861#define PAGE_WRITE 0x0002
862#define PAGE_EXEC 0x0004
863#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
864#define PAGE_VALID 0x0008
865/* original state of the write flag (used when tracking self-modifying
866 code */
867#define PAGE_WRITE_ORG 0x0010
868#define PAGE_RESERVED 0x0020
869
870void page_dump(FILE *f);
871int page_get_flags(target_ulong address);
872void page_set_flags(target_ulong start, target_ulong end, int flags);
873int page_check_range(target_ulong start, target_ulong len, int flags);
874void page_unprotect_range(target_ulong data, target_ulong data_size);
875
876#define SINGLE_CPU_DEFINES
877#ifdef SINGLE_CPU_DEFINES
878
879#if defined(TARGET_I386)
880
881#define CPUState CPUX86State
882#define cpu_init cpu_x86_init
883#define cpu_exec cpu_x86_exec
884#define cpu_gen_code cpu_x86_gen_code
885#define cpu_signal_handler cpu_x86_signal_handler
886
887#elif defined(TARGET_ARM)
888
889#define CPUState CPUARMState
890#define cpu_init cpu_arm_init
891#define cpu_exec cpu_arm_exec
892#define cpu_gen_code cpu_arm_gen_code
893#define cpu_signal_handler cpu_arm_signal_handler
894
895#elif defined(TARGET_SPARC)
896
897#define CPUState CPUSPARCState
898#define cpu_init cpu_sparc_init
899#define cpu_exec cpu_sparc_exec
900#define cpu_gen_code cpu_sparc_gen_code
901#define cpu_signal_handler cpu_sparc_signal_handler
902
903#elif defined(TARGET_PPC)
904
905#define CPUState CPUPPCState
906#define cpu_init cpu_ppc_init
907#define cpu_exec cpu_ppc_exec
908#define cpu_gen_code cpu_ppc_gen_code
909#define cpu_signal_handler cpu_ppc_signal_handler
910
911#elif defined(TARGET_M68K)
912#define CPUState CPUM68KState
913#define cpu_init cpu_m68k_init
914#define cpu_exec cpu_m68k_exec
915#define cpu_gen_code cpu_m68k_gen_code
916#define cpu_signal_handler cpu_m68k_signal_handler
917
918#elif defined(TARGET_MIPS)
919#define CPUState CPUMIPSState
920#define cpu_init cpu_mips_init
921#define cpu_exec cpu_mips_exec
922#define cpu_gen_code cpu_mips_gen_code
923#define cpu_signal_handler cpu_mips_signal_handler
924
925#elif defined(TARGET_SH4)
926#define CPUState CPUSH4State
927#define cpu_init cpu_sh4_init
928#define cpu_exec cpu_sh4_exec
929#define cpu_gen_code cpu_sh4_gen_code
930#define cpu_signal_handler cpu_sh4_signal_handler
931
932#else
933
934#error unsupported target CPU
935
936#endif
937
938#endif /* SINGLE_CPU_DEFINES */
939
940void cpu_dump_state(CPUState *env, FILE *f,
941 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
942 int flags);
943
944DECLNORETURN(void) cpu_abort(CPUState *env, const char *fmt, ...);
945extern CPUState *first_cpu;
946extern CPUState *cpu_single_env;
947extern int64_t qemu_icount;
948extern int use_icount;
949
950#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
951#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
952#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
953#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
954#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
955#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
956#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
957#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
958#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
959#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
960
961#ifdef VBOX
962/** Executes a single instruction. cpu_exec() will normally return EXCP_SINGLE_INSTR. */
963#define CPU_INTERRUPT_SINGLE_INSTR 0x0400
964/** Executing a CPU_INTERRUPT_SINGLE_INSTR request, quit the cpu_loop. (for exceptions and suchlike) */
965#define CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT 0x0800
966/** VM execution was interrupted by VMR3Reset, VMR3Suspend or VMR3PowerOff. */
967#define CPU_INTERRUPT_RC 0x1000
968/** Exit current TB to process an external interrupt request (also in op.c!!) */
969#define CPU_INTERRUPT_EXTERNAL_EXIT 0x2000
970/** Exit current TB to process an external interrupt request (also in op.c!!) */
971#define CPU_INTERRUPT_EXTERNAL_HARD 0x4000
972/** Exit current TB to process an external interrupt request (also in op.c!!) */
973#define CPU_INTERRUPT_EXTERNAL_TIMER 0x8000
974/** Exit current TB to process an external interrupt request (also in op.c!!) */
975#define CPU_INTERRUPT_EXTERNAL_DMA 0x10000
976#endif /* VBOX */
977void cpu_interrupt(CPUState *s, int mask);
978void cpu_reset_interrupt(CPUState *env, int mask);
979
980int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type);
981int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
982void cpu_watchpoint_remove_all(CPUState *env);
983int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
984int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
985void cpu_breakpoint_remove_all(CPUState *env);
986
987#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
988#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
989#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
990
991void cpu_single_step(CPUState *env, int enabled);
992void cpu_reset(CPUState *s);
993
994/* Return the physical page corresponding to a virtual one. Use it
995 only for debugging because no protection checks are done. Return -1
996 if no page found. */
997target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
998
999#define CPU_LOG_TB_OUT_ASM (1 << 0)
1000#define CPU_LOG_TB_IN_ASM (1 << 1)
1001#define CPU_LOG_TB_OP (1 << 2)
1002#define CPU_LOG_TB_OP_OPT (1 << 3)
1003#define CPU_LOG_INT (1 << 4)
1004#define CPU_LOG_EXEC (1 << 5)
1005#define CPU_LOG_PCALL (1 << 6)
1006#define CPU_LOG_IOPORT (1 << 7)
1007#define CPU_LOG_TB_CPU (1 << 8)
1008
1009/* define log items */
1010typedef struct CPULogItem {
1011 int mask;
1012 const char *name;
1013 const char *help;
1014} CPULogItem;
1015
1016extern CPULogItem cpu_log_items[];
1017
1018void cpu_set_log(int log_flags);
1019void cpu_set_log_filename(const char *filename);
1020int cpu_str_to_log_mask(const char *str);
1021
1022/* IO ports API */
1023
1024/* NOTE: as these functions may be even used when there is an isa
1025 brige on non x86 targets, we always defined them */
1026#ifndef NO_CPU_IO_DEFS
1027void cpu_outb(CPUState *env, int addr, int val);
1028void cpu_outw(CPUState *env, int addr, int val);
1029void cpu_outl(CPUState *env, int addr, int val);
1030int cpu_inb(CPUState *env, int addr);
1031int cpu_inw(CPUState *env, int addr);
1032int cpu_inl(CPUState *env, int addr);
1033#endif
1034
1035/* address in the RAM (different from a physical address) */
1036#ifdef USE_KQEMU
1037typedef uint32_t ram_addr_t;
1038#else
1039typedef unsigned long ram_addr_t;
1040#endif
1041
1042/* memory API */
1043
1044#ifndef VBOX
1045extern int phys_ram_size;
1046extern int phys_ram_fd;
1047extern int phys_ram_size;
1048#else /* VBOX */
1049extern RTGCPHYS phys_ram_size;
1050/** This is required for bounds checking the phys_ram_dirty accesses. */
1051extern uint32_t phys_ram_dirty_size;
1052#endif /* VBOX */
1053#if !defined(VBOX)
1054extern uint8_t *phys_ram_base;
1055#endif
1056extern uint8_t *phys_ram_dirty;
1057
1058/* physical memory access */
1059#define TLB_INVALID_MASK (1 << 3)
1060#define IO_MEM_SHIFT 4
1061#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
1062
1063#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
1064#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
1065#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
1066#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
1067#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
1068#define IO_MEM_RAM_MISSING (5 << IO_MEM_SHIFT) /* used internally, never use directly */
1069#endif
1070/* acts like a ROM when read and like a device when written. As an
1071 exception, the write memory callback gets the ram offset instead of
1072 the physical address */
1073#define IO_MEM_ROMD (1)
1074#define IO_MEM_SUBPAGE (2)
1075#define IO_MEM_SUBWIDTH (4)
1076
1077/* Flags stored in the low bits of the TLB virtual address. These are
1078 defined so that fast path ram access is all zeros. */
1079/* Zero if TLB entry is valid. */
1080#define TLB_INVALID_MASK (1 << 3)
1081/* Set if TLB entry references a clean RAM page. The iotlb entry will
1082 contain the page physical address. */
1083#define TLB_NOTDIRTY (1 << 4)
1084/* Set if TLB entry is an IO callback. */
1085#define TLB_MMIO (1 << 5)
1086
1087typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
1088typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
1089
1090void cpu_register_physical_memory(target_phys_addr_t start_addr,
1091 ram_addr_t size,
1092 ram_addr_t phys_offset);
1093uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
1094ram_addr_t qemu_ram_alloc(ram_addr_t);
1095void qemu_ram_free(ram_addr_t addr);
1096int cpu_register_io_memory(int io_index,
1097 CPUReadMemoryFunc **mem_read,
1098 CPUWriteMemoryFunc **mem_write,
1099 void *opaque);
1100CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
1101CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
1102
1103void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
1104 int len, int is_write);
1105static inline void cpu_physical_memory_read(target_phys_addr_t addr,
1106 uint8_t *buf, int len)
1107{
1108 cpu_physical_memory_rw(addr, buf, len, 0);
1109}
1110static inline void cpu_physical_memory_write(target_phys_addr_t addr,
1111 const uint8_t *buf, int len)
1112{
1113 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
1114}
1115uint32_t ldub_phys(target_phys_addr_t addr);
1116uint32_t lduw_phys(target_phys_addr_t addr);
1117uint32_t ldl_phys(target_phys_addr_t addr);
1118uint64_t ldq_phys(target_phys_addr_t addr);
1119void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
1120void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
1121void stb_phys(target_phys_addr_t addr, uint32_t val);
1122void stw_phys(target_phys_addr_t addr, uint32_t val);
1123void stl_phys(target_phys_addr_t addr, uint32_t val);
1124void stq_phys(target_phys_addr_t addr, uint64_t val);
1125
1126void cpu_physical_memory_write_rom(target_phys_addr_t addr,
1127 const uint8_t *buf, int len);
1128int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1129 uint8_t *buf, int len, int is_write);
1130
1131#define VGA_DIRTY_FLAG 0x01
1132#define CODE_DIRTY_FLAG 0x02
1133#define KQEMU_DIRTY_FLAG 0x04
1134#define MIGRATION_DIRTY_FLAG 0x08
1135
1136/* read dirty bit (return 0 or 1) */
1137static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1138{
1139#ifdef VBOX
1140 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1141 {
1142 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1143 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1144 return 0;
1145 }
1146#endif
1147 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
1148}
1149
1150static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
1151 int dirty_flags)
1152{
1153#ifdef VBOX
1154 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1155 {
1156 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1157 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1158 return 0xff & dirty_flags; /** @todo I don't think this is the right thing to return, fix! */
1159 }
1160#endif
1161 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1162}
1163
1164static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1165{
1166#ifdef VBOX
1167 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1168 {
1169 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1170 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1171 return;
1172 }
1173#endif
1174 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1175}
1176
1177void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1178 int dirty_flags);
1179void cpu_tlb_update_dirty(CPUState *env);
1180
1181int cpu_physical_memory_set_dirty_tracking(int enable);
1182
1183int cpu_physical_memory_get_dirty_tracking(void);
1184
1185void dump_exec_info(FILE *f,
1186 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
1187
1188/*******************************************/
1189/* host CPU ticks (if available) */
1190
1191#if defined(__powerpc__)
1192
1193static inline uint32_t get_tbl(void)
1194{
1195 uint32_t tbl;
1196 asm volatile("mftb %0" : "=r" (tbl));
1197 return tbl;
1198}
1199
1200static inline uint32_t get_tbu(void)
1201{
1202 uint32_t tbl;
1203 asm volatile("mftbu %0" : "=r" (tbl));
1204 return tbl;
1205}
1206
1207static inline int64_t cpu_get_real_ticks(void)
1208{
1209 uint32_t l, h, h1;
1210 /* NOTE: we test if wrapping has occurred */
1211 do {
1212 h = get_tbu();
1213 l = get_tbl();
1214 h1 = get_tbu();
1215 } while (h != h1);
1216 return ((int64_t)h << 32) | l;
1217}
1218
1219#elif defined(__i386__)
1220
1221static inline int64_t cpu_get_real_ticks(void)
1222{
1223 int64_t val;
1224 asm volatile ("rdtsc" : "=A" (val));
1225 return val;
1226}
1227
1228#elif defined(__x86_64__)
1229
1230static inline int64_t cpu_get_real_ticks(void)
1231{
1232 uint32_t low,high;
1233 int64_t val;
1234 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1235 val = high;
1236 val <<= 32;
1237 val |= low;
1238 return val;
1239}
1240
1241#elif defined(__ia64)
1242
1243static inline int64_t cpu_get_real_ticks(void)
1244{
1245 int64_t val;
1246 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1247 return val;
1248}
1249
1250#elif defined(__s390__)
1251
1252static inline int64_t cpu_get_real_ticks(void)
1253{
1254 int64_t val;
1255 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1256 return val;
1257}
1258
1259#elif defined(__sparc_v9__)
1260
1261static inline int64_t cpu_get_real_ticks (void)
1262{
1263#if defined(_LP64)
1264 uint64_t rval;
1265 asm volatile("rd %%tick,%0" : "=r"(rval));
1266 return rval;
1267#else
1268 union {
1269 uint64_t i64;
1270 struct {
1271 uint32_t high;
1272 uint32_t low;
1273 } i32;
1274 } rval;
1275 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1276 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1277 return rval.i64;
1278#endif
1279}
1280#else
1281/* The host CPU doesn't have an easily accessible cycle counter.
1282 Just return a monotonically increasing vlue. This will be totally wrong,
1283 but hopefully better than nothing. */
1284static inline int64_t cpu_get_real_ticks (void)
1285{
1286 static int64_t ticks = 0;
1287 return ticks++;
1288}
1289#endif
1290
1291/* profiling */
1292#ifdef CONFIG_PROFILER
1293static inline int64_t profile_getclock(void)
1294{
1295 return cpu_get_real_ticks();
1296}
1297
1298extern int64_t kqemu_time, kqemu_time_start;
1299extern int64_t qemu_time, qemu_time_start;
1300extern int64_t tlb_flush_time;
1301extern int64_t kqemu_exec_count;
1302extern int64_t dev_time;
1303extern int64_t kqemu_ret_int_count;
1304extern int64_t kqemu_ret_excp_count;
1305extern int64_t kqemu_ret_intr_count;
1306
1307#endif
1308
1309#ifdef VBOX
1310void tb_invalidate_virt(CPUState *env, uint32_t eip);
1311#endif /* VBOX */
1312
1313#endif /* CPU_ALL_H */
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette