// currenty, nsISupportsImpl.h lacks the below-like macros
#ifndef NS_IMPL_THREADSAFE_ISUPPORTS1_CI
#define NS_IMPL_THREADSAFE_ISUPPORTS1_CI(_class, _interface) \
NS_IMPL_THREADSAFE_ADDREF(_class) \
NS_IMPL_THREADSAFE_RELEASE(_class) \
NS_IMPL_QUERY_INTERFACE1_CI(_class, _interface) \
NS_IMPL_CI_INTERFACE_GETTER1(_class, _interface)
#endif
#ifndef NS_IMPL_THREADSAFE_ISUPPORTS2_CI
#define NS_IMPL_THREADSAFE_ISUPPORTS2_CI(_class, _i1, _i2) \
NS_IMPL_THREADSAFE_ADDREF(_class) \
NS_IMPL_THREADSAFE_RELEASE(_class) \
NS_IMPL_QUERY_INTERFACE2_CI(_class, _i1, _i2) \
NS_IMPL_CI_INTERFACE_GETTER2(_class, _i1, _i2)
#endif
This represents a boolean variable having a third state, default.
Virtual machine execution state. This enumeration represents possible
values of the attribute.
The machine is not running.
The machine is not currently running, but the execution state
of the machine has been saved to an external file when it
was running.
No any machine settings can be altered when the machine
is in this state.
A process that run the machine has abnormally terminated.
Other than that, this value is equivalent to #PoweredOff.
The machine is currently being executed.
This value can be used in comparison expressions:
all state values below it describe a virtual machine that is
not currently being executed (i.e., it is completely out of
action).
The execution of the machine has been paused.
This value can be used in comparison expressions:
all state values above it represent unstable states of the
virtual machine. No any settings can be altered when the
VM is in one of the unstable sates.
The machine is being started after
powering it on from a
zero execution state.
The machine is being normally stopped
(after explicitly powering it off,
or after the guest OS has initiated a shutdown sequence).
The machine is saving its execution state to a file as a
result of calling or an online
snapshot of the machine is being taken using
.
The execution state of the machine is being restored from a file
after powering it on from
a saved execution state.
A snapshot of the machine is being discarded after calling
or its current state is
being discarded after .
Session state. This enumeration represents possible values of
and
attributes. Idividual value descriptions contain the appropriate
meaning for every case.
The machine has no open sessions ();
the session is closed ()
The machine has an open direct session ();
the session is open ()
A new (direct) session is being opened for the machine
as a result of
call ();
the session is currently being opened
as a result of
call ()
The direct session is being closed ();
the session is being closed ()
Session type. This enumeration represents possible values of the
attribute.
Direct session
(opened by )
Remote session
(opened by )
Existing session
(opened by )
Device type.
No Device. This value is not used by
Floppy device.CD/DVD-ROM device.Hard disk device.Network device.USB device.Shared folder device.
Usage type constants for
and
.
Scopes the VMs that use the resource permanently
(the information about this usage is stored in the VM
settings file).
Scopes the VMs that are temporarily using the resource
(the information about the usage is not yet saved in the VM
settings file). Temporary usage can take place only in the
context of an open session.
Combines PermanentUsage and TemporaryUsage.
Scope of the operation.
A generic enumeration used in various methods to define the action or
argument scope.
The IVirtualBoxErrorInfo interface represents extended error information
that can be set by components after unsuccessful method invocation and
returned to the client in addition to the result code.
In MS COM, this interface extends the IErrorInfo interface,
in XPCOM, it extends the nsIException interface. In both cases,
it provides a set of common attributes to retrieve error
information.
Sometimes invocation of some component's method may involve
methods of other components that may also fail (independently of
this method's failure), or a series of non-fatal errors may
precede a fatal error that causes method failure. In cases like
that, it may be desirable to preserve information about all errors
happened during method invocation and deliver it to the
caller. The attribute is intended specifically
for this purpose and allows to represent a chain of errors through
a single IVirtualBoxErrorInfo instance set after method
invocation. Note that errors are stored to a chain in the reverse
order, i.e. the initial error object you query right after method
invocation is the last error set by the callee, the object it
points to in the @a next attribute is the previous error and so
on, up to the first error (which is the last in the chain).
Result code of the error.
Usually, it will be the same as the result code returned
by the method that provided this error information, but not
always. For example, on Win32, CoCreateInstance() will most
likely return E_NOINTERFACE upon unsuccessful component
instantiation attempt, but not the value the component factory
returned.
In MS COM, there is no equivalent.
In XPCOM, it is the same as nsIException::result.
UUID of the interface that defined the error.
In MS COM, it is the same as IErrorInfo::GetGUID.
In XPCOM, there is no equivalent.
Name of the component that generated the error.
In MS COM, it is the same as IErrorInfo::GetSource.
In XPCOM, there is no equivalent.
Text description of the error.
In MS COM, it is the same as IErrorInfo::GetDescription.
In XPCOM, it is the same as nsIException::message.
Next error object if there is any, or @c null otherwise.
In MS COM, there is no equivalent.
In XPCOM, it is the same as nsIException::inner.
The execution state of the given machine has changed.
IMachine::stateID of the machine this event relates to.New execution state.
Any of the settings of the given machine has changed.
ID of the machine this event relates to.
Notification when someone tries to change extra data for
either the given machine or (if null) global extra data.
This gives the chance to veto against changes.
ID of the machine this event relates to
(null ID for global extra data change requests).
Extra data key for the attempted write.
Extra data value for the given key.
Optional error message describing the reason of the
veto (ignored if this notification returns @c true).
Flag to indicate whether the callee agrees (@ true)
or vetoes against the change (@ false).
Notification when machine specific or global extra data
has changed.
ID of the machine this event relates to.
Null for global extra data changes.
Extra data key that has changed.
Extra data value for the given key.
The given media was registered or unregistered
within this VirtualBox installation.
The @a mediaType parameter describes what type of
media the specified @a mediaId refers to. Possible
values are:
- : the media is a hard disk
that, if registered, can be obtained using the
call.
- : the media is a CD/DVD image
that, if registered, can be obtained using the
call.
- : the media is a Floppy image
that, if registered, can be obtained using the
call.
Note that if this is a deregistration notification,
there is no way to access the object representing the
unregistered media. It is supposed that the
application will do required cleanup based on the @a
mediaId value.
ID of the media this event relates to.Type of the media this event relates to.
If true, the media was registered, otherwise it was
unregistered.
The given machine was registered or unregistered
within this VirtualBox installation.
ID of the machine this event relates to.
If true, the machine was registered, otherwise it was
unregistered.
The state of the session for the given machine was changed.
IMachine::sessionStateID of the machine this event relates to.New session state.
A new snapshot of the machine has been taken.
ISnapshotID of the machine this event relates to.ID of the new snapshot.
Snapshot of the given machine has been discarded.
This notification is delivered after the snapshot
object has been uninitialized on the server (so that any
attempt to call its methods will return an error).
ISnapshotID of the machine this event relates to.
ID of the discarded snapshot. null means the
current machine state has been discarded (restored from
the current snapshot).
Snapshot properties (name and/or description) have been changed.
ISnapshotID of the machine this event relates to.ID of the changed snapshot. The main interface exposed by the product that provides virtual
machine management.
An instance of IVirtualBox is required for the product to do anything
useful. Even though the interface does not expose this, internally, IVirtualBox
is implemented as a singleton and actually lives in the process of the
VirtualBox server (VBoxSVC.exe). This makes sure that IVirtualBox can
track the state of all virtual machines on a particular host, regardless
of which frontend started them.
To enumerate all the virtual machines on the host, use the
attribute.
A string representing the version number of the product. The
format is 3 integer numbers divided by dots (e.g. 1.0.1). The
last number represents the build number and will frequently change.
Full path to the directory where the global settings file,
VirtualBox.xml, is stored.
In this version of VirtualBox, the value of this property is
always <user_dir>/.VirtualBox (where
<user_dir> is the path to the user directory,
as determined by the host OS), and cannot be changed.
This path is also used as the base to resolve relative paths in
places where relative paths are allowed (unless otherwise
expressly indicated).
Associated host object.Associated system information object.
A collection of hard disk objects registered within this
VirtualBox instance.
This collection contains only "top-level" (basic or independent)
hard disk images, but not differencing ones. All differencing
images of the given top-level image (i.e. all its children) can
be enumerated using .
Collection of global shared folders. Global shared folders are
available to all virtual machines.
New shared folders are added to the collection using
. Existing shared folders can be
removed using .
In the current version of the product, global shared folders are not
implemented and therefore this collection is always empty.
Creates a new virtual machine.
Every machine has a settings file that is used to store
the machine configuration. This file is stored in the directory
called machine settings subfolder. Both the subfolder
and the settings file have the same name that corresponds to the
name of the virtual machine. You can specify where
to create the machine settings subfolder using the @a
baseFolder argument. The base folder can be absolute (full path)
or relative to the
VirtualBox home directory.
If a null or empty string is given as the base folder (which is
recommended), the
default machine settings folder will be used as the base
folder to create the machine settings subfolder and file. In
any case, the full path to the settings file will look like:
<base_folder>/<machine_name>/<machine_name>.xml
Note that the configuration of the newly created machine is not
saved to disk (and therefore no settings subfolder and file are
created) until is called.
You should also specify a valid name for the machine.
See the property
description for more details about the machine name.
The created machine remains
unregistered until you call .
There is no way to change the name of the settings file or
subfolder of the created machine directly.
Name of the folder where to create the machine settings
subfolder containing the settings file.
Machine name.Created machine object.
Creates a new virtual machine in "legacy" mode, using the
specified settings file to store machine settings.
As opposed to machines created by ,
the settings file of the machine created in "legacy" mode
is not automatically renamed when the machine name is
changed -- it will always remain the same as specified in this
method call.
The specified settings file name can be absolute
(full path) or relative to the
VirtualBox home directory. If the file name doesn't
contain an extension, the default extension (.xml) will be
appended.
Note that the configuration of the newly created machine is not
saved to disk (and therefore no settings file is created)
until is called. If the
specified settings file already exists,
will return an error.
You should also specify a valid name for the machine.
See the property
description for more details about the machine name.
The created machine remains
unregistered until you call .
@deprecated This method may be removed later. It is better
to use .
There is no way to change the name of the settings file
of the created machine.
Name of the file where to store machine settings.
Machine name.Created machine object.
Opens a virtual machine from the existing settings file.
The opened machine remains unregistered until you call
.
The specified settings file name can be absolute
(full path) or relative to the
VirtualBox home directory. This file must exist
and must be a valid machine settings file whose contents
will be used to construct the machine object.
@deprecated Will be removed soon.
Name of the machine settings file.
Opened machine object.
will return
false for the created machine, until any of machine settigs
are changed.
Registers the machine previously created using
or opened using
within this VirtualBox installation. After
successful method invocation, the
signal is sent
to all registered callbacks.
This method implicitly calls
to save all current machine settings before registering it.
Unregisters the machine previously registered using
. After successful method invocation, the
signal is sent
to all registered callbacks.
The specified machine must not be in the Saved state, have an open
(or a spawning) direct session associated with it, have snapshots or
have hard disks attached.
This method implicitly calls to
save all current machine settings before unregistering it.
If the given machine is inaccessible (see
), it will be unregistered and
fully uninitialized right afterwards. As a result, the returned
machine object will be unusable and an attempt to call
any method will return the "Object not ready" error.
UUID of the machine to unregister.Unregistered machine object.
Creates a new unregistered hard disk that will use the given
storage type.
Most properties of the created hard disk object are
uninitialized. Valid values must be assigned to them (and probalby
some actions performed) to make the actual usage of this hard disk
(register, attach to a virtual
machine, etc.). See the description of and
descriptions of storage type specific interfaces for more information.
For hard disks using
the VirtualDiskImage
storage type, an image file is not actually created until you call
or
.
Storage type of the hard disk image to create.Created hard disk object of the given storage type.
Opens a hard disk from an existing location.
This method tries to guess the
hard disk storage type from the
format of the location string and from the contens of the resource the
location points to. Currently, a file path is the only
supported format for the location string which must point to either a
VDI file or to a VMDK file. On success, an IHardDisk object will be
returned that also implements the corresponding interface
(IVirtualDiskImage or IVMDKImage, respectively). The
property may also be used to
determine the storage type of the returned object (instead of trying
to query one of these interfaces).
The specified file path can be absolute (full path) or relative to
the VirtualBox home
directory. If only a file name without any path is given,
the default VDI
folder will be used as a path to the image file.
The opened hard disk remains unregistered
until is called.
Location of the resource that contains a valid hard disk.
Opened hard disk object.
Opens a hard disk from an existing Virtual Disk Image file.
The opened hard disk remains unregistered
until is called.
@deprecated Use instead.
Opening differencing images is not supported.The specified file path can be absolute (full path) or
relative to the VirtualBox
home directory. If only a file name without any path is
given, the
default VDI folder will be used as a path to the image
file.
Name of the file that contains a valid Virtual Disk Image.
Opened hard disk object.
Registers the given hard disk within this VirtualBox
installation. The hard disk must not be registered, must be
and must not be a
differencing hard disk, otherwise the registration will fail.
Hard disk object to register.
Returns the registered hard disk with the given UUID.
UUID of the hard disk to look for.Found hard disk object.
Returns a registered hard disk that uses the given location to
store data. The search is done by comparing the
value of the @a location argument to the
attribute of each registered
hard disk.
For locations repesented by file paths (such as VDI and VMDK
images), the specified location can be either an absolute file
path or a path relative to
the VirtualBox home
directory. If only a file name without any path is
given, the
default VDI folder will be used as a path to construct
the absolute image file name to search for. Note that on host
systems with case sensitive filesystems, a case sensitive
comparison is performed, otherwise the case of symbols in the
file path is ignored.
Hard disk location specification to search for.Found hard disk object.
Returns a registered hard disk that uses the given image file.
@deprecated Use instead.
The specified file path can be absolute (full path) or
relative to the VirtualBox
home directory. If only a file name without any path is
given, the
default VDI folder will be used as a path to the image
file.On host systems with case sensitive filesystems, a case
sensitive comparison is performed, otherwise the case of symbols
in the file path is ignored.Virtual Disk Image file path to look for.Found hard disk object.
Unregisters a hard disk previously registered using
.
The specified hard disk must not be attached to any of
the existing virtual machines and must not have children
(differencing) hard disks.
UUID of the hard disk to unregister.Unregistered hard disk object.
Opens the CD/DVD image contained in the specified file of
the supported format and assigns it the given UUID. The opened
image remains unregistered
until is called.
Full name of the file that contains a valid
CD/DVD image. Currently, only ISO images are supported.
The specified file name can be absolute or relative
to the
VirtualBox home directory.
UUID to assign to the given image file within this
VirtualBox installation. If an empty (null) UUID is
specified, the system will randomly generate an UUID.
Opened CD/DVD image object.
Registers a CD/DVD image within this VirtualBox
installation. The image must not be registered and must not
be associated with the same image file as any of the already
registered images, otherwise the registration will fail.
CD/DVD image object to register.
Returns a registered CD/DVD image with the given UUID.
UUID of the image to look for.Found CD/DVD image object.
Returns a registered CD/DVD image with the given image file.
On host systems with case sensitive filesystems, a case
sensitive comparison is performed, otherwise the case of
symbols in the file path is ignored.
CD/DVD image file path to look for.Found CD/DVD image object.
Returns the list of of UUIDs of all virtual machines that use
the given CD/DVD image.
UUID of the image to get the usage information for.Type of the usage (permanent, temporary or all).
List of UUIDs of all machines that use the given image
in the way specified by the usage parameter.
The list is returned as a string containing UUIDs separated
by spaces. A null string means that the image is not used.
When the usage type is
and the image is used by the VM both permanently
and temporarily, the VM's UUID will be present only
once in the list.
Unregisters the CD/DVD image previously registered using
.
The specified image must not be mounted to any of
the existing virtual machines.
UUID of the CD/DVD image to unregister.Unregistered image object.
Opens a floppy image contained in the specified file of
the supported format and assigns it the given UUID. The opened
image remains unregistered
until is called.
Full name of the file that contains a valid
floppy image.
The specified file name can be absolute or relative
to the
VirtualBox home directory.
UUID to assign to the given image file within this
VirtualBox installation. If an empty (null) UUID is
specified, the system will randomly generate an UUID.
Opened CD/DVD image object.
Registers a floppy image within this VirtualBox
installation. The image must not be registered and must not
be associated with the same image file as any of the already
registered images, otherwise the registration will fail.
Floppy image object to register.
Returns a registered floppy image with the given UUID.
UUID of the image to look for.Found floppy image object.
Returns a registered floppy image with the given image file.
On host systems with case sensitive filesystems, a case
sensitive comparison is performed, otherwise the case of
symbols in the file path is ignored.
Floppy image file path to look for.Found floppy image object.
Returns the list of of UUIDs of all virtual machines that use
the given floppy image.
UUID of the image to get the usage information for.Type of the usage (permanent, temporary or all).
List of UUIDs of all machines that use the given image
in the way specified by the usage parameter.
The list is returned as a string containing UUIDs separated
by spaces. A null string means that the image is not used.
When the usage type is
and the image is used by the VM both permanently
and temporarily, the VM's UUID will be present only
once in the list.
Unregisters the floppy image previously registered using
.
The specified image must not be mounted to any of
the existing virtual machines.
UUID of the floppy image to unregister.Unregistered image object.
Creates a new global shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
to read more about logical names.
Unique logical name of the shared folder.Full path to the shared folder in the host file system.
Removes the global shared folder with the given name previously
created by from the collection of
shared folders and stops sharing it.
Logical name of the shared folder to remove.
Returns the extra data key name following the supplied key.
An error is returned if the supplied key does not exist.
@c NULL is returned if the supplied key is the last key.
When supplying @c NULL for the key, the first item is returned.
@a nextValue is an optional parameter and if supplied, the next
key's value is returned in it.
Name of the data key to follow.Name of the next data key.Value of the next data key.
Returns associated extra data.
If the reuqested key does not exist, this function will
succeed and return @c null in the @a value argument.
Name of the data key to get.Value of the requested data key.
Sets associated extra data.
If you pass @c NULL as a key @a vaule, the given key will be
deleted.
This method can be called outside a machine session and
therefore it's a caller's responsibility to handle race
condition when several clients change the same key at the
same time.
Name of the data key to set.Value to assign to the key.
Opens a new direct session with the given virtual machine.
Within the direct session context, it is possible to change
all VM settings, as well as to execute the VM in the process
space of the session object. There can be only one direct
session open at a time for every virtual machine.
Upon successful return, the session object can be used to
get access to the machine and to the VM console.
Session object that will represent the opened session after
successful method invocation. This object must not represent
the already open session.
This session will be automatically closed if the
VirtualBox server is terminated for some reason.
ID of the virtual machine to open a session with.
Opens a new remote session with the given virtual
machine.
Opening a remote session causes the VirtualBox server to start a new
process that opens a direct session with the given VM. The remote
session provides some level of control over the VM execution to the
caller (using the IConsole interface); however, within the remote
session context, not all VM settings are available for modification.
This operation can take some time, so the progress object
is returned to let the caller be informed when the session is
actually open. Until then, the remote session object remains in
the closed state and accessing the machine or its console through
it is invalid.
Currently supported session types (values of the @a type
argument) are:
gui: VirtualBox Qt GUI session
vrdp: VirtualBox VRDP Server session
The @a environment argument is a string containing definitions of
environment variables in the following format:
@code
NAME[=VALUE]\n
NAME[=VALUE]\n
...
@endcode
where \\n is the new line character. These environment
variables will be appended to the environment of the VirtualBox server
process. If an environment variable exists both in the server process
and in this list, the value from this list takes precedence over the
server's variable. If the value of the environment variable is
omitted, this variable will be removed from the resulting environment.
If the environment string is @c null, the server environment is
inherited by the started process as is.
It is an error to open a remote session with the machine
that already has an open direct session or waits until the
previous request to open the remote session is completed
(see ).
The opened @a session will be automatically closed when
the corresponding direct session dies or gets closed.
openExistingSession
Session object that will represent the opened remote session
after successful method invocation (this object must not
represent an already open session).
ID of the virtual machine to open a session with.
Type of the remote session (case sensitive).
Environment to pass to the opened session (may be @c null).
Progress object to track the operation completion.
Opens a new remote session with the virtual machine for
which a direct session is already open.
The remote session provides some level of control over the VM
execution (using the IConsole interface) to the caller; however,
within the remote session context, not all VM settings are available
for modification.
As opposed to , the number of
remote sessions opened this way is not limited by the API
It is an error to open a remote session with the machine that
doesn't have an open direct session.
openRemoteSession
Session object that will represent the open remote session
after successful method invocation. This object must not
represent an already open session.
This session will be automatically closed when the peer
(direct) session dies or gets closed.
ID of the virtual machine to open a session with.
Updates the VM state.
This operation will also update the settings file with
the correct information about the saved state file
and delete this file from disk when appropriate.
Asks the server to run USB devices filters of the associated
machine against the given USB device and tell if there is
a match.
Intended to be used only for remote USB devices. Local
ones don't require to call this method (this is done
implicitly by the Host and USBProxyService).
Requests a capture of the given host USB device.
When the request is completed, the VM process will
get a
notification.
Notification that a VM is going to detach (done = false) or has
already detached (done = true) the given USB device.
When the done = true request is completed, the VM process will
get a
notification.
In the done = true case, the server must run its own filters
and filters of all VMs but this one on the detached device
as if it were just attached to the host computer.
Requests a capture all matching USB devices attached to the host.
When the request is completed, the VM process will
get a
notification per every captured device.
Notification that a VM that is being powered down. The done
parameter indicates whether which stage of the power down
we're at. When done = false the VM is announcing its
intentions, while when done = true the VM is reporting
what it has done.
In the done = true case, the server must run its own filters
and filters of all VMs but this one on all detach devices as
if they were just attached to the host computer.
Triggered by the given session object when the session is about
to close normally.
Session that is being closed
Used to wait until the corresponding machine is actually
deassociated from the given session on the server.
Returned only when this session is a direct one.
Called by the VM process to inform the server it wants to
save the current state and stop the VM execution.
Progress object created by the VM process to wait until
the state is saved.
File path the VM process must save the execution state to.
Called by the VM process to inform the server that saving
the state previously requested by #beginSavingState is either
successfully finished or there was a failure.
true to indicate success and false otherwise
Called by the VM process to inform the server it wants to
take a snapshot.
The console object that initiated this call.Snapshot nameSnapshot description
Progress object created by the VM process to wait until
the state is saved (only for online snapshots).
File path the VM process must save the execution state to.
Progress object created by the server process to wait until
the snapshot is taken (VDI diff creation, etc.).
Called by the VM process to inform the server that the snapshot
previously requested by #beginTakingSnapshot is either
successfully taken or there was a failure.
true to indicate success and false otherwise
Gets called by IConsole::discardSnapshot.
The console object that initiated this call.UUID of the snapshot to discard.New machine state after this operation is started.Progress object to track the operation completion.
Gets called by IConsole::discardCurrentState.
The console object that initiated this call.New machine state after this operation is started.Progress object to track the operation completion.
Gets called by IConsole::discardCurrentSnapshotAndState.
The console object that initiated this call.New machine state after this operation is started.Progress object to track the operation completion.
This represents the BIOS boot menu state.
Fade in flag for BIOS logo animation.Fade out flag for BIOS logo animation.BIOS logo display time in milliseconds (0 = default).Local file system path for external BIOS image.Mode of the BIOS boot device menu.ACPI support flag.
IO APIC support flag. If set, VirtualBox will provide an IO APIC
and support IRQs above 15.
Offset in milliseconds from the host system time. This allows for
guests running with a different system date/time than the host.
It is equivalent to setting the system date/time in the BIOS other
than it's not an absolute value but a relative one. Guest Additions
time synchronization also honors this offset.
Associated parent obect.
Whether this virtual machine is currently accessible or not.
The machine is considered to be inaccessible when:
It is a registered virtual machine, and
Its settings file is inaccessible (for example, it is
located on a network share that is not accessible during
VirtualBox startup, or becomes inaccessible later, or if
the settings file can be read but is invalid).
Otherwise, the value of this property is always true.
Every time this property is read, the accessibility state of
this machine is re-evaluated. If the returned value is |false|,
the property may be used to get the
detailed error information describing the reason of
inaccessibility.
When the machine is inaccessible, only the following properties
can be used on it:
An attempt to access any other property or method will return
an error.
The only possible action you can perform on an inaccessible
machine is to unregister it using the
call (or, to check
for the accessibility state once more by querying this
property).
In the current implementation, once this property returns
true, the machine will never become inaccessible
later, even if its settings file cannot be successfully
read/written any more (at least, until the VirtualBox
server is restarted). This limitation may be removed in
future releases.
Error information describing the reason of machine
inaccessibility.
Reading this property is only valid after the last call to
returned false (i.e. the
machine is currently unaccessible). Otherwise, a null
IVirtualBoxErrorInfo object will be returned.
Name of the virtual machine.
Besides being used for human-readable identification purposes
everywhere in VirtualBox, the virtual machine name is also used
as a name of the machine's settings file and as a name of the
subdirectory this settings file resides in. Thus, every time you
change the value of this property, the settings file will be
renamed once you call to confirm the
change. The containing subdirectory will be also renamed, but
only if it has exactly the same name as the settings file
itself prior to changing this property (for backward compatibility
with previous API releases). The above implies the following
limitations:
The machine name cannot be empty.
The machine name can contain only characters that are valid
file name characters according to the rules of the file
system used to store VirtualBox configuration.
You cannot have two or more machines with the same name
if they use the same subdirectory for storing the machine
settings files.
You cannot change the name of the machine if it is running,
or if any file in the directory containing the settings file
is being used by another running machine or by any other
process in the host operating system at a time when
is called.
If any of the above limitations are hit,
will return an appropriate error message explaining the exact
reason and the changes you made to this machine will not be
saved.
For "legacy" machines created using the
call,
the above naming limitations do not apply because the
machine name does not affect the settings file name.
The settings file name remains the same as it was specified
during machine creation and never changes.
Description of the virtual machine.
The description attribute can contain any text and is
typically used to describe the hardware and software
configuration of the virtual machine in detail (i.e. network
settings, versions of the installed software and so on).
UUID of the virtual machine.
User-defined identifier of the Guest OS type.
You may use to obtain
an IGuestOSType object representing details about the given
Guest OS type.
This value may differ from the value returned by
if Guest Additions are
installed to the guest OS.
Sytem memory size in megabytes.Video memory size in megabytes.
Number of virtual monitors.
Only effective on Windows XP and later guests with
Guest Additions installed.
Object containing all BIOS settings.
This setting determines whether VirtualBox will try to make use of
the host CPU's hardware virtualization extensions such as Intel VT-x
and AMD SVM. Note that in case such extensions are not available,
they will not be used.
Full path to the directory used to store snapshot data
(difrerencing hard disks and saved state files) of this machine.
The initial value of this property is
<
path_to_settings_file>/<
machine_uuid
>.
Currently, it is an error to try to change this property on
a machine that has snapshots (because this would require to
move possibly large files to a different location).
A separate method will be available for this purpose later.
Setting this property to null will restore the
initial value.
When setting this property, the specified path can be
absolute (full path) or relative to the directory where the
machine settings file
is located. When reading this property, a full path is
always returned.
The specified path may not exist, it will be created
when necessary.
VRDP server object.Collection of hard disks attached to the machine.Associated DVD drive object.Associated floppy drive object.Associated USB controller object.Associated audio adapter, always present.
Full name of the file containing machine settings data.
Whether the settings of this machine have been modified
(but neither yet saved nor discarded).
Reading this property is only valid on instances returned
by and on new machines
created by or opened
by but not
yet registered, or on unregistered machines after calling
. For all other
cases, the settigs can never be modified.
For newly created unregistered machines, the value of this
property is always TRUE until
is called (no matter if any machine settings have been
changed after the creation or not). For opened machines
the value is set to FALSE (and then follows to normal rules).
Current session state for this machine.
Type of the session. If is
SessionSpawning or SessionOpen, this attribute contains the
same value as passed to the
method in the @a
type parameter. If the session was opened directly using
, or if
is SessionClosed, the value of this
attribute is @c null.
Identifier of the session process. This attribute contains the
platform-dependent identifier of the process that has opened a
direct session for this machine using the
call. The returned value
is only valid if is SessionOpen or
SessionClosing (i.e. a session is currently open or being
closed) by the time this property is read.
Current execution state of this machine.
Time stamp of the last execution state change,
in milliseconds since 1970-01-01 UTC.
Full path to the file that stores the execution state of
the machine when it is in the
state.
When the machine is not in the Saved state, this attribute
null.
Full path to the folder that stores a set of rotated log files
recorded during machine execution. The most recent log file is
named VBox.log, the previous log file is
named VBox.log.1 and so on (upto VBox.log.3
in the current version).
Current snapshot of this machine.
A null object is returned if the machine doesn't
have snapshots.
Number of snapshots taken on this machine. Zero means the
machine doesn't have any snapshots.
Returns true if the current state of the machine is not
identical to the state stored in the current snapshot.
The current state is identical to the current snapshot right
after one of the following calls are made:
or
(issued on a
powered off or saved machine, for which
returns false)
The current state remains identical until one of the following
happens:
settings of the machine are changed
the saved state is discarded
the current snapshot is discarded
an attempt to execute the machine is made
For machines that don't have snapshots, this property is
always false.
Collection of shared folders for this machine (permanent shared
folders). These folders are shared automatically at machine startup
and available only to the guest OS installed within this machine.
New shared folders are added to the collection using
. Existing shared folders can be
removed using .
Synchronization mode between the host OS clipboard
and the guest OS clipboard.
Puts the given device to the specified position in
the boot order.
@todo [remove?]
If the machine can have more than one device of the given type
(such as hard disks), then a separate method should be used to
specify the boot order for individual devices. Using this method
in such cases will put the first device in the group
(for example, a hard disk attached as Master on the primary
IDE controller) to the given position.
To indicate that no any device is associated with the
given position, should be used.
@todo setHardDiskBootOrder(), setNetworkBootOrder()
Position in the boot order (1 to the total number of
devices the machine can boot from, as returned by
).
The type of the device used to boot at the given position.
Returns the device type that occupies the specified
position in the boot order.
@todo [remove?]
If the machine can have more than one device of the returned type
(such as hard disks), then a separate method should be used to
retrieve the individual device that occupies the given position.
If here are no devices at the given position, then
is returned.
@todo getHardDiskBootOrder(), getNetworkBootOrder()
Position in the boot order (1 to the total number of
devices the machine can boot from, as returned by
).
Device at the given position.
Attaches a virtual hard disk identified by the given UUID to the
given device slot of the given controller. The specified device
must not have another disk attached and the given hard disk must
not be already attached to this machine.
See for detailed information about
attaching hard disks.
You cannot attach a hard disk to a running machine. Also,
you cannot attach a hard disk to a newly created machine until
it is registered.Attaching a hard disk to a machine creates a lazy
attachment. In particular, no differeincing images are
actually created until is called to
commit all changed settings.UUID of the hard disk to attach.Controller to attach the hard disk to.Device slot to attach the hard disk to.
Returns the hard disk attached to the
given controller under the specified device number.
Detaches the hard disk drive attached to the given device slot
of the given controller.
See for detailed information about
attaching hard disks.
You cannot detach a hard disk from a running
machine.
Detaching a hard disk from a machine creates a lazy
detachment. In particular, if the detached hard disk is a
differencing hard disk, it is not actually deleted until
is called to commit all changed settings.
Keep in mind, that doing will
physically delete all detached differencing hard disks,
so be careful.
Controller to dettach the hard disk from.Device slot to dettach the hard disk from.
Returns the network adapter associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of adapters per every machine is defined by the
property,
so the maximum slot number is one less than that property's value.
Returns the serial port associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of serial ports per every machine is defined by the
property,
so the maximum slot number is one less than that property's value.
Returns the parallel port associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of parallel ports per every machine is defined by the
property,
so the maximum slot number is one less than that property's value.
Returns the extra data key name following the supplied key.
An error is returned if the supplied key does not exist.
NULL is returned if the supplied key is the last key.
When supplying NULL for the key, the first item is returned.
NextValue is an optional parameter and if supplied, the next
key's value is returned as well.
Returns associated extra data.Sets associated extra data.
Saves any changes to machine settings made since the session
has been opened or a new machine has been created, or since the
last call to or .
For registered machines, new settings become visible to all
other VirtualBox clients after successful invocation of this
method.
The method sends
notification event after the configuration has been successfully
saved (only for registered machines).
Calling this method is only valid on instances returned
by and on new machines
created by but not
yet registered, or on unregistered machines after calling
.
Discards any changes to the machine settings made since the session
has been opened or since the last call to
or .
Calling this method is only valid on instances returned
by and on new machines
created by or
opened by but not
yet registered, or on unregistered machines after calling
.
Deletes the settings file of this machine from disk.
The machine must not be registered in order for this operation
to succeed.
will return TRUE after this
method successfully returns.
Calling this method is only valid on instances returned
by and on new machines
created by or
opened by but not
yet registered, or on unregistered machines after calling
.
The deleted machine settings file can be restored (saved again)
by calling .
Returns a snapshot of this machine with the given UUID.
A null UUID can be used to obtain the first snapshot
taken on this machine. This is useful if you want to traverse
the whole tree of snapshots starting from the root.
UUID of the snapshot to getSnapshot object with the given UUID.
Returns a snapshot of this machine with the given name.
Name of the snapshot to findSnapshot object with the given name.
Sets the current snapshot of this machine.
In the current implementation, this operation is not
implemented.
UUID of the snapshot to set as the current snapshot.
Creates a new permanent shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
to read more about logical names.
Unique logical name of the shared folder.Full path to the shared folder in the host file system.
Removes the permanent shared folder with the given name previously
created by from the collection of
shared folders and stops sharing it.
Logical name of the shared folder to remove.
Returns @c true if the VM console process can activate the
console window and bring it to foreground on the desktop of
the host PC.
This method will fail if a session for this machine is not
currently open.
@c true if the console window can be shown and @c
false otherwise.
Activates the console window and brings it to foreground on
the desktop of the host PC. Many modern window managers on
many platforms implement some sort of focus stealing
prevention logic, so that it may be impossible to activate
a window without the help of the currently active
application. In this case, this method will return a non-zero
identifier that represents the top-level window of the VM
console process. The caller, if it represents a currently
active process, is responsible to use this identifier (in a
platform-dependent manner) to perform actual window
activation.
This method will fail if a session for this machine is not
currently open.
Platform-dependent identifier of the top-level VM console
window, or zero if this method has performed all actions
necessary to implement the show window semantics for
the given platform and/or VirtualBox front-end.
Notification when the guest mouse pointer shape has
changed. The new shape data is given.
Flag whether the pointer is visible.
Flag whether the pointer has an alpha channel.
The pointer hot spot x coordinate.
The pointer hot spot y coordinate.
Width of the pointer shape in pixels.
Height of the pointer shape in pixels.
Address of the shape buffer.
The buffer contains 1 bpp (bits per pixel) AND mask followed by 32 bpp XOR (color) mask.
For pointers without alpha channel the XOR mask pixels are 32 bit values: (lsb)BGR0(msb).
For pointers with alpha channel the XOR mask consists of (lsb)BGRA(msb) 32 bit values.
AND mask presents for pointers with alpha channel, so if the callback does not
support alpha, the pointer could be displayed as a normal color pointer.
The AND mask is 1 bpp bitmap with byte aligned scanlines. Size of AND mask,
therefore, is cbAnd = (width + 7) / 8 * height. The padding bits at the
end of any scanline are undefined.
The XOR mask follows the AND mask on the next 4 bytes aligned offset:
uint8_t *pXor = pAnd + (cbAnd + 3) & ~3
Bytes in the gap between the AND and the XOR mask are undefined.
XOR mask scanlines have no gap between them and size of XOR mask is:
cXor = width * 4 * height.
If 'shape' is equal to 0, only pointer visibility is being changed.
Notification when the mouse capabilities reported by the
guest have changed. The new capabilities are passed.
Notification when the guest OS executes the KBD_CMD_SET_LEDS command
to alter the state of the keyboard LEDs.
Notification when the execution state of the machine has changed.
The new state will be given.
Notification when a Guest Additions property changes.
Interested callees should query IGuest attributes to
find out what has changed.
Notification when a property of the
virtual DVD drive changes.
Interested callees should use IDVDDrive methods to find out what has
changed.
Notification when a property of the
virtual floppy drive changes.
Interested callees should use IFloppyDrive methods to find out what
has changed.
Notification when a property of one of the
virtual network adapters
changes. Interested callees should use INetworkAdapter methods and
attributes to find out what has changed.
Network adapter that is subject to change.
Notification when a property of one of the
virtual serial ports changes.
Interested callees should use ISerialPort methods and attributes
to find out what has changed.
Serial port that is subject to change.
Notification when a property of one of the
virtual parallel ports
changes. Interested callees should use ISerialPort methods and
attributes to find out what has changed.
Parallel port that is subject to change.
Notification when a property of the
VRDP server changes.
Interested callees should use IVRDPServer methods and attributes to
find out what has changed.
Notification when a property of the virtual
USB controller changes.
Interested callees should use IUSBController methods and attributes to
find out what has changed.
Notification when a USB device is attached to or detached from
the virtual USB controller.
This notification is sent as a result of the indirect
request to attach the device because it matches one of the
machine USB filters, or as a result of the direct request
issued by or
.
This notification is sent in case of both a succeeded and a
failed request completion. When the request succeeds, the @a
error parameter is @c null, and the given device has been
already added to (when @a attached is @c true) or removed from
(when @a attached is @c false) the collection represented by
. On failure, the collection
doesn't change and the @a error perameter represents the error
message describing the failure.
Device that is subject to state change.true if the device was attached
and false otherwise.
null on success or an error message object on
failure.
Notification when a shared folder is added or removed.
The @a scope argument defines one of three scopes:
global shared folders
(GlobalScope),
permanent shared folders of
the machine (MachineScope)
or transient shared folders
of the machine
(SessionScope). Interested
callees should use query the corresponding collections to find out
what has changed.
Sope of the notification.
Notification when an error happens during the virtual
machine execution.
There are three kinds of runtime errors:
fatal
non-fatal with retry
non-fatal warnings
Fatal errors are indicated by the @a fatal parameter set
to true. In case of fatal errors, the virtual machine
execution is always paused before calling this notification, and
the notification handler is supposed either to immediately save
the virtual machine state using
or power it off using .
Resuming the execution can lead to unpredictable results.
Non-fatal errors and warnings are indicated by the
@a fatal parameter set to false. If the virtual machine
is in the Paused state by the time the error notification is
received, it means that the user can try to resume the machine
execution after attempting to solve the probem that caused the
error. In this case, the notification handler is supposed
to show an appropriate message to the user (depending on the
value of the @a id parameter) that offers several actions such
as Retry, Save or Power Off. If the user
wants to retry, the notification handler should continue
the machine execution using the
call. If the machine execution is not Paused during this
notification, then it means this notification is a warning
(for example, about a fatal condition that can happen very soon);
no immediate action is required from the user, the machine
continues its normal execution.
Note that in either case the notification handler
must not perform any action directly on a thread
where this notification is called. Everything it is allowed to
do is to post a message to another thread that will then talk
to the user and take the corresponding action.
Currently, the following error identificators are known:
"HostMemoryLow"
"HostAudioNotResponding"
"VDIStorageFull"
This notification is not designed to be implemented by
more than one callback at a time. If you have multiple
IConsoleCallback instances registered on the given
IConsole object, make sure you simply do nothing but
return @c S_OK from all but one of them that does actual
user notification and performs necessary actions.
Whether the error is fatal or notError identificatorOptional error message
Notification when a call to
is made by a
front-end to check if a subsequent call to
can succeed.
The callee should give an answer appropriate to the current
machine state in the @a canShow argument. This answer must
remain valid at least until the next
machine state change.
This notification is not designed to be implemented by
more than one callback at a time. If you have multiple
IConsoleCallback instances registered on the given
IConsole object, make sure you simply do nothing but
return @c true and @c S_OK from all but one of them that
actually manages console window activation.
@c true if the console window can be shown and @c
false otherwise.
Notification when a call to
requests the console window to be activated and brought to
foreground on the desktop of the host PC.
This notification should cause the VM console process to
perform the requested action as described above. If it is
impossible to do it at a time of this notification, this
method should return a failure.
Note that many modern window managers on many platforms
implement some sort of focus stealing prevention logic, so
that it may be impossible to activate a window without the
help of the currently active application (which is supposedly
an initiator of this notification). In this case, this method
must return a non-zero identifier that represents the
top-level window of the VM console process. The caller, if it
represents a currently active process, is responsible to use
this identifier (in a platform-dependent manner) to perform
actual window activation.
This method must set @a winId to zero if it has performed all
actions necessary to complete the request and the console
window is now active and in foreground, to indicate that no
further action is required on the caller's side.
This notification is not designed to be implemented by
more than one callback at a time. If you have multiple
IConsoleCallback instances registered on the given
IConsole object, make sure you simply do nothing but
return@c S_OK from all but one of them that actually
manages console window activation.
Platform-dependent identifier of the top-level VM console
window, or zero if this method has performed all actions
necessary to implement the show window semantics for
the given platform and/or this VirtualBox front-end.
Whether the remote display connection is active.
How many times a client connected.
When the last connection was established, in milliseconds since 1970-01-01 UTC.
When the last connection was terminated or the current time, if
connection is still active, in milliseconds since 1970-01-01 UTC.
How many bytes were sent in last or current, if still active, connection.
How many bytes were sent in all connections.
How many bytes were received in last or current, if still active, connection.
How many bytes were received in all connections.
Login user name supplied by the client.
Login domain name supplied by the client.
The client name supplied by the client.
The IP address of the client.
The client software version number.
Public key exchange method used when connection was established.
Values: 0 - RDP4 public key exchange scheme.
1 - X509 sertificates were sent to client.
Machine object this console is sessioned with.
This is a convenience property, it has the same value as
of the corresponding session
object.
Current execution state of the machine.
This property always returns the same value as the corresponding
property of the IMachine object this console is sessioned with.
For the process, that owns (executes) the VM, this is the
preferrable way of quierying the VM state, because no IPC
calls are made.
Guest object.
Virtual keyboard object.
If the machine is not running, any attempt to use
the returned object will result in an error.
Virtual mouse object.
If the machine is not running, any attempt to use
the returned object will result in an error.
Virtual display object.
If the machine is not running, any attempt to use
the returned object will result in an error.
Debugging interface.
Collection of USB devices currently attached to the virtual
USB controller.
The collection is empty if the machine is not running.
List of USB devices currently attached to the remote VRDP client.
Once a new device is physically attached to the remote host computer,
it appears in this list and remains there until detached.
Collection of shared folders for the current session. These folders
are called transient shared folders because they are available to the
guest OS running inside the associated virtual machine only for the
duration of the session (as opposed to
which represent permanent shared
folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.
New shared folders are added to the collection using
. Existing shared folders can be
removed using .
Interface that provides information on Remote Display (VRDP) connection.
Starts the virtual machine execution using the current machine
state (i.e. its current execution state, current settings and
current hard disks).
If the machine is powered off or aborted, the execution will
start from the beginning (as if the real hardware were just
powered on).
If the machine is in the state,
it will continue its execution the point where the state has
beem saved.
#saveStateProgress object to track the operation completion.
Stops the virtual machine execution.
After this operation completes, the machine will go to the
PoweredOff state.
Resets the virtual machine.Pauses the virtual machine execution.Resumes the virtual machine execution.Send the ACPI power button event to the guest.
Saves the current execution state of a running virtual machine
and stops its executiuon.
After this operation completes, the machine will go to the
Saved state. Next time it is powered up, this state will
be restored and the machine will continue its execution from
the place where it was saved.
This operation differs from taking a snapshot to the effect
that it doesn't create new differencing hard disks. Also, once
the machine is powered up from the state saved using this method,
the saved state is deleted, so it will be impossible to return
to this state later.
On success, this method implicitly calls
to save all current machine
settings (including runtime changes to the DVD drive, etc.).
Together with the impossibility to change any VM settings when it is
in the Saved state, this guarantees the adequate hardware
configuration of the machine when it is restored from the saved
state file.
The machine must be in the Running or Paused state, otherwise
the operation will fail.
Progress object to track the operation completion.
Discards (deletes) the saved state of the virtual machine
previously created by . Next time the
machine is powered up, a clean boot will occur.
This operation is equivalent to resetting or powering off
the machine without doing a proper shutdown in the guest OS.
Gets the current activity type of a given device or device group.
Attaches a host USB device with the given UUID to the
USB controller of the virtual machine.
The device needs to be in one of the following states:
USBDeviceBusy,
USBDeviceAvailable or
USBDeviceHeld,
otherwise an error is immediately returned.
When the device state is
USBDeviceBusy,
an error may also be returned if the host computer
refuses to release it for some reason.
IUSBController::deviceFilters, USBDeviceStateUUID of the host USB device to attach.
Detaches an USB device with the given UUID from the USB controller
oif the virtual machine.
After this method succeeds, the VirtualBox server reinitiates
all USB filters as if the device were just physically attached
to the host, but filters of this machine are ignored to avoid
a possible automatic reattachment.
IUSBController::deviceFilters, USBDeviceStateUUID of the USB device to detach.Detached USB device.
Creates a transient new shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
to read more about logical names.
Unique logical name of the shared folder.Full path to the shared folder in the host file system.
Removes a transient shared folder with the given name previously
created by from the collection of
shared folders and stops sharing it.
Logical name of the shared folder to remove.
Saves the current execution state and all settings of the
machine and creates differencing images for all
normal (non-independent) hard disks.
This method can be called for a PoweredOff, Saved, Running or
Paused virtual machine. When the machine is PoweredOff, an
offline snapshot is created,
in all other cases -- an online snapshot.
The taken snapshot is always based on the
current
snapshot of the associated virtual machine and becomes
a new current snapshot.
This method implicitly calls to
save all current machine settings before taking an offline snapshot.
ISnapshot, Short name for the snapshot.Optional description of the snapshot.Progress object to track the operation completion.
Starts discarding the specified snapshot. The execution state
and settings of the associated machine stored in the snapshot
will be deleted. The contents of all differencing hard disks of
this snapshot will be merged with the contents of their
dependent child hard disks to keep the, disks valid (in other
words, all changes represented by hard disks being discarded
will be propagated to their child hard disks). After that, this
snapshot's differencing hard disks will be deleted. The parent
of this snapshot will become a new parent for all its child
snapshots.
If the discarded snapshot is the current one, its parent
snapshot will become a new current snapshot. The current machine
state is not directly affected in this case, except that
currently attached differencing hard disks based on hard disks
of the discarded snapshot will be also merged as described
above.
If the discarded snapshot is the first one (the root snapshot)
and it has exactly one child snapshot, this child snapshot will
become the first snapshot after discarding. If there are no
children at all (i.e. the first snapshot is the only snapshot of
the machine), both the current and the first snapshot of the
machine will be set to null. In all other cases, the first
snapshot cannot be discarded.
You cannot discard the snapshot if it
stores normal
(non-differencing) hard disks that have differencing hard disks based
on them. Snapshots of such kind can be discarded only when every
normal hard disk has either no children at all or exactly one
child. In the former case, the normal hard disk simply becomes unused
(i.e. not attached to any VM). In the latter case, it receives all the
changes strored in the child hard disk, and then it replaces the child
hard disk in the configuration of the corresponding snapshot or
machine.
Also, you cannot discard the snapshot if it stores hard disks
(of any type) having differencing child hard disks that belong
to other machines. Such snapshots can be only discarded after
you discard all snapshots of other machines containing "foreign"
child disks, or detach these "foreign" child disks from machines
they are attached to.
One particular example of the snapshot storing normal hard disks
is the first snapshot of a virtual machine that had normal hard
disks attached when taking the snapshot. Be careful when
discarding such snapshots because this implicitly commits
changes (made since the snapshot being discarded has been taken)
to normal hard disks (as described above), which may be not what
you want.
The virtual machine is put to
the Discarding state until
the discard operation is completed.
The machine must not be running, otherwise the operation
will fail.
Child hard disks of all normal hard disks of the discarded snapshot
must be accessible for this
operation to succeed. In particular, this means that all virtual
machines, whose hard disks are directly or indirectly based on the
hard disks of discarded snapshot, must be powered off.
Merging hard disk contents can be very time and disk space
consuming, if these disks are big in size and have many
children. However, if the snapshot being discarded is the last
(head) snapshot on the branch, the operation will be rather
quick.
Note that discarding the current snapshot
will imlicitly call to
make all current machine settings permanent.
UUID of the snapshot to discard.Progress object to track the operation completion.
This operation is similar to but
affects the current machine state. This means that the state stored
in the current snapshot will become a new current state, and
all current settings of the machine and changes stored in
differencing hard disks will be lost.
After this operation is successfully completed, new empty
differencing hard disks are created for all normal hard disks
of the machine.
If the current snapshot of the machine is an online snapshot,
the machine will go to the
saved state, so that the next time it is powered on,
the execution state will be restored from the current snapshot.
The machine must not be running, otherwise the operation
will fail.If the machine state is Saved prior to this operation,
the saved state file will be implicitly discarded (as if were called).Progress object to track the operation completion.
This method is equivalent to
doing discardSnapshot
(currentSnapshot.id(), ...) followed by
.
As a result, the machine will be fully restored from the
snapshot preceeding the current snapshot, while both the current
snapshot and the current machine state will be discarded.
If the current snapshot is the first snapshot of the machine (i.e. it
has the only snapshot), the current machine state will be
discarded before discarding the snapshot. In other words, the
machine will be restored from its last snapshot, before discarding
it. This differs from performing a single
call (note that no
will be possible after it) to the
effect that the latter will preserve the current state instead of
discarding it.
Unless explicitly mentioned otherwise, all remarks and
limitations of the above two methods also apply to this method.
The machine must not be running, otherwise the operation
will fail.
If the machine state is Saved
prior to this operation, the saved state file will be implicitly
discarded (as if were
called).
This method is more efficient than calling two above
methods separately: it requires less IPC calls and provides
a single progress object.
Progress object to track the operation completion.
Registers a new console callback on this instance. The methods of the
callback interface will be called by this instance when the appropriate
event occurs.
Unregisters the console callback previously registered using
.
Returns the platform-specific device identifier.
On DOS-like platforms, it is a drive name (e.g. R:).
On Unix-like platforms, it is a device name (e.g. /dev/hdc).
Returns a human readable description for the drive. This
description usually contains the product and vendor name. A
@c null string is returned if the description is not available.
Returns the unique device identifier for the drive. This
attribute is reserved for future use instead of
. Currently it is not used and may return
@c null on some platforms.
Searches this collection for a host drive with the given name.
The method returns an error if the given name does not
correspond to any host drive in the collection.
Name of the host drive to search forFound host drive object
Returns the platform-specific device identifier.
On DOS-like platforms, it is a drive name (e.g. A:).
On Unix-like platforms, it is a device name (e.g. /dev/fd0).
Returns a human readable description for the drive. This
description usually contains the product and vendor name. A
@c null string is returned if the description is not available.
Returns the unique device identifier for the drive. This
attribute is reserved for future use instead of
. Currently it is not used and may return
@c null on some platforms.
Searches this collection for a host drive with the given name.
The method returns an error if the given name does not
correspond to any host drive in the collection.
Name of the host drive to search forFound host drive objectReturns the host network interface name.Returns the interface UUID.
Searches this collection for a host network interface with the given name.
The method returns an error if the given name does not
correspond to any host network interface in the collection.
Name of the host network interface to search for.Found host network interface object.
Searches this collection for a host network interface with the given GUID.
The method returns an error if the given GUID does not
correspond to any host network interface in the collection.
GUID of the host network interface to search for.Found host network interface object.List of DVD drives available on the host.List of floppy drives available on the host.
List of USB devices currently attached to the host.
Once a new device is physically attached to the host computer,
it appears in this list and remains there until detached.
List of USB device filters in action.
When a new device is physically attached to the host computer,
filters from this list are applied to it (in order they are stored
in the list). The first matched filter will determine the
action
performed on the device.
Unless the device is ignored by these filters, filters of all
currently running virtual machines
() are applied to it.
IHostUSBDeviceFilter, USBDeviceStateList of host network interfaces currently defined on the host.Number of (logical) CPUs installed in the host system.(Approximate) speed of the host CPU in Megahertz.Description string of the host CPU.Amount of system memory in megabytes installed in the host system.Available system memory in the host system.Name of the host system's operating system.Host operating system's version string.Returns the current host time in milliseconds since 1970-01-01 UTC.
Creates a new adapter for Host Interface Networking.
Adapter name.
Created host interface object.
Progress object to track the operation completion.
Removes the given host network interface.
Adapter GUID.
Removed host interface object.
Progress object to track the operation completion.
Creates a new USB device filter. All attributes except
the filter name are set to null (any match),
active is false (the filter is not active).
The created filter can be added to the list of filters using
.
#USBDeviceFilters
Filter name. See
for more info.
Created filter object.
Inserts the given USB device to the specified position
in the list of filters.
Positions are numbered starting from 0. If the specified
position is equal to or greater than the number of elements in
the list, the filter is added to the end of the collection.
Duplicates are not allowed, so an attempt to insert a
filter that is already in the list, will return an
error.
#USBDeviceFiltersPosition to insert the filter to.USB device filter to insert.
Removes a USB device filter from the specified position in the
list of filters.
Positions are numbered starting from 0. Specifying a
position equal to or greater than the number of elements in
the list will produce an error.
#USBDeviceFiltersPosition to remove the filter from.Removed USB device filter.
The ISystemProperties interface represents global properties
of the given VirtualBox installation.
These properties define limits and default values for various
attributes and parameters.
Most of the properties are read-only, but some can be changed by
a user.
Minium guest system memory in Megabytes.Maximum guest system memory in Megabytes.Minimum guest video memory in Megabytes.Maximum guest video memory in Megabytes.Maximum size of a virtual disk image in Megabytes.
Number of network adapters associated with every
instance.
Number of serial ports associated with every
instance.
Number of parallel ports associated with every
instance.
Maximum device position in the boot order. This value corresponds
to the total number of devices a machine can boot from, to make it
possible to include all possible devices to the boot list.
Full path to the default directory used to create new or open
existing virtual disk images when an image file name contains no
path.
The initial value of this property is
<
VirtualBox_home>/VDI.
Setting this property to null will restore the
initial value.
When settings this property, the specified path can be
absolute (full path) or relative
to the
VirtualBox home directory.
When reading this property, a full path is
always returned.
The specified path may not exist, it will be created
when necessary.
,
Full path to the default directory used to create new or open
existing machines when a settings file name contains no
path.
The initial value of this property is
<
VirtualBox_home>/Machines.
Setting this property to null will restore the
initial value.
When settings this property, the specified path can be
absolute (full path) or relative
to the
VirtualBox home directory.
When reading this property, a full path is
always returned.
The specified path may not exist, it will be created
when necessary.
,
Path to the library that provides authentication
for VRDP clients. The library is used if authentication
type is set to "external" in the VM RemoteDisplay
configuration.
The initial value of this property is VRDPAuth.
That is library called VRDPAuth in one of default library
directories. A full path can be used as well.
The library name does not include the file extension.
Setting this property to null will restore the
initial value.
This specifies the default value for hardware virtualization
extensions. If enabled, virtual machines will make use of
hardware virtualization extensions such as Intel VT-x and
AMD SVM by default. This value can be overridden by each VM
using their property.
Guest OS identifier string.Human readable description of the guest OS.Recommended RAM size in Megabytes.Recommended video RAM size in Megabytes.Recommended hard disk size in Megabytes.
The IGuest interface represents a guest (virtual machine's) operating
system. It provides information about the Guest Additions and other
guest OS properties.
IConsole::guest
Identifier of the Guest OS type as reported by the Guest
Additions.
You may use to obtain
an IGuestOSType object representing details about the given
Guest OS type.
If Guest Additions are not installed, this value will be
the same as .
Flag whether the Guest Additions are installed and active
in which case their version will be returned by the
property.
Version of the Guest Additions (3 decimal numbers separated
by dots) or empty when the Additions are not installed. The
Additions may also report a version but yet not be active as
the version might be refused by VirtualBox (incompatible) or
other failures occured.
Flag whether seamless guest display rendering (seamless desktop
integration) is supported.
Store login credentials that can be queried by guest operating
systems with Additions installed. The credentials are transient
to the session and the guest may also choose to erase them. Note
that the caller cannot determine whether the guest operating system
has queried or made use of the credentials.
User name string, can be emptyPassword string, can be emptyDomain name (guest logon scheme specific), can be emtpy
Flag whether the guest should alternatively allow the user to
interactively specify different credentials. This flag might
not be supported by all versions of the Additions.
The IProgress interface represents a task progress object that allows
to wait for the completion of some asynchronous task.
The task consists of one or more operations that run sequentially,
one after one. There is an individual percent of completion of the
current operation and the percent of completion of the task as a
whole. Similarly, you can wait for the completion of a particular
operation or for the completion of the whole task.
Every operation is identified by a number (starting from 0)
and has a separate description.
ID of the task.Description of the task.Initiator of the task.Whether the task can be interrupted.
Current task progress value in percent.
This value depends on how many operations are already complete.
Whether the task has been completed.Whether the task has been canceled.
Result code of the progress task.
Valid only if is true.
Extended information about the unsuccessful result of the
progress operation. May be NULL when no extended information
is available.
Valid only if is true and
indicates a failure.
Number of operations this task is divided into.
Every task consists of at least one operation.
Number of the operation being currently executed.
Description of the operation being currently executed.
Current operation progress value in percent.
Waits until the task is done (including all operations) with a
given timeout.
Timeout value in milliseconds.
Specify -1 for an indefinite wait.
Waits until the given operation is done with a given timeout.
Number of the operation to wait for.
Must be less than .
Timeout value in milliseconds.
Specify -1 for an indefinite wait.
Cancels the task.
If is false, then
this method will fail.
The ISnapshot interface represents a snapshot of the virtual
machine.
The snapshot stores all the information about a virtual
machine necessary to bring it to exactly the same state as it was at
the time of taking the snapshot. The snapshot includes:
all settings of the virtual machine (i.e. its hardware
configuration: RAM size, attached hard disks, etc.)
the execution state of the virtual machine (memory contents,
CPU state, etc.).
Snapshots can be offline (taken when the VM is powered off)
or online (taken when the VM is running). The execution
state of the offline snapshot is called a zero execution state
(it doesn't actually contain any information about memory contents
or the CPU state, assuming that all hardware is just powered off).
Snapshot branches
Snapshots can be chained. Chained snapshots form a branch where
every next snapshot is based on the previous one. This chaining is
mostly related to hard disk branching (see
description). This means that every time a new snapshot is created,
a new differencing hard disk is implicitly created for all normal
hard disks attached to the given virtual machine. This allows to
fully restore hard disk contents when the machine is later reverted
to a particular snapshot.
In the current implelemtation, multiple snapshot branches within one
virtual machine are not allowed. Every machine has a signle branch,
and operation adds a new
snapshot to the top of that branch.
Existings snapshots can be discarded using
.
Current snapshot
Every virtual machine has a current snapshot, identified by
. This snapshot is used as
a base for the current machine state (see below), to the effect
that all normal hard disks of the machine and its execution
state are based on this snapshot.
In the current implementation, the current snapshot is always the
last taken snapshot (i.e. the head snapshot on the branch) and it
cannot be changed.
The current snapshot is null if the machine doesn't have
snapshots at all; in this case the current machine state is just
current settings of this machine plus its current execution state.
Current machine state
The current machine state is what represened by IMachine instances got
directly from IVirtualBox
using getMachine(), findMachine(), etc. (as opposed
to instances returned by ). This state
is always used when the machine is powered
on.
The current machine state also includes the current execution state.
If the machine is being currently executed
( is
and above), its execution state is just what's happening now.
If it is powered off ( or
), it has a zero execution state.
If the machine is saved (), its
execution state is what saved in the execution state file
().
If the machine is in the saved state, then, next time it is powered
on, its execution state will be fully restored from the saved state
file and the execution will continue from the point where the state
was saved.
Similarly to snapshots, the current machine state can be discarded
using .
Taking and discarding snapshots
The table below briefly explains the meaning of every snapshot
operation:
Operation
Meaning
Remarks
Save the current state of the virtual machine, including all
settings, contents of normal hard disks and the current modifications
to immutable hard disks (for online snapshots)
The current state is not changed (the machine will continue
execution if it is being executed when the snapshot is
taken)
Forget the state of the virtual machine stored in the snapshot:
dismiss all saved settings and delete the saved execution state (for
online snapshots)
Other snapshots (including child snapshots, if any) and the
current state are not directly affected
Restore the current state of the virtual machine from the state
stored in the current snapshot, including all settings and hard disk
contents
The current state of the machine existed prior to this operation
is lost
Completely revert the virtual machine to the state it was in
before the current snapshot has been taken
The current state, as well as the current snapshot, are
lost
UUID of the snapshot.Short name of the snapshot.Optional description of the snapshot.
Time stamp of the snapshot, in milliseconds since 1970-01-01 UTC.
true if this snapshot is an online snapshot and
false otherwise.
When this attribute is true, the
attribute of the
object associated with this snapshot
will point to the saved state file. Otherwise, it will be
null.
Virtual machine this snapshot is taken on. This object
stores all settings the machine had when taking this snapshot.
The returned machine object is immutable, i.e. no
any settings can be changed.
Parent snapshot (a snapshot this one is based on).
It's not an error to read this attribute on a snapshot
that doesn't have a parent -- a null object will be
returned to indicate this.
Child snapshots (all snapshots having this one as a parent).
In the current implementation, there can be only one
child snapshot, or no children at all, meaning this is the
last (head) snapshot.
Virtual hard disk storage type.
IHardDisk
Virtual Disk Image, VDI (a regular file in the file
system of the host OS, see )
iSCSI Remote Disk (a disk accessed via the Internet
SCSI protocol over a TCP/IP network, see
)
VMware Virtual Machine Disk image (a regular file in the file
system of the host OS, see )
Virtual hard disk type.
IHardDisk
Normal hard disk (attached directly or indirectly, preserved
when taking snapshots).
Immutable hard disk (attached indirectly, changes are wiped out
after powering off the virtual machine).
Write through hard disk (attached directly, ignored when
taking snapshots).
Harddisk object this attachment is about.Disk controller ID of this attachment.Device number of the attachment.
The IHardDisk interface represents a virtual hard disk drive
used by virtual machines.
The virtual hard disk drive virtualizes the hard disk hardware and
looks like a regular hard disk inside the virtual machine and
the guest OS.
Storage Types
The storage type of the
virtual hard disk determines where and how it stores its data
(sectors). Currently, the following storage types are supported:
Virtual Disk Image (VDI), a regular file in the file system
of the host OS (represented by the
interface). This file has a special format optimized so that unused
sectors of data occupy much less space than on a physical hard disk.
iSCSI Remote Disk, a disk accessed via the Internet SCSI
protocol over a TCP/IP network link (represented by the
interface).
VMware VMDK Image, a regular file in the file system of the
host OS (represented by the interface).
The storage type of the particular hard disk object is indicated by
the property.
Each storage type is represented by its own interface (as shown
above), that allows to query and set properties and perform
operations specific to that storage type. When an IHardDisk object
reports it uses some particular storage type, it also guaranteed to
support the corresponding interface which you can query. And vice
versa, every object that supports a storage-specific interface, also
supports IHardDisk.
Virtual Hard Disk Types
The type of the virtual hard disk
determines how it is attached to the virtual machine when you call
and what happens to it when
a snapshot of the virtual machine is
taken.
There are three types of virtual hard disks:
Normal
Immutable
Writethrough
The virtual disk type is indicated by the
property. Each of the above types is described in detail further
down.
There is also a forth, "hidden" virtual disk type:
Differencing. It is "hidden" because you cannot directly
create hard disks of this type -- they are automatically created by
VirtualBox when necessary.
Differencing Hard Disks
Unlike disks of other types (that are similar to real hard disks),
the differencing hard disk does not store the full range of data
sectors. Instead, it stores only a subset of sectors of some other
disk that were changed since the differencing hard disk has been
created. Thus, every differencing hard disk has a parent hard disk
it is linked to, and represents the difference between the initial
and the current hard disk state. A differencing hard disk can be
linked to another differencing hard disk -- this way, differencing
hard disks can form a branch of changes. More over, a given virtual
hard disk can have more than one differencing hard disk linked to
it.
A disk the differencing hard disk is linked to (or, in other words,
based on) is called a parent hard disk and is accessible through
the property. Similarly, all existing differencing
hard disks for a given parent hard disk are called its child hard
disks (and accessible through the property).
All differencing hard disks use Virtual Disk Image files to store
changed sectors. They have the property set to
Normal, but can be easily distinguished from normal hard disks using
the property: all differencing hard disks have
a parent, while all normal hard disks don't.
When the virtual machine makes an attempt to read a sector that is
missing in a differencing hard disk, its parent is accessed to
resolve the sector in question. This process continues until the
sector is found, or until the root hard disk is encountered, which
always contains all sectors. As a consequence,
The virtual hard disk geometry seen by the guest OS is
always defined by the root hard disk.
All hard disks on a branch, up to the root, must be
for a given differencing hard disk in order
to let it function properly when the virtual machine is
running.
Differencing hard disks can be implicitly created by VirtualBox in
the following cases:
When a hard disk is indirectly attached to the virtual
machine using . In this
case, all disk writes performed by the guest OS will go to the
created diffferencing hard disk, as opposed to the
direct attachment, where all changes are written to the
attached hard disk itself.
When a snapshot of the virtual machine
is taken. After that, disk writes to hard disks the differencing
ones have been created for, will be directed to those differencing
hard disks, to preserve the contents of the original disks.
Whether to create a differencing hard disk or not depends on the
type of the hard disk attached to the virtual machine. This is
explained below.
Note that in the current implementation, only the
storage type is used to
represent differencing hard disks. In other words, all
differencing hard disks are
objects.
Normal Hard Disks
Normal hard disks are the most commonly used virtual hard disk. A
normal hard disk is attached to the machine directly if it is not
already attached to some other machine. Otherwise, an attempt to
make an indirect attachment through a differencing hard disk will be
made. This attempt will fail if the hard disk is attached to a
virtual machine without snapshots (because it's impossible to create
a differencing hard disk based on a hard disk that is subject to
change).
When an indirect attachment takes place, in the simplest case, where
the machine the hard disk is being attached to doesn't have
snapshots, the differencing hard disk will be based on the normal
hard disk being attached. Otherwise, the first (i.e. the most
recent) descendant of the given normal hard disk found in the
current snapshot branch (starting from the current snapshot and
going up to the root) will be actually used as a base.
Note that when you detach an indirectly attached hard disk from the
machine, the created differencing hard disk image is simply
deleted, so all changes are lost. If you attach the
same disk again, a clean differencing disk will be created based on
the most recent child, as described above.
When taking a snapshot, the contents of all normal hard disks (and
all differencing disks whose roots are normal hard disks) currently
attached to the virtual machine is preserved by creating
differencing hard disks based on them.
Immutable Hard Disks
Immutable hard disks can be used to provide a sort of read-only
access. An immutable hard disk is always attached indirectly. The
created differencing hard disk is automatically wiped out (recreated
from scratch) every time you power off the virtual machine. Thus,
the contents of the immutable disk remains unchanged between runs.
Detaching an immutable hard disk deletes the differencing disk
created for it, with the same effect as in case with normal hard
disks.
When taking a snapshot, the differencing part of the immutable
hard disk is cloned (i.e. copied to a separate Virtual Disk Image
file) without any changes. This is necessary to preserve the exact
virtual machine state when you create an online snapshot.
Writethrough Hard Disks
Hard disks of this type are always attached directly. This means
that every given writethrough hard disk can be attached only to one
virtual machine at a time.
It is impossible to take a snapshot of a virtual machine with the
writethrough hard disk attached, because taking a snapshot implies
saving the execution state and preserving the contents of all hard
disks, but writethrough hard disks cannot be preserved. Preserving
hard disk contents is necessary to ensure the guest OS stored in the
snapshot will get the same hard disk state when restored, which is
especially important when it has open file handles or when there are
cached files and directories stored in memory.
Creating, Opening and Registering Hard Disks
Non-differencing hard disks are either created from scratch using
or opened from a VDI file
using (only for hard
disks using the VirtualDiskImage storage type). Once a hard disk is
created or opened, it needs to be registered using
to make it available for
attaching to virtual machines. See the documentation of individual
interfaces for various storage types to get more information.
Differencing hard disks are never created explicitly and cannot
be registered or unregistered; they are automatically registered
upon creation and deregistered when deleted.
More about Indirect Hard Disk Attachments
Normally, when you attach a hard disk to the virtual machine, and then
query the corresponding attachment using
or
you will get the same hard
disk object, whose UUID you passed earlier to
. However, when an indirect
attachment takes place, calling
will return a differencing hard disk object, that is either based on the
attached hard disk or on another differencing hard disk, the attached
hard disk is eventually a root for (as described above). In both cases
the returned hard disk object is the object the virtual machine actually
uses to perform disk writes to.
Regardless of whether the attachment is direct or indirect, the
property of the attached disk will contain an
UUID of the machine object
has been called on.
Note that both and
are lazy operations. In
particular, this means that when an indirect attachment is made,
differencing hard disks are not created until machine settings are
committed using . Similarly, when a
differencing hard disk is detached, it is not deleted until
is called. Calling
cancels all lazy attachments or
detachments made since the last commit and effectively restores the
previous set of hard disks.
Hard Disk Accessibility
The attribute of the hard disk object
defines the accessibility state of the respective hard disk storage
(for example, the VDI file for IVirtualDiskImage objects). If the
value of this attribute is false then some hard disk
attributes may contain invalid or outdated values (for example, the
virtual or the actual hard disk size) until a new accessibility
check is done that returns true (see the attribute
description for more details).
Because of the possible slowness of the accessibility check,
it is not implicitly performed upon the VirtualBox server startup
(to prevent the application freeze). In partcular, this means that
if you try to read hard disk properties that depend on the
accessibility state without first reading the value of the
attribute and ensuring it's value is
true, you will get wrong (zero) values.
UUID of the hard disk. For newly created hard disk objects,
this value is a randomly generated UUID.
Optional description of the hard disk. For a newly created hard
disk, this value is null.
For some storage types, reading this property is
meaningless when is false.
Also, you cannot assign it a new value in this case.
Storage type of this hard disk.
Storage type is defined when you open or create a new hard disk
object.
Storage location of this hard disk. The returned string serves
for informational purposes only. To access detailed information
about the storage, query the appropriate storage-specific
interface.
Type (behavior) of this hard disk. For a newly created or opened hard
disk, this value is .
In the current implementation, this property can be
changed only on an unregistered hard disk object. This may be
changed later.
Parent of this hard disk (a hard disk this one is directly based
on).
Only differencing hard disks have parents, so a null
object is returned for a hard disk of any other type.
Children of this hard disk (all differencing hard disks for
those this one is a parent). An empty collection is returned, if
this hard disk doesn't have any children.
Root hard disk of this hard disk. If this hard disk is a
differencing hard disk, its root hard disk is the first disk on
the branch. For all other types of hard disks, this property
returns the hard disk object itself (i.e. the same object you
read this property on).
Whether the hard disk storage is currently accessible or not.
The storage, for example, can be unaccessible if it doesn't exist
or if it is placed on a network resource that is not available
by the time this attribute is read.
In the current implementation, the value of this property is
also false if this hard disk is attached to a running
virtual machine.
The accessibility check is performed automatically every time
this attribute is read. You should keep it in mind that this check
may be slow and can block the calling thread for a long time (for
example, if the network resourse where the hard disk storage is
located is down).
The following attributes of the hard disk object are considered
to be invalid when this attribute is false:
Individual hard disk storage type interfaces may define
additional attributes that depend on the accessibility state.
Whether the whole hard disk branch, starting from this image and
going through its ancestors up to the root, is accessible or
not.
This property makes sense only for differencing hard disks. For
all other types of hard disks it returns the same value as
.
String describing the reason of inaccessibility of this hard
disk after the last call to that
returned false. A null value of this property
means that the last accessibility check returned true.
Logical size of this hard disk (in megabytes), as reported to the
guest OS running inside the vurtual machine this disk is
attached to. The logical size is defined when the hard disk is
created.
Reading this property on a differencing hard disk will
return the size of its root hard disk.Reading this property is meaningless when
is false
Physical size of the storage used to store hard disk data (in
bytes). This size is usually less than the logical size of the
hard disk, depending on the storage type and on the size
optimization method used for that storage.
Reading this property is meaningless when
is false
UUID of the machine this hard disk is attached to (or a
null UUID if it is not attached).
Immutable hard disks are never attached directly, so this
attribute is always null in this case.
UUID of the snapshot this hard disk
is associated with (or null UUID if it is not
associated with any snapshot).
This attribute is always null if
is null.
Writethrough hard disks are always attached directly and cannot be
involved when taking snapshots, so this attribute is meaningless and
therefore always null.
Starts creating a clone of this hard disk. The cloned hard disk
will use the specified Virtual Disk Image file as a storage and
will contain exactly the same sector data as the hard disk being
cloned, except that a new UUID for the clone will be randomly
generated.
The specified image file path can be absolute (full path) or
relative to the VirtualBox
home directory. If only a file name without any path is
given, the
default VDI folder will be used as a path to the image
file.
It is an error to use the object returned in the @a image
parameter until the returned @a progress object reports success.
In the current implementation, only non-differencing hard
disks can be cloned.Path to a file where to store the cloned hard disk.Cloned hard disk object.Progress object to track the operation completion.
The IVirtualDiskImage interface represents virtual
hard disks that use virtual disk image files to store hard disk
data.
Hard disks using virtual disk images can be either opened using
or created from
scratch using .
Objects that support this interface also support the
interface.
When a new hard disk object is created from scatch, an image file for it
is not automatically created. To do it, you need to specify a
valid file path, and call
or .
When it is done, the hard disk object can be registered by calling
and then
attached to
virtual machines.
The description of the
Virtual Disk Image is stored in the image file. For this reason,
changing the value of this property requires the hard disk to be
accessible. The description
of a registered hard disk can be changed only if a virtual machine
using it is not running.
Full file name of the virtual disk image of this hard disk. For
newly created hard disk objects, this value is null.
When assigning a new path, it can be absolute (full path) or
relative to the VirtualBox
home directory. If only a file name without any path is
given, the
default VDI folder will be used as a path to the image
file.
When reading this propery, a full path is always returned.
This property cannot be changed when
returns true. In this case, the specified file name can be
absolute (full path) or relative to
the VirtualBox home
directory. If only a file name without any path is given,
the default VDI
folder will be used as a path to the image file.
Whether the virual disk image is created or not. For newly
created hard disk objects or after a successful invocation of
, this value is false until
or is called.
Starts creating a dymically expanding hard disk image in the
background. The previous image associated with this object, if
any, must be deleted using , otherwise
the operation will fail.
After the returned progress object reports that the
operation is complete, this hard disk object can be
registered
within this VirtualBox installation.Maximum logical size of the hard disk in megabytes.Progress object to track the operation completion.
Starts creating a fixed-size hard disk image in the background. The
previous image, if any, must be deleted using
, otherwise the operation will fail.
After the returned progress object reports that the
operation is complete, this hard disk object can be
registered
within this VirtualBox installation.
Logical size of the hard disk in megabytes.Progress object to track the operation completion.
Deletes the existing hard disk image. The hard disk must not be
registered within this VirtualBox installation, otherwise the
operation will fail.
After this operation succeeds, it will be impossible to
register the hard disk until the image file is created
again.
This operation is valid only for non-differencing hard disks, after
they are unregistered using
.
The IISCSIHardDisk interface represents virtual
hard disks that use the Internet SCSI (iSCSI) protocol to store
hard disk data on remote machines.
iSCSI hard disks can be created using
. When a new hard disk object
is created, all its properties are uninitialized. After you assign some
meaningful values to them, the hard disk object can be registered by
calling and
then attached to virtual
machines.
Objects that support this interface also support the
interface.
The description
of the iSCSI hard disk is stored in the VirtualBox
configuration file, so it can be changed (at appropriate
times) even when
accessible returns
false. However, the hard disk must not be
attached to a running virtual machine.
In the current imlementation, the type of all iSCSI hard disks
is Writethrough
and cannot be changed.
iSCSI Server name (either a host name or an IP address). For
newly created hard disk objects, this value is null.
iSCSI Server port. For newly created hard disk objects, this
value is 0, which means the default port.
iSCSI target name. For newly created hard disk objects, this
value is null.
Logical unit number for this iSCSI disk. For newly created hard
disk objects, this value is 0.
User name for accessing this iSCSI disk. For newly created hard
disk objects, this value is null.
User password for accessing this iSCSI disk. For newly created
hard disk objects, this value is null.
The IVMDKImage interface represents virtual hard
disks that use VMware Virtual Machine Disk image files to store
hard disk data.
Hard disks using VMDK images can be either opened using
or created from
scratch using .
Objects that support this interface also support the
interface.
When a new hard disk object is created from scatch, an image file for it
is not automatically created. To do it, you need to specify a
valid file path, and call
or .
When it is done, the hard disk object can be registered by calling
and then
attached to
virtual machines.
The description
of the VMDK hard disk is stored in the VirtualBox
configuration file, so it can be changed (at appropriate
times) even when
accessible returns
false. However, the hard disk must not be
attached to a running virtual machine.
In the current imlementation, the type of all VMDK hard disks
is Writethrough
and cannot be changed.
Full file name of the VMDK image of this hard disk. For
newly created hard disk objects, this value is null.
When assigning a new path, it can be absolute (full path) or relative
to the VirtualBox home
directory. If only a file name without any path is given,
the default VDI
folder will be used as a path to the image file.
When reading this propery, a full path is always returned.
This property cannot be changed when
returns true. In this case, the specified file name can be
absolute (full path) or relative to
the VirtualBox home
directory. If only a file name without any path is given,
the default VDI
folder will be used as a path to the image file.
Whether the virual disk image is created or not. For newly created
hard disk objects or after a successful invocation of
, this value is false until
or
is called.
Starts creating a dymically expanding hard disk image in the
background. The previous image associated with this object, if
any, must be deleted using , otherwise
the operation will fail.
After the returned progress object reports that the
operation is complete, this hard disk object can be
registered within
this VirtualBox installation.
Maximum logical size of the hard disk in megabytes.Progress object to track the operation completion.
Starts creating a fixed-size hard disk image in the background. The
previous image, if any, must be deleted using
, otherwise the operation will fail.
After the returned progress object reports that the
operation is complete, this hard disk object can be
registered within
this VirtualBox installation.
Logical size of the hard disk in megabytes.Progress object to track the operation completion.
Deletes the existing hard disk image. The hard disk must not be
registered within this VirtualBox installation, otherwise the
operation will fail.
After this operation succeeds, it will be impossible to register the
hard disk until the image file is created again.
This operation is valid only for non-differencing hard disks, after
they are unregistered using
.
Searches this collection for a DVD image with the given disk path.
The method returns an error if the given name does not
correspond to any DVD image in the collection.
Name of the DVD image's file system location.Found DVD image object
The IDVDImage interface represents a file containing the image
of the DVD or CD disk.
Image Accessibility
The attribute of the image object
defines the accessibility state of the image file. If the
value of this attribute is false then some image
attributes may contain invalid or outdated values (for example, the
the image file size) until a new accessibility
check is done that returns true.
Because of the possible slowness of the accessibility check,
it is not implicitly performed upon the VirtualBox server startup
(to prevent the application freeze). In partcular, this means that
if you try to read image properties that depend on the
accessibility state without first reading the value of the
attribute and ensuring it's value is
true, you will get wrong (zero) values.
UUID of the CD/DVD image.Full file name of the CD/DVD image.
Whether the CD/DVD image is currently accessible or not.
The image, for example, can be unaccessible if it is placed
on a network share that is not available by the time
this property is read.
The accessibility check is performed automatically every time
this attribute is read. You should keep it in mind that this check
may be slow and can block the calling thread for a long time (for
example, if the network share where the image is located is down).
The following attributes of the image object are considered
to be invalid when this attribute is false:
Size of the ISO image in bytes.Current drive state.
When a host drive is mounted and passthrough is enabled
the guest will be able to directly send SCSI commands to
the host drive. This enables the guest to use CD/DVD writers
but is potentially dangerous.
Mounts the specified image.Captures the specified host drive.Unmounts the currently mounted image/device.Gets the currently mounted image ID.Gets the currently mounted image ID.
Searches this collection for a floppy image with the given disk path.
The method returns an error if the given name does not
correspond to any floppy image in the collection.
Name of the floppy image's file system location.Found Floppy image object
The IFloppyImage interface represents a file containing the image
of a floppy disk.
Image Accessibility
The attribute of the image object
defines the accessibility state of the image file. If the
value of this attribute is false then some image
attributes may contain invalid or outdated values (for example, the
the image file size) until a new accessibility
check is done that returns true.
Because of the possible slowness of the accessibility check,
it is not implicitly performed upon the VirtualBox server startup
(to prevent the application freeze). In partcular, this means that
if you try to read image properties that depend on the
accessibility state without first reading the value of the
attribute and ensuring it's value is
true, you will get wrong (zero) values.
UUID of the floppy image.Full file name of the floppy image.
Whether the floppy image is currently accessible or not.
The image, for example, can be unaccessible if it is placed
on a network share that is not available by the time
this property is read.
The accessibility check is performed automatically every time
this attribute is read. You should keep it in mind that this check
may be slow and can block the calling thread for a long time (for
example, if the network share where the image is located is down).
The following attributes of the image object are considered
to be invalid when this attribute is false:
Size of the floppy image in bytes.
Flag whether the floppy drive is enabled. If it is disabled,
the floppy drive will not be reported to the guest.
Current drive state.Mounts the specified image.Captures the specified host drive.Unmounts the currently mounted image/device.Gets the currently mounted image ID.Gets the currently mounted image ID.Sends a scancode to the keyboard.Sends an array of scancode to the keyboard.Sends the Ctrl-Alt-Del sequence to the keyboard.
The IMouse interface represents a virtual mouse device.
Whether the guest OS supports absolute mouse pointer positioning
or not.
VirtualBox Guest Tools need to be installed to the guest OS
in order to enable absolute mouse positioning support.
You can use the
callback to be instantly informed about changes of this attribute
during virtual machine execution.
Initiates a mouse event using relative pointer movements
along x and y axis.
Amout of pixels the mouse should move to the right.
Negative values move the mouse to the left.
Amout of pixels the mouse should move downwards.
Negative values move the mouse upwards.
Amount of mouse wheel moves.
Positive values describe clockwize wheel rotations,
negative values describe counterclockwise rotations.
The current state of mouse buttons. Every bit represents
a mouse button as follows:
Bit 0 (0x01)
left mouse button
Bit 1 (0x02)
right mouse button
Bit 2 (0x04)
middle mouse button
A value of 1 means the corresponding button is pressed.
otherwise it is released.
Positions the mouse pointer using absolute x and y coordinates.
These coordinates are expressed in pixels and
start from [1,1] which corresponds to the top left
corner of the virtual display.
This method will have effect only if absolute mouse
positioning is supported by the guest OS.
X coordinate of the pointer in pixels, starting from 1.
Y coordinate of the pointer in pixels, starting from 1.
Amout of mouse wheel moves.
Positive values describe clockwize wheel rotations,
negative values describe counterclockwise rotations.
The current state of mouse buttons. Every bit represents
a mouse button as follows:
Bit 0 (0x01)
left mouse button
Bit 1 (0x02)
right mouse button
Bit 2 (0x04)
middle mouse button
A value of 1 means the corresponding button is pressed.
otherwise it is released.
Format of the video memory buffer. Constants represented by this enum can
be used to test for particular values of . See also .
See also www.fourcc.org for more informantion about FOURCC pixel formats.
Unknown buffer format. The user may not assume any particular
format of the buffer.
Basic RGB format. determines
the bit layout.
Address of the start byte of the framebuffer.Framebuffer width, in pixels.Framebuffer height, in pixels.
Color depth, in bits per pixel. When is FOURCC_RGB, valid values
are: 8, 15, 16, 24 and 32.
Scan line size, in bytes. When is FOURCC_RGB, the
size of the scan line must be aligned to 32 bits.
Framebuffer pixel format. It's either one of the values defined by or a raw FOURCC code.
This attribute must never return -- the format of the buffer
points to must be always known.
Defines whether this framebuffer uses the virtual video card's memory
buffer (guest VRAM) directly or not. See for more information.
Hint from the framebuffer about how much of the standard
screen height it wants to use for itself. This information is
exposed to the guest through the VESA BIOS and VMMDev interface
so that it can use it for determining its video mode table. It
is not guaranteed that the guest respects the value.
An alpha-blended overlay which is superposed over the framebuffer.
The initial purpose is to allow the display of icons providing
information about the VM state, including disk activity, in front
ends which do not have other means of doing that. The overlay is
designed to controlled exclusively by IDisplay. It has no locking
of its own, and any changes made to it are not guaranteed to be
visible until the affected portion of IFramebuffer is updated. The
overlay can be created lazily the first time it is requested. This
attribute can also return NULL to signal that the overlay is not
implemented.
Locks the framebuffer.
Gets called by the IDisplay object where this framebuffer is
bound to.
Unlocks the framebuffer.
Gets called by the IDisplay object where this framebuffer is
bound to.
Informs about an update.
Gets called by the display object where this buffer is
registered.
Requests a size and pixel format change.
There are two modes of working with the video buffer of the virtual
machine. The indirect mode implies that the IFramebuffer
implementation allocates a memory buffer for the requested display mode
and provides it to the virtual machine. In direct mode, the
IFramebuffer implementation uses the memory buffer allocated and owned
by the virtual machine. This buffer represents the video memory of the
emulated video adapter (so called guest VRAM). The direct mode is
usually faster because the implementation gets a raw pointer to the
guest VRAM buffer which it can directly use for visualising the contents
of the virtual display, as opposed to the indirect mode where the
contents of guest VRAM are copied to the memory buffer provided by
the implementation every time a display update occurs.
It is important to note that the direct mode is really fast only when
the implementation uses the given guest VRAM buffer directly, for
example, by blitting it to the window representing the virtual machine's
display, which saves at least one copy operation comparing to the
indirect mode. However, using the guest VRAM buffer directly is not
always possible: the format and the color depth of this buffer may be
not supported by the target window, or it may be unknown (opaque) as in
case of text or non-linear multi-plane VGA video modes. In this case,
the indirect mode (that is always available) should be used as a
fallback: when the guest VRAM contents are copied to the
implementation-provided memory buffer, color and format conversion is
done authomatically by the underlying code.
The @a pixelFormat parameter defines whether the direct mode is
available or not. If @a pixelFormat is then direct access to the guest
VRAM buffer is not available -- the @a VRAM, @a bitsPerPixel and @a
bytesPerLine parameters must be ignored and the implementation must use
the indirect mode (where it provides its own buffer in one of the
supported formats). In all other cases, @a pixelFormat together with @a
bitsPerPixel and @a bytesPerLine define the format of the video memory
buffer pointed to by the @a VRAM parameter and the implementation is
free to choose which mode to use. To indicate that this framebuffer uses
the direct mode, the implementation of the
attribute must return true and must
return exactly the same address that is passed in the @a VRAM parameter
of this method; otherwise it is assumed that the indirect strategy is
chosen.
The @a width and @a height parameters represent the size of the
requested display mode in both modes. In case of indirect mode, the
provided memory buffer should be big enough to store data of the given
display mode. In case of direct mode, it is guaranteed that the given @a
VRAM buffer contains enough space to represent the display mode of the
given size. Note that this framebuffer's and attributes must return exactly the same values as
passed to this method after the resize is completed (see below).
The @a finished output parameter determines if the implementation has
finished resizing the framebuffer or not. If, for some reason, the
resize cannot be finished immediately during this call, @a finished
must be set to @c false, and the implementation must call
after it has returned from
this method as soon as possible. If @a finished is @c false, the
machine will not call any framebuffer methods until
is called.
Note that if the direct mode is chosen, the ,
and attributes of
this framebuffer must return exactly the same values as specified in the
parameters of this method, after the resize is completed. If the
indirect mode is chosen, these attributes must return values describing
the format of the implementation's own memory buffer points to. Note also that the
value must always correlate with . Note that
the attribute must never return regardless of the selected mode.
This method is called by the IDisplay object under the
provided by this IFramebuffer
implementation. If this method returns @c false in @a finished, then
this lock is not released until
is called.
Logical screen number. Must be used in the corresponding call to
if this call is made.
Pixel format of the memory buffer pointed to by @a VRAM.
See also .
Pointer to the virtual video card's VRAM (may be @c null).Color depth, bits per pixel.Size of one scan line, in bytes.Width of the guest display, in pixels.Height of the guest display, in pixels.
Can the VM start using the new framebuffer immediately
after this method returns or it should wait for
.
Returns whether the given acceleration operation is supported
by the IFramebuffer implementation. If not, the display object
will not attempt to call the corresponding IFramebuffer entry
point. Even if an operation is indicated to supported, the
IFramebuffer implementation always has the option to return non
supported from the corresponding acceleration method in which
case the operation will be performed by the display engine. This
allows for reduced IFramebuffer implementation complexity where
only common cases are handled.
Returns whether the framebuffer implementation is willing to
support a given video mode. In case it is not able to render
the video mode (or for some reason not willing), it should
return false. Usually this method is called when the guest
asks the VMM device whether a given video mode is supported
so the information returned is directly exposed to the guest.
It is important that this method returns very quickly.
Fills the specified rectangle on screen with a solid color.
Copies specified rectangle on the screen.
Returns the visible region of this framebuffer.
If the @a rectangles parameter is NULL then the value of the
@a count parameter is ignored and the number of elements necessary to
describe the current visible region is returned in @a countCopied.
If @a rectangles is not NULL but @a count is less
than the required number of elements to store region data, the method
will report a failure. If @a count is equal or greater than the
required number of elements, then the actual number of elements copied
to the provided array will be returned in @a countCopied.
The address of the provided array must be in the process space of
this IFramebuffer object.
Pointer to the RTRECT array to receive region data.Number of RTRECT elements in the @a rectangles array.Number of elements copied to the @a rectangles array.
Suggests a new visible region to this framebuffer. This region
represents the area of the VM display which is a union of regions of
all top-level windows of the guest operating system running inside the
VM (if the Guest Additions for this system support this
functionality). This information may be used by the frontends to
implement the seamless desktop integration feature.
The address of the provided array must be in the process space of
this IFramebuffer object.
The IFramebuffer implementation must make a copy of the provided
array of rectangles.
Pointer to the RTRECT array.Number of RTRECT elements in the @a rectangles array.
An alpha blended overlay for displaying status icons above an IFramebuffer.
It is always created not visible, so that it must be explicitly shown. It
only covers a portion of the IFramebuffer, determined by its width, height
and co-ordinates. It is always in packed pixel little-endian 32bit ARGB (in
that order) format, and may be written to directly. Do re-read the width
though, after setting it, as it may be adjusted (increased) to make it more
suitable for the front end.
X position of the overlay, relative to the framebuffer.Y position of the overlay, relative to the framebuffer.
Whether the overlay is currently visible.
The global alpha value for the overlay. This may or may not be
supported by a given front end.
Changes the overlay's position relative to the IFramebuffer.
Current display width.Current display height.
Current guest display color depth. Note that this may differ
from .
Prepares an internally managed framebuffer.
Requests access to the internal framebuffer.
Releases access to the internal framebuffer.
Registers an external framebuffer.
Sets the framebuffer for given screen.
Queries the framebuffer for given screen.
Asks VirtualBox to request the given video mode from
the guest. This is just a hint and it cannot be guaranteed
that the requested resolution will be used. Guest Additions
are required for the request to be seen by guests. The caller
should issue the request and wait for a resolution change and
after a timeout retry.
Specifying 0 for either @a width, @a height or @a bitsPerPixel
parameters means that the corresponding values should be taken from the
current video mode (i.e. left unchanged).
If the guest OS supports multi-monitor configuration then the @a display
parameter specifies the number of the guest display to send the hint to:
0 is the primary display, 1 is the first secondary and
so on. If the multi-monitor configuration is not supported, @a display
must be 0.
Enables or disables seamless guest display rendering (seamless desktop
integration) mode.
Calling this method has no effect if returns false.
Takes a screen shot of the requested size and copies it to the
32-bpp buffer allocated by the caller.
Draws a 32-bpp image of the specified size from the given buffer
to the given point on the VM display.
Does a full invalidation of the VM display and instructs the VM
to update it.
Signals that a framebuffer has completed the resize operation.
Signals that a framebuffer has completed the update operation.
Type of the virtual network adapter. Depending on this value,
VirtualBox will provide a different virtual network hardware
to the guest.
Slot number this adapter is plugged into. Corresponds to
the value you pass to
to obtain this instance.
Flag whether the network adapter is present in the
guest system. If disabled, the virtual guest hardware will
not contain this network adapter. Can only be changed when
the VM is not running.
Ethernet MAC address of the adapter, 12 hexadecimal characters. When setting
it to NULL, VirtualBox will generate a unique MAC address.
Name of the Host Network Interface that is currently in use. NULL will be returned
if no device has been allocated. On Linux, setting this refers to a permanent TAP
device. However, a file descriptor has precedence over the interface name on Linux.
Note that when VBox allocates a TAP device, this property will not be set, i.e. the
interface name would have to be determined using the file descriptor and /proc/self/fd.
File descriptor of the TAP device. It can either be setup by the caller
which has to supply an existing valid file handle allocated in the parent
process of the VM process or allocated by VirtualBox. The value is -1 if it
has not been defined. This property is non persistent, i.e. it will not be
stored in the VM's configuration data and thus has to be set at each startup.
Application to start to configure the TAP device.
It is being passed two parameters, 1) the file handle (as ascii),
2) the TAP device name if it is available.
Application to start before closing a TAP device.
It is being passed two parameters, 1) the file handle (as ascii),
2) the TAP device name if it is available.
Name of the internal network the VM is attached to.
Flag whether the adapter reports the cable as connected or not.
It can be used to report offline situations to a VM.
Flag whether network traffic from/to the network card should be traced.
Can only be toggled when the VM is turned off.
Filename where a network trace will be stored. If not set, VBox-pid.pcap
will be used.
Attach the network adapter to the Network Address Translation (NAT) interface.
Attach the network adapter to a host interface. On Linux, the TAP
setup application will be executed if configured and unless a device
name and/or file descriptor has been set, a new TAP interface will be
created.
Attach the network adapter to an internal network.
Detach the network adapter
Slot number this serial port is plugged into. Corresponds to
the value you pass to
to obtain this instance.
Flag whether the serial port is enabled. If it is disabled,
the serial port will not be reported to the guest.
Gets the I/O base of the serial port.Gets the IRQ of the serial port.Gets the name of the host pipe connected to the serial port.Flag whether this serial port acts as a server or a client.
Slot number this parallel port is plugged into. Corresponds to
the value you pass to
to obtain this instance.
Flag whether the parallel port is enabled. If it is disabled,
the parallel port will not be reported to the guest.
Gets the I/O base of the parallel port.Gets the IRQ of the parallel port.Gets the of the device path connected to the parallel port.
Reset VM statistics.
Dumps VM statistics.
Switch for enabling singlestepping.Switch for forcing code recompilation for user mode code.Switch for forcing code recompilation for supervisor mode code.Switch for enabling and disabling the PATM component.Switch for enabling and disabling the CSAM component.Switch for enabling and disabling logging.
Flag indicating whether the VM is currently making use of CPU hardware
virtualization extensions
The rate at which the virtual time runs expressed as a percentage.
The accepted range is 2% to 20000%.
Gets the VM handle. This is only for internal use while
we carve the details of this interface.
Flag whether the USB controller is present in the
guest system. If disabled, the virtual guest hardware will
not contain any USB controller. Can only be changed when
the VM is powered off.
USB standard version which the controller implements.
This is a BCD which means that the major version is in the
high byte and minor version is in the low byte.
List of USB device filters associated with the machine.
If the machine is currently running, these filters are activated
every time a new (supported) USB device is attached to the host
computer that was not ignored by global filters
().
These filters are also activated when the machine is powered up.
They are run against a list of all currently available USB
devices (in states
USBDeviceAvailable,
USBDeviceBusy,
USBDeviceHeld)
that were not previously ignored by global filters.
If at least one filter matches the USB device in question, this
device is automatically captured (attached to) the virtual USB
controller of this machine.
IUSBDeviceFilter, ::IUSBController
Creates a new USB device filter. All attributes except
the filter name are set to null (any match),
active is false (the filter is not active).
The created filter can then be added to the list of filters using
.
#deviceFilters
Filter name. See
for more info.
Created filter object.
Inserts the given USB device to the specified position
in the list of filters.
Positions are numbered starting from 0. If the specified
position is equal to or greater than the number of elements in
the list, the filter is added to the end of the collection.
Duplicates are not allowed, so an attempt to inster a
filter that is already in the collection, will return an
error.
#deviceFiltersPosition to insert the filter to.USB device filter to insert.
Removes a USB device filter from the specified position in the
list of filters.
Positions are numbered starting from 0. Specifying a
position equal to or greater than the number of elements in
the list will produce an error.
#deviceFiltersPosition to remove the filter from.Removed USB device filter.
Searches this collection for a USB device with the given UUID.
The method returns an error if the given UUID does not
correspond to any USB device in the collection.
IUSBDevice::idUUID of the USB device to search for.Found USB device object.
Searches this collection for a USB device with the given
host address.
The method returns an error if the given address does not
correspond to any USB device in the collection.
IUSBDevice::address
Address of the USB device (as assigned by the host) to
search for.
Found USB device object.
The IUSBDevice interface represents a USB device captured by
(attached to) a running virtual machine's USB controller.
IConsole::USBDevices
Unique USB device ID. This ID is built from #vendorId,
#productId, #revision and #serialNumber.
Vendor ID.Product ID.
Product revision number. This is a packed BCD represented as
unsigned short. The high byte is the integer part and the low
byte is the decimal.
Manufacturer string.Product string.Serial number string.Host specific address of the device.
Host USB port number the device is physically
coonected to.
Whether the device is physically connected to a remote VRDP
client or to a local host machine.
The IUSBDeviceFilter interface represents an USB device filter used
to perform actions on a group of USB devices.
This type of filters is used by running virtual machines to
automatically capture selected USB devices once they are physically
attached to the host computer.
A USB device is matched to the given device filter if and only if all
attributes of the device match the corresponding attributes of the
filter (that is, attributes are joined together using the logical AND
operation). On the other hand, all together, filters in the list of
filters carry the semantics of the logical OR operation. So if it is
desirable to create a match like "this vendor id OR this product id",
one needs to create two filters and specify "any match" (see below)
for unused attributes.
All filter attributes used for matching are strings. Each string
is an expression representing a set of values of the corresponding
device attribute, that will match the given filter. Currently, the
following filtering expressions are supported:
Interval filters. Used to specify valid intervals for
integer device attributes (Vendor ID, Product ID and Revision).
The format of the string is:
int:((m)|([m]-[n]))(,(m)|([m]-[n]))*
where m and n are integer numbers, either in octal
(starting from 0), hexadecimal (starting from 0x)
or decimal (otherwise) form, so that m < n. If m
is ommitted before a dash (-), the minimum possible integer
is assumed; if n is ommitted after a dash, the maximum
possible integer is assummed.
Boolean filters. Used to specify acceptable values for
boolean device attributes. The format of the string is:
true|false|yes|no|0|1
Exact match. Used to specify a single value for the given
device attribute. Any string that does't start with int:
represents the exact match. String device attributes are compared to
this string including case of symbols. Integer attributes are first
converted to a string (see individual filter attributes) and then
compared ignoring case.
Any match. Any value of the corresponding device attribute
will match the given filter. An empty or null string is
used to construct this type of filtering expressions.
On the Windows host platform, interval filters are not currently
available. Also all string filter attributes
(, ,
) are ignored, so they behave as
any match no matter what string expression is specified.
IUSBController::deviceFilters, IHostUSBDeviceFilter
Visible name for this filter.
This name is used to visually distungish one filter from another,
so it can neither be null nor an empty string.
Whether this filter active or has been temporarily disabled.
Vendor ID filter.
The string representation for the exact matching
has the form XXXX, where X is the hex digit
(including leading zeroes).
Product ID filter.
The string representation for the exact matching
has the form XXXX, where X is the hex digit
(including leading zeroes).
Product revision number
filter. The string representation for the exact matching
has the form IIFF, where I is the decimal digit
of the integer part of the revision, and F is the
decimal digit of its fractional part (including leading and
trailing zeroes).
Note that for interval filters, it's best to use the hexadecimal
form, because the revision is stored as a 16 bit packed BCD value;
so the expression int:0x0100-0x0199 will match any
revision from 1.0 to 1.99.
Manufacturer filter.
Product filter.
Serial number filter.
Host USB port filter.
Remote state filter.
This filter makes sense only for machine USB filters,
i.e. it is ignored by IHostUSBDeviceFilter objects.
USB device state. This enumeration represents all possible states
of the USB device physically attached to the host computer regarding
its state on the host computer and availability to guest computers
(all currently running virtual machines).
Once a supported USB device is attached to the host, global USB
filters () are activated. They can
either ignore the device, or put ot to #USBDeviceHeld state, or do
nothing. Unless the device is ignored by global filters, filters of
all currently running guests ()
are activated that can put it to #USBDeviceCaptured state.
If the device was ignored by global filters, or didn't match
any filters at all (including guest ones), it is handled by the host
in a normal way. In this case, the device state is determined by
the host and can be one of #USBDeviceUnavailable, #USBDeviceBusy or
#USBDeviceAvailable, depending on the current device usage.
Besides auto-capturing based on filters, the device can be manually
captured by guests () if its
state is #USBDeviceBusy, #USBDeviceAvailable or #USBDeviceHeld.
Due to differences in USB stack implementations in Linux and Win32,
states #USBDeviceBusy and #USBDeviceAvailable are applicable
only to the Linux version of the product. This also means that
() can only succeed
on Win32 if the device state is #USBDeviceHeld.
IHostUSBDevice, IHostUSBDeviceFilter
Not supported by the VirtualBox server, not available to guests.
Being used by the host computer exclusively,
not available to guests.
Being used by the host computer, potentially available to guests.
Not used by the host computer, available to guests.
The host computer can also start using the device at any time.
Held by the VirtualBox server (ignored by the host computer),
available to guests.
Captured by one of the guest computers, not available
to anybody else.
Searches this collection for a USB device with the given UUID.
The method returns an error if the given UUID does not
correspond to any USB device in the collection.
IHostUSBDevice::idUUID of the USB device to search for.Found USB device object.
Searches this collection for a USB device with the given
host address.
The method returns an error if the given address does not
correspond to any USB device in the collection.
IHostUSBDevice::address
Address of the USB device (as assigned by the host) to
search for.
Found USB device object.
The IHostUSBDevice interface represents a USB device attached to
the host computer.
Among with properties inherited from IUSBDevice,
this interface adds the property
that holds the courrent state of the USB device.
IHost::USBDevices, IHost::USBDeviceFilters
Current state of the device.
Actions for host USB device filters.
IHostUSBDeviceFilter, USBDeviceStateIgnore the matched USB device.Hold the matched USB device.
The IHostUSBDeviceFilter interface represents a USB device filter used
by the host computer.
Using filters of this type, the host computer determines the initial
state of the USB device after it is physically attached to the
host's USB controller.
The attribute is ignored by this type of
filters, because it makes sense only for
machine USB filters.
IHost::USBDeviceFilters
Action performed by the host when an attached USB device
matches this filter.
Flag whether the audio adapter is present in the
guest system. If disabled, the virtual guest hardware will
not contain any audio adapter. Can only be changed when
the VM is not running.
Audio driver the adapter is connected to. This setting
can only be changed when the VM is not running.
VRDP server status.
VRDP server port number.
Setting the value of this property to 0 will reset the port
number to the default value which is
currently 3389. Reading this property will always return a
real port number, even after it has been set to 0 (in which
case the default port is returned).
VRDP server address.VRDP authentication method.Timeout for guest authentication. Milliseconds.
Flag whether multiple simultaneous connections to the VM are permitted.
Note that this will be replaced by a more powerful mechanism in the future.
Searches this collection for a shared folder with the given logical
name.
The method returns an error if the given name does not correspond to
any shared folder in the collection.
Logical name of the shared folder to search forFound shared folder object
The ISharedFolder interface represents a folder in the host computer's
file system accessible from the guest OS running inside a virtual
machine using an associated logical name.
There are three types of shared folders:
Global (), shared
folders available to all virtual machines.
Permanent (),
VM-specific shared folders available to the given virtual machine at
startup.
Transient (),
VM-specific shared folders created in the session context (for
example, when the virtual machine is running) and automatically
discarded when the session is closed (the VM is powered off).
Logical names of shared folders must be unique within the given scope
(global, permanent or transient). However, they do not need to be unique
across scopes. In this case, the definitioin of the shared folder in a
more specific scope takes precedence over definitions in all other
scopes. The order of precedence is (more specific to more general):
Transient definitions
Permanent definitions
Global definitions
For example, if MyMachine has a shared folder named
C_DRIVE (that points to C:\\), then cretaing a
transient shared folder named C_DRIVE (that points
to C:\\\\WINDOWS) will change the definition
of C_DRIVE in the guest OS so
that \\\\VBOXSVR\\C_DRIVE will give access
to C:\\WINDOWS instead of C:\\ on the host
PC. Removing the transient shared folder C_DRIVE will restore
the prevoious (permanent) definition of C_DRIVE that points
to C:\\ if it still exists.
Note that permanent and transient shared folders of different machines
are in different name spaces, so they don't overlap and don't need to
have unique logical names.
Global shared folders are not implemented in the current vesion of the
product.
Logical name of the shared folder.Full path to the shared folder in the host file system.
Whether the folder defined by the host path is currently
accessible or not.
For example, the folder can be unaccessible if it is placed
on the network share that is not available by the time
this property is read.
PID of the process that has created this Session object.
Returns the console object suitable for remote control.
Assigns the machine object associated with this direct-type
session or informs the session that it will be a remote one
(if machine = NULL).
Assigns the machine and the (remote) console object associated with
this remote-type session.
Updates the machine state in the VM process.
Must be called only in certain cases
(see the method implementation).
Uninitializes (closes) this session. Used by VirtualBox to close
the corresponding remote session when the direct session dies
or gets closed.
Triggered when settings of the DVD drive object of the
associated virtual machine have changed.
Triggered when settings of the floppy drive object of the
associated virtual machine have changed.
Triggered when settions of a network adapter of the
associated virtual machine have changed.
Triggered when settions of a serial port of the
associated virtual machine have changed.
Triggered when settings of a parallel port of the
associated virtual machine have changed.
Triggered when settings of the VRDP server object of the
associated virtual machine have changed.
Triggered when settings of the USB controller object of the
associated virtual machine have changed.
Triggered when a permanent (global or machine) shared folder has been
created or removed.
We don't pass shared folder parameters in this notification because
the order in which parallel notifications are delivered is not defined,
therefore it could happen that these parameters were outdated by the
time of processing this notification.
Triggered when a request to capture a USB device (as a result
of matched USB filters or direct call to
) has completed.
A @c null @a error object means success, otherwise it
describes a failure.
Triggered when a request to release the USB device (as a result
of machine termination or direct call to
) has completed.
A @c null @a error object means success, otherwise it
Called by and by
in order to notify
console callbacks
and .
Current state of this session.
Type of this session. The value of this attribute is valid only
if the session is currently open (i.e. its #state is SessionType::SessionOpen),
otherwise an error will be returned.
Machine object associated with this session.Console object associated with this session.
Closes this session.
If a direct session for a machine opened with
is not explicitly
closed when the application terminates, the state of the
machine will be set to
on the server. Generally, it is recommended to close all
open sessions explicitly before terminating the application
(no matter what is the reason of the termination).
Returns the name of the interface that this managed object represents,
for example, "IMachine", as a string.
Releases this managed object reference and frees the resources that
were allocated for it in the web service server process. After calling
this method, the identifier of the reference can no longer be used.